1 /* 2 * FreeRTOS Kernel <DEVELOPMENT BRANCH> 3 * Copyright (C) 2021 Amazon.com, Inc. or its affiliates. All Rights Reserved. 4 * 5 * SPDX-License-Identifier: MIT 6 * 7 * Permission is hereby granted, free of charge, to any person obtaining a copy of 8 * this software and associated documentation files (the "Software"), to deal in 9 * the Software without restriction, including without limitation the rights to 10 * use, copy, modify, merge, publish, distribute, sublicense, and/or sell copies of 11 * the Software, and to permit persons to whom the Software is furnished to do so, 12 * subject to the following conditions: 13 * 14 * The above copyright notice and this permission notice shall be included in all 15 * copies or substantial portions of the Software. 16 * 17 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR 18 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, FITNESS 19 * FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR 20 * COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER 21 * IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN 22 * CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE. 23 * 24 * https://www.FreeRTOS.org 25 * https://github.com/FreeRTOS 26 * 27 */ 28 29 30 #ifndef INC_TASK_H 31 #define INC_TASK_H 32 33 #ifndef INC_FREERTOS_H 34 #error "include FreeRTOS.h must appear in source files before include task.h" 35 #endif 36 37 #include "list.h" 38 39 /* *INDENT-OFF* */ 40 #ifdef __cplusplus 41 extern "C" { 42 #endif 43 /* *INDENT-ON* */ 44 45 /*----------------------------------------------------------- 46 * MACROS AND DEFINITIONS 47 *----------------------------------------------------------*/ 48 49 /* 50 * If tskKERNEL_VERSION_NUMBER ends with + it represents the version in development 51 * after the numbered release. 52 * 53 * The tskKERNEL_VERSION_MAJOR, tskKERNEL_VERSION_MINOR, tskKERNEL_VERSION_BUILD 54 * values will reflect the last released version number. 55 */ 56 #define tskKERNEL_VERSION_NUMBER "V11.1.0+" 57 #define tskKERNEL_VERSION_MAJOR 11 58 #define tskKERNEL_VERSION_MINOR 1 59 #define tskKERNEL_VERSION_BUILD 0 60 61 /* MPU region parameters passed in ulParameters 62 * of MemoryRegion_t struct. */ 63 #define tskMPU_REGION_READ_ONLY ( 1U << 0U ) 64 #define tskMPU_REGION_READ_WRITE ( 1U << 1U ) 65 #define tskMPU_REGION_EXECUTE_NEVER ( 1U << 2U ) 66 #define tskMPU_REGION_NORMAL_MEMORY ( 1U << 3U ) 67 #define tskMPU_REGION_DEVICE_MEMORY ( 1U << 4U ) 68 #if defined( portARMV8M_MINOR_VERSION ) && ( portARMV8M_MINOR_VERSION >= 1 ) 69 #define tskMPU_REGION_PRIVILEGED_EXECUTE_NEVER ( 1U << 5U ) 70 #endif /* portARMV8M_MINOR_VERSION >= 1 */ 71 72 /* MPU region permissions stored in MPU settings to 73 * authorize access requests. */ 74 #define tskMPU_READ_PERMISSION ( 1U << 0U ) 75 #define tskMPU_WRITE_PERMISSION ( 1U << 1U ) 76 77 /* The direct to task notification feature used to have only a single notification 78 * per task. Now there is an array of notifications per task that is dimensioned by 79 * configTASK_NOTIFICATION_ARRAY_ENTRIES. For backward compatibility, any use of the 80 * original direct to task notification defaults to using the first index in the 81 * array. */ 82 #define tskDEFAULT_INDEX_TO_NOTIFY ( 0 ) 83 84 /** 85 * task. h 86 * 87 * Type by which tasks are referenced. For example, a call to xTaskCreate 88 * returns (via a pointer parameter) an TaskHandle_t variable that can then 89 * be used as a parameter to vTaskDelete to delete the task. 90 * 91 * \defgroup TaskHandle_t TaskHandle_t 92 * \ingroup Tasks 93 */ 94 struct tskTaskControlBlock; /* The old naming convention is used to prevent breaking kernel aware debuggers. */ 95 typedef struct tskTaskControlBlock * TaskHandle_t; 96 typedef const struct tskTaskControlBlock * ConstTaskHandle_t; 97 98 /* 99 * Defines the prototype to which the application task hook function must 100 * conform. 101 */ 102 typedef BaseType_t (* TaskHookFunction_t)( void * arg ); 103 104 /* Task states returned by eTaskGetState. */ 105 typedef enum 106 { 107 eRunning = 0, /* A task is querying the state of itself, so must be running. */ 108 eReady, /* The task being queried is in a ready or pending ready list. */ 109 eBlocked, /* The task being queried is in the Blocked state. */ 110 eSuspended, /* The task being queried is in the Suspended state, or is in the Blocked state with an infinite time out. */ 111 eDeleted, /* The task being queried has been deleted, but its TCB has not yet been freed. */ 112 eInvalid /* Used as an 'invalid state' value. */ 113 } eTaskState; 114 115 /* Actions that can be performed when vTaskNotify() is called. */ 116 typedef enum 117 { 118 eNoAction = 0, /* Notify the task without updating its notify value. */ 119 eSetBits, /* Set bits in the task's notification value. */ 120 eIncrement, /* Increment the task's notification value. */ 121 eSetValueWithOverwrite, /* Set the task's notification value to a specific value even if the previous value has not yet been read by the task. */ 122 eSetValueWithoutOverwrite /* Set the task's notification value if the previous value has been read by the task. */ 123 } eNotifyAction; 124 125 /* 126 * Used internally only. 127 */ 128 typedef struct xTIME_OUT 129 { 130 BaseType_t xOverflowCount; 131 TickType_t xTimeOnEntering; 132 } TimeOut_t; 133 134 /* 135 * Defines the memory ranges allocated to the task when an MPU is used. 136 */ 137 typedef struct xMEMORY_REGION 138 { 139 void * pvBaseAddress; 140 uint32_t ulLengthInBytes; 141 uint32_t ulParameters; 142 } MemoryRegion_t; 143 144 /* 145 * Parameters required to create an MPU protected task. 146 */ 147 typedef struct xTASK_PARAMETERS 148 { 149 TaskFunction_t pvTaskCode; 150 const char * pcName; 151 configSTACK_DEPTH_TYPE usStackDepth; 152 void * pvParameters; 153 UBaseType_t uxPriority; 154 StackType_t * puxStackBuffer; 155 MemoryRegion_t xRegions[ portNUM_CONFIGURABLE_REGIONS ]; 156 #if ( ( portUSING_MPU_WRAPPERS == 1 ) && ( configSUPPORT_STATIC_ALLOCATION == 1 ) ) 157 StaticTask_t * const pxTaskBuffer; 158 #endif 159 } TaskParameters_t; 160 161 /* Used with the uxTaskGetSystemState() function to return the state of each task 162 * in the system. */ 163 typedef struct xTASK_STATUS 164 { 165 TaskHandle_t xHandle; /* The handle of the task to which the rest of the information in the structure relates. */ 166 const char * pcTaskName; /* A pointer to the task's name. This value will be invalid if the task was deleted since the structure was populated! */ 167 UBaseType_t xTaskNumber; /* A number unique to the task. Note that this is not the task number that may be modified using vTaskSetTaskNumber() and uxTaskGetTaskNumber(), but a separate TCB-specific and unique identifier automatically assigned on task generation. */ 168 eTaskState eCurrentState; /* The state in which the task existed when the structure was populated. */ 169 UBaseType_t uxCurrentPriority; /* The priority at which the task was running (may be inherited) when the structure was populated. */ 170 UBaseType_t uxBasePriority; /* The priority to which the task will return if the task's current priority has been inherited to avoid unbounded priority inversion when obtaining a mutex. Only valid if configUSE_MUTEXES is defined as 1 in FreeRTOSConfig.h. */ 171 configRUN_TIME_COUNTER_TYPE ulRunTimeCounter; /* The total run time allocated to the task so far, as defined by the run time stats clock. See https://www.FreeRTOS.org/rtos-run-time-stats.html. Only valid when configGENERATE_RUN_TIME_STATS is defined as 1 in FreeRTOSConfig.h. */ 172 StackType_t * pxStackBase; /* Points to the lowest address of the task's stack area. */ 173 #if ( ( portSTACK_GROWTH > 0 ) || ( configRECORD_STACK_HIGH_ADDRESS == 1 ) ) 174 StackType_t * pxTopOfStack; /* Points to the top address of the task's stack area. */ 175 StackType_t * pxEndOfStack; /* Points to the end address of the task's stack area. */ 176 #endif 177 configSTACK_DEPTH_TYPE usStackHighWaterMark; /* The minimum amount of stack space that has remained for the task since the task was created. The closer this value is to zero the closer the task has come to overflowing its stack. */ 178 #if ( ( configUSE_CORE_AFFINITY == 1 ) && ( configNUMBER_OF_CORES > 1 ) ) 179 UBaseType_t uxCoreAffinityMask; /* The core affinity mask for the task */ 180 #endif 181 } TaskStatus_t; 182 183 /* Possible return values for eTaskConfirmSleepModeStatus(). */ 184 typedef enum 185 { 186 eAbortSleep = 0, /* A task has been made ready or a context switch pended since portSUPPRESS_TICKS_AND_SLEEP() was called - abort entering a sleep mode. */ 187 eStandardSleep /* Enter a sleep mode that will not last any longer than the expected idle time. */ 188 #if ( INCLUDE_vTaskSuspend == 1 ) 189 , 190 eNoTasksWaitingTimeout /* No tasks are waiting for a timeout so it is safe to enter a sleep mode that can only be exited by an external interrupt. */ 191 #endif /* INCLUDE_vTaskSuspend */ 192 } eSleepModeStatus; 193 194 /** 195 * Defines the priority used by the idle task. This must not be modified. 196 * 197 * \ingroup TaskUtils 198 */ 199 #define tskIDLE_PRIORITY ( ( UBaseType_t ) 0U ) 200 201 /** 202 * Defines affinity to all available cores. 203 * 204 * \ingroup TaskUtils 205 */ 206 #define tskNO_AFFINITY ( ( UBaseType_t ) -1 ) 207 208 /** 209 * task. h 210 * 211 * Macro for forcing a context switch. 212 * 213 * \defgroup taskYIELD taskYIELD 214 * \ingroup SchedulerControl 215 */ 216 #define taskYIELD() portYIELD() 217 218 /** 219 * task. h 220 * 221 * Macro to mark the start of a critical code region. Preemptive context 222 * switches cannot occur when in a critical region. 223 * 224 * NOTE: This may alter the stack (depending on the portable implementation) 225 * so must be used with care! 226 * 227 * \defgroup taskENTER_CRITICAL taskENTER_CRITICAL 228 * \ingroup SchedulerControl 229 */ 230 #define taskENTER_CRITICAL() portENTER_CRITICAL() 231 #if ( configNUMBER_OF_CORES == 1 ) 232 #define taskENTER_CRITICAL_FROM_ISR() portSET_INTERRUPT_MASK_FROM_ISR() 233 #else 234 #define taskENTER_CRITICAL_FROM_ISR() portENTER_CRITICAL_FROM_ISR() 235 #endif 236 237 /** 238 * task. h 239 * 240 * Macro to mark the end of a critical code region. Preemptive context 241 * switches cannot occur when in a critical region. 242 * 243 * NOTE: This may alter the stack (depending on the portable implementation) 244 * so must be used with care! 245 * 246 * \defgroup taskEXIT_CRITICAL taskEXIT_CRITICAL 247 * \ingroup SchedulerControl 248 */ 249 #define taskEXIT_CRITICAL() portEXIT_CRITICAL() 250 #if ( configNUMBER_OF_CORES == 1 ) 251 #define taskEXIT_CRITICAL_FROM_ISR( x ) portCLEAR_INTERRUPT_MASK_FROM_ISR( x ) 252 #else 253 #define taskEXIT_CRITICAL_FROM_ISR( x ) portEXIT_CRITICAL_FROM_ISR( x ) 254 #endif 255 256 /** 257 * task. h 258 * 259 * Macro to disable all maskable interrupts. 260 * 261 * \defgroup taskDISABLE_INTERRUPTS taskDISABLE_INTERRUPTS 262 * \ingroup SchedulerControl 263 */ 264 #define taskDISABLE_INTERRUPTS() portDISABLE_INTERRUPTS() 265 266 /** 267 * task. h 268 * 269 * Macro to enable microcontroller interrupts. 270 * 271 * \defgroup taskENABLE_INTERRUPTS taskENABLE_INTERRUPTS 272 * \ingroup SchedulerControl 273 */ 274 #define taskENABLE_INTERRUPTS() portENABLE_INTERRUPTS() 275 276 /* Definitions returned by xTaskGetSchedulerState(). taskSCHEDULER_SUSPENDED is 277 * 0 to generate more optimal code when configASSERT() is defined as the constant 278 * is used in assert() statements. */ 279 #define taskSCHEDULER_SUSPENDED ( ( BaseType_t ) 0 ) 280 #define taskSCHEDULER_NOT_STARTED ( ( BaseType_t ) 1 ) 281 #define taskSCHEDULER_RUNNING ( ( BaseType_t ) 2 ) 282 283 /* Checks if core ID is valid. */ 284 #define taskVALID_CORE_ID( xCoreID ) ( ( ( ( ( BaseType_t ) 0 <= ( xCoreID ) ) && ( ( xCoreID ) < ( BaseType_t ) configNUMBER_OF_CORES ) ) ) ? ( pdTRUE ) : ( pdFALSE ) ) 285 286 /*----------------------------------------------------------- 287 * TASK CREATION API 288 *----------------------------------------------------------*/ 289 290 /** 291 * task. h 292 * @code{c} 293 * BaseType_t xTaskCreate( 294 * TaskFunction_t pxTaskCode, 295 * const char * const pcName, 296 * const configSTACK_DEPTH_TYPE uxStackDepth, 297 * void *pvParameters, 298 * UBaseType_t uxPriority, 299 * TaskHandle_t *pxCreatedTask 300 * ); 301 * @endcode 302 * 303 * Create a new task and add it to the list of tasks that are ready to run. 304 * 305 * Internally, within the FreeRTOS implementation, tasks use two blocks of 306 * memory. The first block is used to hold the task's data structures. The 307 * second block is used by the task as its stack. If a task is created using 308 * xTaskCreate() then both blocks of memory are automatically dynamically 309 * allocated inside the xTaskCreate() function. (see 310 * https://www.FreeRTOS.org/a00111.html). If a task is created using 311 * xTaskCreateStatic() then the application writer must provide the required 312 * memory. xTaskCreateStatic() therefore allows a task to be created without 313 * using any dynamic memory allocation. 314 * 315 * See xTaskCreateStatic() for a version that does not use any dynamic memory 316 * allocation. 317 * 318 * xTaskCreate() can only be used to create a task that has unrestricted 319 * access to the entire microcontroller memory map. Systems that include MPU 320 * support can alternatively create an MPU constrained task using 321 * xTaskCreateRestricted(). 322 * 323 * @param pxTaskCode Pointer to the task entry function. Tasks 324 * must be implemented to never return (i.e. continuous loop). 325 * 326 * @param pcName A descriptive name for the task. This is mainly used to 327 * facilitate debugging. Max length defined by configMAX_TASK_NAME_LEN - default 328 * is 16. 329 * 330 * @param uxStackDepth The size of the task stack specified as the number of 331 * variables the stack can hold - not the number of bytes. For example, if 332 * the stack is 16 bits wide and uxStackDepth is defined as 100, 200 bytes 333 * will be allocated for stack storage. 334 * 335 * @param pvParameters Pointer that will be used as the parameter for the task 336 * being created. 337 * 338 * @param uxPriority The priority at which the task should run. Systems that 339 * include MPU support can optionally create tasks in a privileged (system) 340 * mode by setting bit portPRIVILEGE_BIT of the priority parameter. For 341 * example, to create a privileged task at priority 2 the uxPriority parameter 342 * should be set to ( 2 | portPRIVILEGE_BIT ). 343 * 344 * @param pxCreatedTask Used to pass back a handle by which the created task 345 * can be referenced. 346 * 347 * @return pdPASS if the task was successfully created and added to a ready 348 * list, otherwise an error code defined in the file projdefs.h 349 * 350 * Example usage: 351 * @code{c} 352 * // Task to be created. 353 * void vTaskCode( void * pvParameters ) 354 * { 355 * for( ;; ) 356 * { 357 * // Task code goes here. 358 * } 359 * } 360 * 361 * // Function that creates a task. 362 * void vOtherFunction( void ) 363 * { 364 * static uint8_t ucParameterToPass; 365 * TaskHandle_t xHandle = NULL; 366 * 367 * // Create the task, storing the handle. Note that the passed parameter ucParameterToPass 368 * // must exist for the lifetime of the task, so in this case is declared static. If it was just an 369 * // an automatic stack variable it might no longer exist, or at least have been corrupted, by the time 370 * // the new task attempts to access it. 371 * xTaskCreate( vTaskCode, "NAME", STACK_SIZE, &ucParameterToPass, tskIDLE_PRIORITY, &xHandle ); 372 * configASSERT( xHandle ); 373 * 374 * // Use the handle to delete the task. 375 * if( xHandle != NULL ) 376 * { 377 * vTaskDelete( xHandle ); 378 * } 379 * } 380 * @endcode 381 * \defgroup xTaskCreate xTaskCreate 382 * \ingroup Tasks 383 */ 384 #if ( configSUPPORT_DYNAMIC_ALLOCATION == 1 ) 385 BaseType_t xTaskCreate( TaskFunction_t pxTaskCode, 386 const char * const pcName, 387 const configSTACK_DEPTH_TYPE uxStackDepth, 388 void * const pvParameters, 389 UBaseType_t uxPriority, 390 TaskHandle_t * const pxCreatedTask ) PRIVILEGED_FUNCTION; 391 #endif 392 393 #if ( ( configSUPPORT_DYNAMIC_ALLOCATION == 1 ) && ( configNUMBER_OF_CORES > 1 ) && ( configUSE_CORE_AFFINITY == 1 ) ) 394 BaseType_t xTaskCreateAffinitySet( TaskFunction_t pxTaskCode, 395 const char * const pcName, 396 const configSTACK_DEPTH_TYPE uxStackDepth, 397 void * const pvParameters, 398 UBaseType_t uxPriority, 399 UBaseType_t uxCoreAffinityMask, 400 TaskHandle_t * const pxCreatedTask ) PRIVILEGED_FUNCTION; 401 #endif 402 403 /** 404 * task. h 405 * @code{c} 406 * TaskHandle_t xTaskCreateStatic( TaskFunction_t pxTaskCode, 407 * const char * const pcName, 408 * const configSTACK_DEPTH_TYPE uxStackDepth, 409 * void *pvParameters, 410 * UBaseType_t uxPriority, 411 * StackType_t *puxStackBuffer, 412 * StaticTask_t *pxTaskBuffer ); 413 * @endcode 414 * 415 * Create a new task and add it to the list of tasks that are ready to run. 416 * 417 * Internally, within the FreeRTOS implementation, tasks use two blocks of 418 * memory. The first block is used to hold the task's data structures. The 419 * second block is used by the task as its stack. If a task is created using 420 * xTaskCreate() then both blocks of memory are automatically dynamically 421 * allocated inside the xTaskCreate() function. (see 422 * https://www.FreeRTOS.org/a00111.html). If a task is created using 423 * xTaskCreateStatic() then the application writer must provide the required 424 * memory. xTaskCreateStatic() therefore allows a task to be created without 425 * using any dynamic memory allocation. 426 * 427 * @param pxTaskCode Pointer to the task entry function. Tasks 428 * must be implemented to never return (i.e. continuous loop). 429 * 430 * @param pcName A descriptive name for the task. This is mainly used to 431 * facilitate debugging. The maximum length of the string is defined by 432 * configMAX_TASK_NAME_LEN in FreeRTOSConfig.h. 433 * 434 * @param uxStackDepth The size of the task stack specified as the number of 435 * variables the stack can hold - not the number of bytes. For example, if 436 * the stack is 32-bits wide and uxStackDepth is defined as 100 then 400 bytes 437 * will be allocated for stack storage. 438 * 439 * @param pvParameters Pointer that will be used as the parameter for the task 440 * being created. 441 * 442 * @param uxPriority The priority at which the task will run. 443 * 444 * @param puxStackBuffer Must point to a StackType_t array that has at least 445 * uxStackDepth indexes - the array will then be used as the task's stack, 446 * removing the need for the stack to be allocated dynamically. 447 * 448 * @param pxTaskBuffer Must point to a variable of type StaticTask_t, which will 449 * then be used to hold the task's data structures, removing the need for the 450 * memory to be allocated dynamically. 451 * 452 * @return If neither puxStackBuffer nor pxTaskBuffer are NULL, then the task 453 * will be created and a handle to the created task is returned. If either 454 * puxStackBuffer or pxTaskBuffer are NULL then the task will not be created and 455 * NULL is returned. 456 * 457 * Example usage: 458 * @code{c} 459 * 460 * // Dimensions of the buffer that the task being created will use as its stack. 461 * // NOTE: This is the number of words the stack will hold, not the number of 462 * // bytes. For example, if each stack item is 32-bits, and this is set to 100, 463 * // then 400 bytes (100 * 32-bits) will be allocated. 464 #define STACK_SIZE 200 465 * 466 * // Structure that will hold the TCB of the task being created. 467 * StaticTask_t xTaskBuffer; 468 * 469 * // Buffer that the task being created will use as its stack. Note this is 470 * // an array of StackType_t variables. The size of StackType_t is dependent on 471 * // the RTOS port. 472 * StackType_t xStack[ STACK_SIZE ]; 473 * 474 * // Function that implements the task being created. 475 * void vTaskCode( void * pvParameters ) 476 * { 477 * // The parameter value is expected to be 1 as 1 is passed in the 478 * // pvParameters value in the call to xTaskCreateStatic(). 479 * configASSERT( ( uint32_t ) pvParameters == 1U ); 480 * 481 * for( ;; ) 482 * { 483 * // Task code goes here. 484 * } 485 * } 486 * 487 * // Function that creates a task. 488 * void vOtherFunction( void ) 489 * { 490 * TaskHandle_t xHandle = NULL; 491 * 492 * // Create the task without using any dynamic memory allocation. 493 * xHandle = xTaskCreateStatic( 494 * vTaskCode, // Function that implements the task. 495 * "NAME", // Text name for the task. 496 * STACK_SIZE, // Stack size in words, not bytes. 497 * ( void * ) 1, // Parameter passed into the task. 498 * tskIDLE_PRIORITY,// Priority at which the task is created. 499 * xStack, // Array to use as the task's stack. 500 * &xTaskBuffer ); // Variable to hold the task's data structure. 501 * 502 * // puxStackBuffer and pxTaskBuffer were not NULL, so the task will have 503 * // been created, and xHandle will be the task's handle. Use the handle 504 * // to suspend the task. 505 * vTaskSuspend( xHandle ); 506 * } 507 * @endcode 508 * \defgroup xTaskCreateStatic xTaskCreateStatic 509 * \ingroup Tasks 510 */ 511 #if ( configSUPPORT_STATIC_ALLOCATION == 1 ) 512 TaskHandle_t xTaskCreateStatic( TaskFunction_t pxTaskCode, 513 const char * const pcName, 514 const configSTACK_DEPTH_TYPE uxStackDepth, 515 void * const pvParameters, 516 UBaseType_t uxPriority, 517 StackType_t * const puxStackBuffer, 518 StaticTask_t * const pxTaskBuffer ) PRIVILEGED_FUNCTION; 519 #endif /* configSUPPORT_STATIC_ALLOCATION */ 520 521 #if ( ( configSUPPORT_STATIC_ALLOCATION == 1 ) && ( configNUMBER_OF_CORES > 1 ) && ( configUSE_CORE_AFFINITY == 1 ) ) 522 TaskHandle_t xTaskCreateStaticAffinitySet( TaskFunction_t pxTaskCode, 523 const char * const pcName, 524 const configSTACK_DEPTH_TYPE uxStackDepth, 525 void * const pvParameters, 526 UBaseType_t uxPriority, 527 StackType_t * const puxStackBuffer, 528 StaticTask_t * const pxTaskBuffer, 529 UBaseType_t uxCoreAffinityMask ) PRIVILEGED_FUNCTION; 530 #endif 531 532 /** 533 * task. h 534 * @code{c} 535 * BaseType_t xTaskCreateRestricted( TaskParameters_t *pxTaskDefinition, TaskHandle_t *pxCreatedTask ); 536 * @endcode 537 * 538 * Only available when configSUPPORT_DYNAMIC_ALLOCATION is set to 1. 539 * 540 * xTaskCreateRestricted() should only be used in systems that include an MPU 541 * implementation. 542 * 543 * Create a new task and add it to the list of tasks that are ready to run. 544 * The function parameters define the memory regions and associated access 545 * permissions allocated to the task. 546 * 547 * See xTaskCreateRestrictedStatic() for a version that does not use any 548 * dynamic memory allocation. 549 * 550 * @param pxTaskDefinition Pointer to a structure that contains a member 551 * for each of the normal xTaskCreate() parameters (see the xTaskCreate() API 552 * documentation) plus an optional stack buffer and the memory region 553 * definitions. 554 * 555 * @param pxCreatedTask Used to pass back a handle by which the created task 556 * can be referenced. 557 * 558 * @return pdPASS if the task was successfully created and added to a ready 559 * list, otherwise an error code defined in the file projdefs.h 560 * 561 * Example usage: 562 * @code{c} 563 * // Create an TaskParameters_t structure that defines the task to be created. 564 * static const TaskParameters_t xCheckTaskParameters = 565 * { 566 * vATask, // pvTaskCode - the function that implements the task. 567 * "ATask", // pcName - just a text name for the task to assist debugging. 568 * 100, // uxStackDepth - the stack size DEFINED IN WORDS. 569 * NULL, // pvParameters - passed into the task function as the function parameters. 570 * ( 1U | portPRIVILEGE_BIT ),// uxPriority - task priority, set the portPRIVILEGE_BIT if the task should run in a privileged state. 571 * cStackBuffer,// puxStackBuffer - the buffer to be used as the task stack. 572 * 573 * // xRegions - Allocate up to three separate memory regions for access by 574 * // the task, with appropriate access permissions. Different processors have 575 * // different memory alignment requirements - refer to the FreeRTOS documentation 576 * // for full information. 577 * { 578 * // Base address Length Parameters 579 * { cReadWriteArray, 32, portMPU_REGION_READ_WRITE }, 580 * { cReadOnlyArray, 32, portMPU_REGION_READ_ONLY }, 581 * { cPrivilegedOnlyAccessArray, 128, portMPU_REGION_PRIVILEGED_READ_WRITE } 582 * } 583 * }; 584 * 585 * int main( void ) 586 * { 587 * TaskHandle_t xHandle; 588 * 589 * // Create a task from the const structure defined above. The task handle 590 * // is requested (the second parameter is not NULL) but in this case just for 591 * // demonstration purposes as its not actually used. 592 * xTaskCreateRestricted( &xRegTest1Parameters, &xHandle ); 593 * 594 * // Start the scheduler. 595 * vTaskStartScheduler(); 596 * 597 * // Will only get here if there was insufficient memory to create the idle 598 * // and/or timer task. 599 * for( ;; ); 600 * } 601 * @endcode 602 * \defgroup xTaskCreateRestricted xTaskCreateRestricted 603 * \ingroup Tasks 604 */ 605 #if ( portUSING_MPU_WRAPPERS == 1 ) 606 BaseType_t xTaskCreateRestricted( const TaskParameters_t * const pxTaskDefinition, 607 TaskHandle_t * pxCreatedTask ) PRIVILEGED_FUNCTION; 608 #endif 609 610 #if ( ( portUSING_MPU_WRAPPERS == 1 ) && ( configNUMBER_OF_CORES > 1 ) && ( configUSE_CORE_AFFINITY == 1 ) ) 611 BaseType_t xTaskCreateRestrictedAffinitySet( const TaskParameters_t * const pxTaskDefinition, 612 UBaseType_t uxCoreAffinityMask, 613 TaskHandle_t * pxCreatedTask ) PRIVILEGED_FUNCTION; 614 #endif 615 616 /** 617 * task. h 618 * @code{c} 619 * BaseType_t xTaskCreateRestrictedStatic( TaskParameters_t *pxTaskDefinition, TaskHandle_t *pxCreatedTask ); 620 * @endcode 621 * 622 * Only available when configSUPPORT_STATIC_ALLOCATION is set to 1. 623 * 624 * xTaskCreateRestrictedStatic() should only be used in systems that include an 625 * MPU implementation. 626 * 627 * Internally, within the FreeRTOS implementation, tasks use two blocks of 628 * memory. The first block is used to hold the task's data structures. The 629 * second block is used by the task as its stack. If a task is created using 630 * xTaskCreateRestricted() then the stack is provided by the application writer, 631 * and the memory used to hold the task's data structure is automatically 632 * dynamically allocated inside the xTaskCreateRestricted() function. If a task 633 * is created using xTaskCreateRestrictedStatic() then the application writer 634 * must provide the memory used to hold the task's data structures too. 635 * xTaskCreateRestrictedStatic() therefore allows a memory protected task to be 636 * created without using any dynamic memory allocation. 637 * 638 * @param pxTaskDefinition Pointer to a structure that contains a member 639 * for each of the normal xTaskCreate() parameters (see the xTaskCreate() API 640 * documentation) plus an optional stack buffer and the memory region 641 * definitions. If configSUPPORT_STATIC_ALLOCATION is set to 1 the structure 642 * contains an additional member, which is used to point to a variable of type 643 * StaticTask_t - which is then used to hold the task's data structure. 644 * 645 * @param pxCreatedTask Used to pass back a handle by which the created task 646 * can be referenced. 647 * 648 * @return pdPASS if the task was successfully created and added to a ready 649 * list, otherwise an error code defined in the file projdefs.h 650 * 651 * Example usage: 652 * @code{c} 653 * // Create an TaskParameters_t structure that defines the task to be created. 654 * // The StaticTask_t variable is only included in the structure when 655 * // configSUPPORT_STATIC_ALLOCATION is set to 1. The PRIVILEGED_DATA macro can 656 * // be used to force the variable into the RTOS kernel's privileged data area. 657 * static PRIVILEGED_DATA StaticTask_t xTaskBuffer; 658 * static const TaskParameters_t xCheckTaskParameters = 659 * { 660 * vATask, // pvTaskCode - the function that implements the task. 661 * "ATask", // pcName - just a text name for the task to assist debugging. 662 * 100, // uxStackDepth - the stack size DEFINED IN WORDS. 663 * NULL, // pvParameters - passed into the task function as the function parameters. 664 * ( 1U | portPRIVILEGE_BIT ),// uxPriority - task priority, set the portPRIVILEGE_BIT if the task should run in a privileged state. 665 * cStackBuffer,// puxStackBuffer - the buffer to be used as the task stack. 666 * 667 * // xRegions - Allocate up to three separate memory regions for access by 668 * // the task, with appropriate access permissions. Different processors have 669 * // different memory alignment requirements - refer to the FreeRTOS documentation 670 * // for full information. 671 * { 672 * // Base address Length Parameters 673 * { cReadWriteArray, 32, portMPU_REGION_READ_WRITE }, 674 * { cReadOnlyArray, 32, portMPU_REGION_READ_ONLY }, 675 * { cPrivilegedOnlyAccessArray, 128, portMPU_REGION_PRIVILEGED_READ_WRITE } 676 * } 677 * 678 * &xTaskBuffer; // Holds the task's data structure. 679 * }; 680 * 681 * int main( void ) 682 * { 683 * TaskHandle_t xHandle; 684 * 685 * // Create a task from the const structure defined above. The task handle 686 * // is requested (the second parameter is not NULL) but in this case just for 687 * // demonstration purposes as its not actually used. 688 * xTaskCreateRestrictedStatic( &xRegTest1Parameters, &xHandle ); 689 * 690 * // Start the scheduler. 691 * vTaskStartScheduler(); 692 * 693 * // Will only get here if there was insufficient memory to create the idle 694 * // and/or timer task. 695 * for( ;; ); 696 * } 697 * @endcode 698 * \defgroup xTaskCreateRestrictedStatic xTaskCreateRestrictedStatic 699 * \ingroup Tasks 700 */ 701 #if ( ( portUSING_MPU_WRAPPERS == 1 ) && ( configSUPPORT_STATIC_ALLOCATION == 1 ) ) 702 BaseType_t xTaskCreateRestrictedStatic( const TaskParameters_t * const pxTaskDefinition, 703 TaskHandle_t * pxCreatedTask ) PRIVILEGED_FUNCTION; 704 #endif 705 706 #if ( ( portUSING_MPU_WRAPPERS == 1 ) && ( configSUPPORT_STATIC_ALLOCATION == 1 ) && ( configNUMBER_OF_CORES > 1 ) && ( configUSE_CORE_AFFINITY == 1 ) ) 707 BaseType_t xTaskCreateRestrictedStaticAffinitySet( const TaskParameters_t * const pxTaskDefinition, 708 UBaseType_t uxCoreAffinityMask, 709 TaskHandle_t * pxCreatedTask ) PRIVILEGED_FUNCTION; 710 #endif 711 712 /** 713 * task. h 714 * @code{c} 715 * void vTaskAllocateMPURegions( TaskHandle_t xTask, const MemoryRegion_t * const pxRegions ); 716 * @endcode 717 * 718 * Memory regions are assigned to a restricted task when the task is created by 719 * a call to xTaskCreateRestricted(). These regions can be redefined using 720 * vTaskAllocateMPURegions(). 721 * 722 * @param xTaskToModify The handle of the task being updated. 723 * 724 * @param[in] pxRegions A pointer to a MemoryRegion_t structure that contains the 725 * new memory region definitions. 726 * 727 * Example usage: 728 * @code{c} 729 * // Define an array of MemoryRegion_t structures that configures an MPU region 730 * // allowing read/write access for 1024 bytes starting at the beginning of the 731 * // ucOneKByte array. The other two of the maximum 3 definable regions are 732 * // unused so set to zero. 733 * static const MemoryRegion_t xAltRegions[ portNUM_CONFIGURABLE_REGIONS ] = 734 * { 735 * // Base address Length Parameters 736 * { ucOneKByte, 1024, portMPU_REGION_READ_WRITE }, 737 * { 0, 0, 0 }, 738 * { 0, 0, 0 } 739 * }; 740 * 741 * void vATask( void *pvParameters ) 742 * { 743 * // This task was created such that it has access to certain regions of 744 * // memory as defined by the MPU configuration. At some point it is 745 * // desired that these MPU regions are replaced with that defined in the 746 * // xAltRegions const struct above. Use a call to vTaskAllocateMPURegions() 747 * // for this purpose. NULL is used as the task handle to indicate that this 748 * // function should modify the MPU regions of the calling task. 749 * vTaskAllocateMPURegions( NULL, xAltRegions ); 750 * 751 * // Now the task can continue its function, but from this point on can only 752 * // access its stack and the ucOneKByte array (unless any other statically 753 * // defined or shared regions have been declared elsewhere). 754 * } 755 * @endcode 756 * \defgroup vTaskAllocateMPURegions vTaskAllocateMPURegions 757 * \ingroup Tasks 758 */ 759 #if ( portUSING_MPU_WRAPPERS == 1 ) 760 void vTaskAllocateMPURegions( TaskHandle_t xTaskToModify, 761 const MemoryRegion_t * const pxRegions ) PRIVILEGED_FUNCTION; 762 #endif 763 764 /** 765 * task. h 766 * @code{c} 767 * void vTaskDelete( TaskHandle_t xTaskToDelete ); 768 * @endcode 769 * 770 * INCLUDE_vTaskDelete must be defined as 1 for this function to be available. 771 * See the configuration section for more information. 772 * 773 * Remove a task from the RTOS real time kernel's management. The task being 774 * deleted will be removed from all ready, blocked, suspended and event lists. 775 * 776 * NOTE: The idle task is responsible for freeing the kernel allocated 777 * memory from tasks that have been deleted. It is therefore important that 778 * the idle task is not starved of microcontroller processing time if your 779 * application makes any calls to vTaskDelete (). Memory allocated by the 780 * task code is not automatically freed, and should be freed before the task 781 * is deleted. 782 * 783 * See the demo application file death.c for sample code that utilises 784 * vTaskDelete (). 785 * 786 * @param xTaskToDelete The handle of the task to be deleted. Passing NULL will 787 * cause the calling task to be deleted. 788 * 789 * Example usage: 790 * @code{c} 791 * void vOtherFunction( void ) 792 * { 793 * TaskHandle_t xHandle; 794 * 795 * // Create the task, storing the handle. 796 * xTaskCreate( vTaskCode, "NAME", STACK_SIZE, NULL, tskIDLE_PRIORITY, &xHandle ); 797 * 798 * // Use the handle to delete the task. 799 * vTaskDelete( xHandle ); 800 * } 801 * @endcode 802 * \defgroup vTaskDelete vTaskDelete 803 * \ingroup Tasks 804 */ 805 void vTaskDelete( TaskHandle_t xTaskToDelete ) PRIVILEGED_FUNCTION; 806 807 /*----------------------------------------------------------- 808 * TASK CONTROL API 809 *----------------------------------------------------------*/ 810 811 /** 812 * task. h 813 * @code{c} 814 * void vTaskDelay( const TickType_t xTicksToDelay ); 815 * @endcode 816 * 817 * Delay a task for a given number of ticks. The actual time that the 818 * task remains blocked depends on the tick rate. The constant 819 * portTICK_PERIOD_MS can be used to calculate real time from the tick 820 * rate - with the resolution of one tick period. 821 * 822 * INCLUDE_vTaskDelay must be defined as 1 for this function to be available. 823 * See the configuration section for more information. 824 * 825 * 826 * vTaskDelay() specifies a time at which the task wishes to unblock relative to 827 * the time at which vTaskDelay() is called. For example, specifying a block 828 * period of 100 ticks will cause the task to unblock 100 ticks after 829 * vTaskDelay() is called. vTaskDelay() does not therefore provide a good method 830 * of controlling the frequency of a periodic task as the path taken through the 831 * code, as well as other task and interrupt activity, will affect the frequency 832 * at which vTaskDelay() gets called and therefore the time at which the task 833 * next executes. See xTaskDelayUntil() for an alternative API function designed 834 * to facilitate fixed frequency execution. It does this by specifying an 835 * absolute time (rather than a relative time) at which the calling task should 836 * unblock. 837 * 838 * @param xTicksToDelay The amount of time, in tick periods, that 839 * the calling task should block. 840 * 841 * Example usage: 842 * 843 * void vTaskFunction( void * pvParameters ) 844 * { 845 * // Block for 500ms. 846 * const TickType_t xDelay = 500 / portTICK_PERIOD_MS; 847 * 848 * for( ;; ) 849 * { 850 * // Simply toggle the LED every 500ms, blocking between each toggle. 851 * vToggleLED(); 852 * vTaskDelay( xDelay ); 853 * } 854 * } 855 * 856 * \defgroup vTaskDelay vTaskDelay 857 * \ingroup TaskCtrl 858 */ 859 void vTaskDelay( const TickType_t xTicksToDelay ) PRIVILEGED_FUNCTION; 860 861 /** 862 * task. h 863 * @code{c} 864 * BaseType_t xTaskDelayUntil( TickType_t *pxPreviousWakeTime, const TickType_t xTimeIncrement ); 865 * @endcode 866 * 867 * INCLUDE_xTaskDelayUntil must be defined as 1 for this function to be available. 868 * See the configuration section for more information. 869 * 870 * Delay a task until a specified time. This function can be used by periodic 871 * tasks to ensure a constant execution frequency. 872 * 873 * This function differs from vTaskDelay () in one important aspect: vTaskDelay () will 874 * cause a task to block for the specified number of ticks from the time vTaskDelay () is 875 * called. It is therefore difficult to use vTaskDelay () by itself to generate a fixed 876 * execution frequency as the time between a task starting to execute and that task 877 * calling vTaskDelay () may not be fixed [the task may take a different path though the 878 * code between calls, or may get interrupted or preempted a different number of times 879 * each time it executes]. 880 * 881 * Whereas vTaskDelay () specifies a wake time relative to the time at which the function 882 * is called, xTaskDelayUntil () specifies the absolute (exact) time at which it wishes to 883 * unblock. 884 * 885 * The macro pdMS_TO_TICKS() can be used to calculate the number of ticks from a 886 * time specified in milliseconds with a resolution of one tick period. 887 * 888 * @param pxPreviousWakeTime Pointer to a variable that holds the time at which the 889 * task was last unblocked. The variable must be initialised with the current time 890 * prior to its first use (see the example below). Following this the variable is 891 * automatically updated within xTaskDelayUntil (). 892 * 893 * @param xTimeIncrement The cycle time period. The task will be unblocked at 894 * time *pxPreviousWakeTime + xTimeIncrement. Calling xTaskDelayUntil with the 895 * same xTimeIncrement parameter value will cause the task to execute with 896 * a fixed interface period. 897 * 898 * @return Value which can be used to check whether the task was actually delayed. 899 * Will be pdTRUE if the task way delayed and pdFALSE otherwise. A task will not 900 * be delayed if the next expected wake time is in the past. 901 * 902 * Example usage: 903 * @code{c} 904 * // Perform an action every 10 ticks. 905 * void vTaskFunction( void * pvParameters ) 906 * { 907 * TickType_t xLastWakeTime; 908 * const TickType_t xFrequency = 10; 909 * BaseType_t xWasDelayed; 910 * 911 * // Initialise the xLastWakeTime variable with the current time. 912 * xLastWakeTime = xTaskGetTickCount (); 913 * for( ;; ) 914 * { 915 * // Wait for the next cycle. 916 * xWasDelayed = xTaskDelayUntil( &xLastWakeTime, xFrequency ); 917 * 918 * // Perform action here. xWasDelayed value can be used to determine 919 * // whether a deadline was missed if the code here took too long. 920 * } 921 * } 922 * @endcode 923 * \defgroup xTaskDelayUntil xTaskDelayUntil 924 * \ingroup TaskCtrl 925 */ 926 BaseType_t xTaskDelayUntil( TickType_t * const pxPreviousWakeTime, 927 const TickType_t xTimeIncrement ) PRIVILEGED_FUNCTION; 928 929 /* 930 * vTaskDelayUntil() is the older version of xTaskDelayUntil() and does not 931 * return a value. 932 */ 933 #define vTaskDelayUntil( pxPreviousWakeTime, xTimeIncrement ) \ 934 do { \ 935 ( void ) xTaskDelayUntil( ( pxPreviousWakeTime ), ( xTimeIncrement ) ); \ 936 } while( 0 ) 937 938 939 /** 940 * task. h 941 * @code{c} 942 * BaseType_t xTaskAbortDelay( TaskHandle_t xTask ); 943 * @endcode 944 * 945 * INCLUDE_xTaskAbortDelay must be defined as 1 in FreeRTOSConfig.h for this 946 * function to be available. 947 * 948 * A task will enter the Blocked state when it is waiting for an event. The 949 * event it is waiting for can be a temporal event (waiting for a time), such 950 * as when vTaskDelay() is called, or an event on an object, such as when 951 * xQueueReceive() or ulTaskNotifyTake() is called. If the handle of a task 952 * that is in the Blocked state is used in a call to xTaskAbortDelay() then the 953 * task will leave the Blocked state, and return from whichever function call 954 * placed the task into the Blocked state. 955 * 956 * There is no 'FromISR' version of this function as an interrupt would need to 957 * know which object a task was blocked on in order to know which actions to 958 * take. For example, if the task was blocked on a queue the interrupt handler 959 * would then need to know if the queue was locked. 960 * 961 * @param xTask The handle of the task to remove from the Blocked state. 962 * 963 * @return If the task referenced by xTask was not in the Blocked state then 964 * pdFAIL is returned. Otherwise pdPASS is returned. 965 * 966 * \defgroup xTaskAbortDelay xTaskAbortDelay 967 * \ingroup TaskCtrl 968 */ 969 #if ( INCLUDE_xTaskAbortDelay == 1 ) 970 BaseType_t xTaskAbortDelay( TaskHandle_t xTask ) PRIVILEGED_FUNCTION; 971 #endif 972 973 /** 974 * task. h 975 * @code{c} 976 * UBaseType_t uxTaskPriorityGet( const TaskHandle_t xTask ); 977 * @endcode 978 * 979 * INCLUDE_uxTaskPriorityGet must be defined as 1 for this function to be available. 980 * See the configuration section for more information. 981 * 982 * Obtain the priority of any task. 983 * 984 * @param xTask Handle of the task to be queried. Passing a NULL 985 * handle results in the priority of the calling task being returned. 986 * 987 * @return The priority of xTask. 988 * 989 * Example usage: 990 * @code{c} 991 * void vAFunction( void ) 992 * { 993 * TaskHandle_t xHandle; 994 * 995 * // Create a task, storing the handle. 996 * xTaskCreate( vTaskCode, "NAME", STACK_SIZE, NULL, tskIDLE_PRIORITY, &xHandle ); 997 * 998 * // ... 999 * 1000 * // Use the handle to obtain the priority of the created task. 1001 * // It was created with tskIDLE_PRIORITY, but may have changed 1002 * // it itself. 1003 * if( uxTaskPriorityGet( xHandle ) != tskIDLE_PRIORITY ) 1004 * { 1005 * // The task has changed it's priority. 1006 * } 1007 * 1008 * // ... 1009 * 1010 * // Is our priority higher than the created task? 1011 * if( uxTaskPriorityGet( xHandle ) < uxTaskPriorityGet( NULL ) ) 1012 * { 1013 * // Our priority (obtained using NULL handle) is higher. 1014 * } 1015 * } 1016 * @endcode 1017 * \defgroup uxTaskPriorityGet uxTaskPriorityGet 1018 * \ingroup TaskCtrl 1019 */ 1020 UBaseType_t uxTaskPriorityGet( const TaskHandle_t xTask ) PRIVILEGED_FUNCTION; 1021 1022 /** 1023 * task. h 1024 * @code{c} 1025 * UBaseType_t uxTaskPriorityGetFromISR( const TaskHandle_t xTask ); 1026 * @endcode 1027 * 1028 * A version of uxTaskPriorityGet() that can be used from an ISR. 1029 */ 1030 UBaseType_t uxTaskPriorityGetFromISR( const TaskHandle_t xTask ) PRIVILEGED_FUNCTION; 1031 1032 /** 1033 * task. h 1034 * @code{c} 1035 * UBaseType_t uxTaskBasePriorityGet( const TaskHandle_t xTask ); 1036 * @endcode 1037 * 1038 * INCLUDE_uxTaskPriorityGet and configUSE_MUTEXES must be defined as 1 for this 1039 * function to be available. See the configuration section for more information. 1040 * 1041 * Obtain the base priority of any task. 1042 * 1043 * @param xTask Handle of the task to be queried. Passing a NULL 1044 * handle results in the base priority of the calling task being returned. 1045 * 1046 * @return The base priority of xTask. 1047 * 1048 * \defgroup uxTaskPriorityGet uxTaskBasePriorityGet 1049 * \ingroup TaskCtrl 1050 */ 1051 UBaseType_t uxTaskBasePriorityGet( const TaskHandle_t xTask ) PRIVILEGED_FUNCTION; 1052 1053 /** 1054 * task. h 1055 * @code{c} 1056 * UBaseType_t uxTaskBasePriorityGetFromISR( const TaskHandle_t xTask ); 1057 * @endcode 1058 * 1059 * A version of uxTaskBasePriorityGet() that can be used from an ISR. 1060 */ 1061 UBaseType_t uxTaskBasePriorityGetFromISR( const TaskHandle_t xTask ) PRIVILEGED_FUNCTION; 1062 1063 /** 1064 * task. h 1065 * @code{c} 1066 * eTaskState eTaskGetState( TaskHandle_t xTask ); 1067 * @endcode 1068 * 1069 * INCLUDE_eTaskGetState must be defined as 1 for this function to be available. 1070 * See the configuration section for more information. 1071 * 1072 * Obtain the state of any task. States are encoded by the eTaskState 1073 * enumerated type. 1074 * 1075 * @param xTask Handle of the task to be queried. 1076 * 1077 * @return The state of xTask at the time the function was called. Note the 1078 * state of the task might change between the function being called, and the 1079 * functions return value being tested by the calling task. 1080 */ 1081 #if ( ( INCLUDE_eTaskGetState == 1 ) || ( configUSE_TRACE_FACILITY == 1 ) || ( INCLUDE_xTaskAbortDelay == 1 ) ) 1082 eTaskState eTaskGetState( TaskHandle_t xTask ) PRIVILEGED_FUNCTION; 1083 #endif 1084 1085 /** 1086 * task. h 1087 * @code{c} 1088 * void vTaskGetInfo( TaskHandle_t xTask, TaskStatus_t *pxTaskStatus, BaseType_t xGetFreeStackSpace, eTaskState eState ); 1089 * @endcode 1090 * 1091 * configUSE_TRACE_FACILITY must be defined as 1 for this function to be 1092 * available. See the configuration section for more information. 1093 * 1094 * Populates a TaskStatus_t structure with information about a task. 1095 * 1096 * @param xTask Handle of the task being queried. If xTask is NULL then 1097 * information will be returned about the calling task. 1098 * 1099 * @param pxTaskStatus A pointer to the TaskStatus_t structure that will be 1100 * filled with information about the task referenced by the handle passed using 1101 * the xTask parameter. 1102 * 1103 * @param xGetFreeStackSpace The TaskStatus_t structure contains a member to report 1104 * the stack high water mark of the task being queried. Calculating the stack 1105 * high water mark takes a relatively long time, and can make the system 1106 * temporarily unresponsive - so the xGetFreeStackSpace parameter is provided to 1107 * allow the high water mark checking to be skipped. The high watermark value 1108 * will only be written to the TaskStatus_t structure if xGetFreeStackSpace is 1109 * not set to pdFALSE; 1110 * 1111 * @param eState The TaskStatus_t structure contains a member to report the 1112 * state of the task being queried. Obtaining the task state is not as fast as 1113 * a simple assignment - so the eState parameter is provided to allow the state 1114 * information to be omitted from the TaskStatus_t structure. To obtain state 1115 * information then set eState to eInvalid - otherwise the value passed in 1116 * eState will be reported as the task state in the TaskStatus_t structure. 1117 * 1118 * Example usage: 1119 * @code{c} 1120 * void vAFunction( void ) 1121 * { 1122 * TaskHandle_t xHandle; 1123 * TaskStatus_t xTaskDetails; 1124 * 1125 * // Obtain the handle of a task from its name. 1126 * xHandle = xTaskGetHandle( "Task_Name" ); 1127 * 1128 * // Check the handle is not NULL. 1129 * configASSERT( xHandle ); 1130 * 1131 * // Use the handle to obtain further information about the task. 1132 * vTaskGetInfo( xHandle, 1133 * &xTaskDetails, 1134 * pdTRUE, // Include the high water mark in xTaskDetails. 1135 * eInvalid ); // Include the task state in xTaskDetails. 1136 * } 1137 * @endcode 1138 * \defgroup vTaskGetInfo vTaskGetInfo 1139 * \ingroup TaskCtrl 1140 */ 1141 #if ( configUSE_TRACE_FACILITY == 1 ) 1142 void vTaskGetInfo( TaskHandle_t xTask, 1143 TaskStatus_t * pxTaskStatus, 1144 BaseType_t xGetFreeStackSpace, 1145 eTaskState eState ) PRIVILEGED_FUNCTION; 1146 #endif 1147 1148 /** 1149 * task. h 1150 * @code{c} 1151 * void vTaskPrioritySet( TaskHandle_t xTask, UBaseType_t uxNewPriority ); 1152 * @endcode 1153 * 1154 * INCLUDE_vTaskPrioritySet must be defined as 1 for this function to be available. 1155 * See the configuration section for more information. 1156 * 1157 * Set the priority of any task. 1158 * 1159 * A context switch will occur before the function returns if the priority 1160 * being set is higher than the currently executing task. 1161 * 1162 * @param xTask Handle to the task for which the priority is being set. 1163 * Passing a NULL handle results in the priority of the calling task being set. 1164 * 1165 * @param uxNewPriority The priority to which the task will be set. 1166 * 1167 * Example usage: 1168 * @code{c} 1169 * void vAFunction( void ) 1170 * { 1171 * TaskHandle_t xHandle; 1172 * 1173 * // Create a task, storing the handle. 1174 * xTaskCreate( vTaskCode, "NAME", STACK_SIZE, NULL, tskIDLE_PRIORITY, &xHandle ); 1175 * 1176 * // ... 1177 * 1178 * // Use the handle to raise the priority of the created task. 1179 * vTaskPrioritySet( xHandle, tskIDLE_PRIORITY + 1 ); 1180 * 1181 * // ... 1182 * 1183 * // Use a NULL handle to raise our priority to the same value. 1184 * vTaskPrioritySet( NULL, tskIDLE_PRIORITY + 1 ); 1185 * } 1186 * @endcode 1187 * \defgroup vTaskPrioritySet vTaskPrioritySet 1188 * \ingroup TaskCtrl 1189 */ 1190 void vTaskPrioritySet( TaskHandle_t xTask, 1191 UBaseType_t uxNewPriority ) PRIVILEGED_FUNCTION; 1192 1193 /** 1194 * task. h 1195 * @code{c} 1196 * void vTaskSuspend( TaskHandle_t xTaskToSuspend ); 1197 * @endcode 1198 * 1199 * INCLUDE_vTaskSuspend must be defined as 1 for this function to be available. 1200 * See the configuration section for more information. 1201 * 1202 * Suspend any task. When suspended a task will never get any microcontroller 1203 * processing time, no matter what its priority. 1204 * 1205 * Calls to vTaskSuspend are not accumulative - 1206 * i.e. calling vTaskSuspend () twice on the same task still only requires one 1207 * call to vTaskResume () to ready the suspended task. 1208 * 1209 * @param xTaskToSuspend Handle to the task being suspended. Passing a NULL 1210 * handle will cause the calling task to be suspended. 1211 * 1212 * Example usage: 1213 * @code{c} 1214 * void vAFunction( void ) 1215 * { 1216 * TaskHandle_t xHandle; 1217 * 1218 * // Create a task, storing the handle. 1219 * xTaskCreate( vTaskCode, "NAME", STACK_SIZE, NULL, tskIDLE_PRIORITY, &xHandle ); 1220 * 1221 * // ... 1222 * 1223 * // Use the handle to suspend the created task. 1224 * vTaskSuspend( xHandle ); 1225 * 1226 * // ... 1227 * 1228 * // The created task will not run during this period, unless 1229 * // another task calls vTaskResume( xHandle ). 1230 * 1231 * //... 1232 * 1233 * 1234 * // Suspend ourselves. 1235 * vTaskSuspend( NULL ); 1236 * 1237 * // We cannot get here unless another task calls vTaskResume 1238 * // with our handle as the parameter. 1239 * } 1240 * @endcode 1241 * \defgroup vTaskSuspend vTaskSuspend 1242 * \ingroup TaskCtrl 1243 */ 1244 void vTaskSuspend( TaskHandle_t xTaskToSuspend ) PRIVILEGED_FUNCTION; 1245 1246 /** 1247 * task. h 1248 * @code{c} 1249 * void vTaskResume( TaskHandle_t xTaskToResume ); 1250 * @endcode 1251 * 1252 * INCLUDE_vTaskSuspend must be defined as 1 for this function to be available. 1253 * See the configuration section for more information. 1254 * 1255 * Resumes a suspended task. 1256 * 1257 * A task that has been suspended by one or more calls to vTaskSuspend () 1258 * will be made available for running again by a single call to 1259 * vTaskResume (). 1260 * 1261 * @param xTaskToResume Handle to the task being readied. 1262 * 1263 * Example usage: 1264 * @code{c} 1265 * void vAFunction( void ) 1266 * { 1267 * TaskHandle_t xHandle; 1268 * 1269 * // Create a task, storing the handle. 1270 * xTaskCreate( vTaskCode, "NAME", STACK_SIZE, NULL, tskIDLE_PRIORITY, &xHandle ); 1271 * 1272 * // ... 1273 * 1274 * // Use the handle to suspend the created task. 1275 * vTaskSuspend( xHandle ); 1276 * 1277 * // ... 1278 * 1279 * // The created task will not run during this period, unless 1280 * // another task calls vTaskResume( xHandle ). 1281 * 1282 * //... 1283 * 1284 * 1285 * // Resume the suspended task ourselves. 1286 * vTaskResume( xHandle ); 1287 * 1288 * // The created task will once again get microcontroller processing 1289 * // time in accordance with its priority within the system. 1290 * } 1291 * @endcode 1292 * \defgroup vTaskResume vTaskResume 1293 * \ingroup TaskCtrl 1294 */ 1295 void vTaskResume( TaskHandle_t xTaskToResume ) PRIVILEGED_FUNCTION; 1296 1297 /** 1298 * task. h 1299 * @code{c} 1300 * void xTaskResumeFromISR( TaskHandle_t xTaskToResume ); 1301 * @endcode 1302 * 1303 * INCLUDE_xTaskResumeFromISR must be defined as 1 for this function to be 1304 * available. See the configuration section for more information. 1305 * 1306 * An implementation of vTaskResume() that can be called from within an ISR. 1307 * 1308 * A task that has been suspended by one or more calls to vTaskSuspend () 1309 * will be made available for running again by a single call to 1310 * xTaskResumeFromISR (). 1311 * 1312 * xTaskResumeFromISR() should not be used to synchronise a task with an 1313 * interrupt if there is a chance that the interrupt could arrive prior to the 1314 * task being suspended - as this can lead to interrupts being missed. Use of a 1315 * semaphore as a synchronisation mechanism would avoid this eventuality. 1316 * 1317 * @param xTaskToResume Handle to the task being readied. 1318 * 1319 * @return pdTRUE if resuming the task should result in a context switch, 1320 * otherwise pdFALSE. This is used by the ISR to determine if a context switch 1321 * may be required following the ISR. 1322 * 1323 * \defgroup vTaskResumeFromISR vTaskResumeFromISR 1324 * \ingroup TaskCtrl 1325 */ 1326 BaseType_t xTaskResumeFromISR( TaskHandle_t xTaskToResume ) PRIVILEGED_FUNCTION; 1327 1328 #if ( configUSE_CORE_AFFINITY == 1 ) 1329 1330 /** 1331 * @brief Sets the core affinity mask for a task. 1332 * 1333 * It sets the cores on which a task can run. configUSE_CORE_AFFINITY must 1334 * be defined as 1 for this function to be available. 1335 * 1336 * @param xTask The handle of the task to set the core affinity mask for. 1337 * Passing NULL will set the core affinity mask for the calling task. 1338 * 1339 * @param uxCoreAffinityMask A bitwise value that indicates the cores on 1340 * which the task can run. Cores are numbered from 0 to configNUMBER_OF_CORES - 1. 1341 * For example, to ensure that a task can run on core 0 and core 1, set 1342 * uxCoreAffinityMask to 0x03. 1343 * 1344 * Example usage: 1345 * 1346 * // The function that creates task. 1347 * void vAFunction( void ) 1348 * { 1349 * TaskHandle_t xHandle; 1350 * UBaseType_t uxCoreAffinityMask; 1351 * 1352 * // Create a task, storing the handle. 1353 * xTaskCreate( vTaskCode, "NAME", STACK_SIZE, NULL, tskIDLE_PRIORITY, &( xHandle ) ); 1354 * 1355 * // Define the core affinity mask such that this task can only run 1356 * // on core 0 and core 2. 1357 * uxCoreAffinityMask = ( ( 1 << 0 ) | ( 1 << 2 ) ); 1358 * 1359 * //Set the core affinity mask for the task. 1360 * vTaskCoreAffinitySet( xHandle, uxCoreAffinityMask ); 1361 * } 1362 */ 1363 void vTaskCoreAffinitySet( const TaskHandle_t xTask, 1364 UBaseType_t uxCoreAffinityMask ); 1365 #endif 1366 1367 #if ( ( configNUMBER_OF_CORES > 1 ) && ( configUSE_CORE_AFFINITY == 1 ) ) 1368 1369 /** 1370 * @brief Gets the core affinity mask for a task. 1371 * 1372 * configUSE_CORE_AFFINITY must be defined as 1 for this function to be 1373 * available. 1374 * 1375 * @param xTask The handle of the task to get the core affinity mask for. 1376 * Passing NULL will get the core affinity mask for the calling task. 1377 * 1378 * @return The core affinity mask which is a bitwise value that indicates 1379 * the cores on which a task can run. Cores are numbered from 0 to 1380 * configNUMBER_OF_CORES - 1. For example, if a task can run on core 0 and core 1, 1381 * the core affinity mask is 0x03. 1382 * 1383 * Example usage: 1384 * 1385 * // Task handle of the networking task - it is populated elsewhere. 1386 * TaskHandle_t xNetworkingTaskHandle; 1387 * 1388 * void vAFunction( void ) 1389 * { 1390 * TaskHandle_t xHandle; 1391 * UBaseType_t uxNetworkingCoreAffinityMask; 1392 * 1393 * // Create a task, storing the handle. 1394 * xTaskCreate( vTaskCode, "NAME", STACK_SIZE, NULL, tskIDLE_PRIORITY, &( xHandle ) ); 1395 * 1396 * //Get the core affinity mask for the networking task. 1397 * uxNetworkingCoreAffinityMask = vTaskCoreAffinityGet( xNetworkingTaskHandle ); 1398 * 1399 * // Here is a hypothetical scenario, just for the example. Assume that we 1400 * // have 2 cores - Core 0 and core 1. We want to pin the application task to 1401 * // the core different than the networking task to ensure that the 1402 * // application task does not interfere with networking. 1403 * if( ( uxNetworkingCoreAffinityMask & ( 1 << 0 ) ) != 0 ) 1404 * { 1405 * // The networking task can run on core 0, pin our task to core 1. 1406 * vTaskCoreAffinitySet( xHandle, ( 1 << 1 ) ); 1407 * } 1408 * else 1409 * { 1410 * // Otherwise, pin our task to core 0. 1411 * vTaskCoreAffinitySet( xHandle, ( 1 << 0 ) ); 1412 * } 1413 * } 1414 */ 1415 UBaseType_t vTaskCoreAffinityGet( ConstTaskHandle_t xTask ); 1416 #endif 1417 1418 #if ( configUSE_TASK_PREEMPTION_DISABLE == 1 ) 1419 1420 /** 1421 * @brief Disables preemption for a task. 1422 * 1423 * @param xTask The handle of the task to disable preemption. Passing NULL 1424 * disables preemption for the calling task. 1425 * 1426 * Example usage: 1427 * 1428 * void vTaskCode( void *pvParameters ) 1429 * { 1430 * // Silence warnings about unused parameters. 1431 * ( void ) pvParameters; 1432 * 1433 * for( ;; ) 1434 * { 1435 * // ... Perform some function here. 1436 * 1437 * // Disable preemption for this task. 1438 * vTaskPreemptionDisable( NULL ); 1439 * 1440 * // The task will not be preempted when it is executing in this portion ... 1441 * 1442 * // ... until the preemption is enabled again. 1443 * vTaskPreemptionEnable( NULL ); 1444 * 1445 * // The task can be preempted when it is executing in this portion. 1446 * } 1447 * } 1448 */ 1449 void vTaskPreemptionDisable( const TaskHandle_t xTask ); 1450 #endif 1451 1452 #if ( configUSE_TASK_PREEMPTION_DISABLE == 1 ) 1453 1454 /** 1455 * @brief Enables preemption for a task. 1456 * 1457 * @param xTask The handle of the task to enable preemption. Passing NULL 1458 * enables preemption for the calling task. 1459 * 1460 * Example usage: 1461 * 1462 * void vTaskCode( void *pvParameters ) 1463 * { 1464 * // Silence warnings about unused parameters. 1465 * ( void ) pvParameters; 1466 * 1467 * for( ;; ) 1468 * { 1469 * // ... Perform some function here. 1470 * 1471 * // Disable preemption for this task. 1472 * vTaskPreemptionDisable( NULL ); 1473 * 1474 * // The task will not be preempted when it is executing in this portion ... 1475 * 1476 * // ... until the preemption is enabled again. 1477 * vTaskPreemptionEnable( NULL ); 1478 * 1479 * // The task can be preempted when it is executing in this portion. 1480 * } 1481 * } 1482 */ 1483 void vTaskPreemptionEnable( const TaskHandle_t xTask ); 1484 #endif 1485 1486 /*----------------------------------------------------------- 1487 * SCHEDULER CONTROL 1488 *----------------------------------------------------------*/ 1489 1490 /** 1491 * task. h 1492 * @code{c} 1493 * void vTaskStartScheduler( void ); 1494 * @endcode 1495 * 1496 * Starts the real time kernel tick processing. After calling the kernel 1497 * has control over which tasks are executed and when. 1498 * 1499 * See the demo application file main.c for an example of creating 1500 * tasks and starting the kernel. 1501 * 1502 * Example usage: 1503 * @code{c} 1504 * void vAFunction( void ) 1505 * { 1506 * // Create at least one task before starting the kernel. 1507 * xTaskCreate( vTaskCode, "NAME", STACK_SIZE, NULL, tskIDLE_PRIORITY, NULL ); 1508 * 1509 * // Start the real time kernel with preemption. 1510 * vTaskStartScheduler (); 1511 * 1512 * // Will not get here unless a task calls vTaskEndScheduler () 1513 * } 1514 * @endcode 1515 * 1516 * \defgroup vTaskStartScheduler vTaskStartScheduler 1517 * \ingroup SchedulerControl 1518 */ 1519 void vTaskStartScheduler( void ) PRIVILEGED_FUNCTION; 1520 1521 /** 1522 * task. h 1523 * @code{c} 1524 * void vTaskEndScheduler( void ); 1525 * @endcode 1526 * 1527 * NOTE: At the time of writing only the x86 real mode port, which runs on a PC 1528 * in place of DOS, implements this function. 1529 * 1530 * Stops the real time kernel tick. All created tasks will be automatically 1531 * deleted and multitasking (either preemptive or cooperative) will 1532 * stop. Execution then resumes from the point where vTaskStartScheduler () 1533 * was called, as if vTaskStartScheduler () had just returned. 1534 * 1535 * See the demo application file main. c in the demo/PC directory for an 1536 * example that uses vTaskEndScheduler (). 1537 * 1538 * vTaskEndScheduler () requires an exit function to be defined within the 1539 * portable layer (see vPortEndScheduler () in port. c for the PC port). This 1540 * performs hardware specific operations such as stopping the kernel tick. 1541 * 1542 * vTaskEndScheduler () will cause all of the resources allocated by the 1543 * kernel to be freed - but will not free resources allocated by application 1544 * tasks. 1545 * 1546 * Example usage: 1547 * @code{c} 1548 * void vTaskCode( void * pvParameters ) 1549 * { 1550 * for( ;; ) 1551 * { 1552 * // Task code goes here. 1553 * 1554 * // At some point we want to end the real time kernel processing 1555 * // so call ... 1556 * vTaskEndScheduler (); 1557 * } 1558 * } 1559 * 1560 * void vAFunction( void ) 1561 * { 1562 * // Create at least one task before starting the kernel. 1563 * xTaskCreate( vTaskCode, "NAME", STACK_SIZE, NULL, tskIDLE_PRIORITY, NULL ); 1564 * 1565 * // Start the real time kernel with preemption. 1566 * vTaskStartScheduler (); 1567 * 1568 * // Will only get here when the vTaskCode () task has called 1569 * // vTaskEndScheduler (). When we get here we are back to single task 1570 * // execution. 1571 * } 1572 * @endcode 1573 * 1574 * \defgroup vTaskEndScheduler vTaskEndScheduler 1575 * \ingroup SchedulerControl 1576 */ 1577 void vTaskEndScheduler( void ) PRIVILEGED_FUNCTION; 1578 1579 /** 1580 * task. h 1581 * @code{c} 1582 * void vTaskSuspendAll( void ); 1583 * @endcode 1584 * 1585 * Suspends the scheduler without disabling interrupts. Context switches will 1586 * not occur while the scheduler is suspended. 1587 * 1588 * After calling vTaskSuspendAll () the calling task will continue to execute 1589 * without risk of being swapped out until a call to xTaskResumeAll () has been 1590 * made. 1591 * 1592 * API functions that have the potential to cause a context switch (for example, 1593 * xTaskDelayUntil(), xQueueSend(), etc.) must not be called while the scheduler 1594 * is suspended. 1595 * 1596 * Example usage: 1597 * @code{c} 1598 * void vTask1( void * pvParameters ) 1599 * { 1600 * for( ;; ) 1601 * { 1602 * // Task code goes here. 1603 * 1604 * // ... 1605 * 1606 * // At some point the task wants to perform a long operation during 1607 * // which it does not want to get swapped out. It cannot use 1608 * // taskENTER_CRITICAL ()/taskEXIT_CRITICAL () as the length of the 1609 * // operation may cause interrupts to be missed - including the 1610 * // ticks. 1611 * 1612 * // Prevent the real time kernel swapping out the task. 1613 * vTaskSuspendAll (); 1614 * 1615 * // Perform the operation here. There is no need to use critical 1616 * // sections as we have all the microcontroller processing time. 1617 * // During this time interrupts will still operate and the kernel 1618 * // tick count will be maintained. 1619 * 1620 * // ... 1621 * 1622 * // The operation is complete. Restart the kernel. 1623 * xTaskResumeAll (); 1624 * } 1625 * } 1626 * @endcode 1627 * \defgroup vTaskSuspendAll vTaskSuspendAll 1628 * \ingroup SchedulerControl 1629 */ 1630 void vTaskSuspendAll( void ) PRIVILEGED_FUNCTION; 1631 1632 /** 1633 * task. h 1634 * @code{c} 1635 * BaseType_t xTaskResumeAll( void ); 1636 * @endcode 1637 * 1638 * Resumes scheduler activity after it was suspended by a call to 1639 * vTaskSuspendAll(). 1640 * 1641 * xTaskResumeAll() only resumes the scheduler. It does not unsuspend tasks 1642 * that were previously suspended by a call to vTaskSuspend(). 1643 * 1644 * @return If resuming the scheduler caused a context switch then pdTRUE is 1645 * returned, otherwise pdFALSE is returned. 1646 * 1647 * Example usage: 1648 * @code{c} 1649 * void vTask1( void * pvParameters ) 1650 * { 1651 * for( ;; ) 1652 * { 1653 * // Task code goes here. 1654 * 1655 * // ... 1656 * 1657 * // At some point the task wants to perform a long operation during 1658 * // which it does not want to get swapped out. It cannot use 1659 * // taskENTER_CRITICAL ()/taskEXIT_CRITICAL () as the length of the 1660 * // operation may cause interrupts to be missed - including the 1661 * // ticks. 1662 * 1663 * // Prevent the real time kernel swapping out the task. 1664 * vTaskSuspendAll (); 1665 * 1666 * // Perform the operation here. There is no need to use critical 1667 * // sections as we have all the microcontroller processing time. 1668 * // During this time interrupts will still operate and the real 1669 * // time kernel tick count will be maintained. 1670 * 1671 * // ... 1672 * 1673 * // The operation is complete. Restart the kernel. We want to force 1674 * // a context switch - but there is no point if resuming the scheduler 1675 * // caused a context switch already. 1676 * if( !xTaskResumeAll () ) 1677 * { 1678 * taskYIELD (); 1679 * } 1680 * } 1681 * } 1682 * @endcode 1683 * \defgroup xTaskResumeAll xTaskResumeAll 1684 * \ingroup SchedulerControl 1685 */ 1686 BaseType_t xTaskResumeAll( void ) PRIVILEGED_FUNCTION; 1687 1688 /*----------------------------------------------------------- 1689 * TASK UTILITIES 1690 *----------------------------------------------------------*/ 1691 1692 /** 1693 * task. h 1694 * @code{c} 1695 * TickType_t xTaskGetTickCount( void ); 1696 * @endcode 1697 * 1698 * @return The count of ticks since vTaskStartScheduler was called. 1699 * 1700 * \defgroup xTaskGetTickCount xTaskGetTickCount 1701 * \ingroup TaskUtils 1702 */ 1703 TickType_t xTaskGetTickCount( void ) PRIVILEGED_FUNCTION; 1704 1705 /** 1706 * task. h 1707 * @code{c} 1708 * TickType_t xTaskGetTickCountFromISR( void ); 1709 * @endcode 1710 * 1711 * @return The count of ticks since vTaskStartScheduler was called. 1712 * 1713 * This is a version of xTaskGetTickCount() that is safe to be called from an 1714 * ISR - provided that TickType_t is the natural word size of the 1715 * microcontroller being used or interrupt nesting is either not supported or 1716 * not being used. 1717 * 1718 * \defgroup xTaskGetTickCountFromISR xTaskGetTickCountFromISR 1719 * \ingroup TaskUtils 1720 */ 1721 TickType_t xTaskGetTickCountFromISR( void ) PRIVILEGED_FUNCTION; 1722 1723 /** 1724 * task. h 1725 * @code{c} 1726 * uint16_t uxTaskGetNumberOfTasks( void ); 1727 * @endcode 1728 * 1729 * @return The number of tasks that the real time kernel is currently managing. 1730 * This includes all ready, blocked and suspended tasks. A task that 1731 * has been deleted but not yet freed by the idle task will also be 1732 * included in the count. 1733 * 1734 * \defgroup uxTaskGetNumberOfTasks uxTaskGetNumberOfTasks 1735 * \ingroup TaskUtils 1736 */ 1737 UBaseType_t uxTaskGetNumberOfTasks( void ) PRIVILEGED_FUNCTION; 1738 1739 /** 1740 * task. h 1741 * @code{c} 1742 * char *pcTaskGetName( TaskHandle_t xTaskToQuery ); 1743 * @endcode 1744 * 1745 * @return The text (human readable) name of the task referenced by the handle 1746 * xTaskToQuery. A task can query its own name by either passing in its own 1747 * handle, or by setting xTaskToQuery to NULL. 1748 * 1749 * \defgroup pcTaskGetName pcTaskGetName 1750 * \ingroup TaskUtils 1751 */ 1752 char * pcTaskGetName( TaskHandle_t xTaskToQuery ) PRIVILEGED_FUNCTION; 1753 1754 /** 1755 * task. h 1756 * @code{c} 1757 * TaskHandle_t xTaskGetHandle( const char *pcNameToQuery ); 1758 * @endcode 1759 * 1760 * NOTE: This function takes a relatively long time to complete and should be 1761 * used sparingly. 1762 * 1763 * @return The handle of the task that has the human readable name pcNameToQuery. 1764 * NULL is returned if no matching name is found. INCLUDE_xTaskGetHandle 1765 * must be set to 1 in FreeRTOSConfig.h for pcTaskGetHandle() to be available. 1766 * 1767 * \defgroup pcTaskGetHandle pcTaskGetHandle 1768 * \ingroup TaskUtils 1769 */ 1770 #if ( INCLUDE_xTaskGetHandle == 1 ) 1771 TaskHandle_t xTaskGetHandle( const char * pcNameToQuery ) PRIVILEGED_FUNCTION; 1772 #endif 1773 1774 /** 1775 * task. h 1776 * @code{c} 1777 * BaseType_t xTaskGetStaticBuffers( TaskHandle_t xTask, 1778 * StackType_t ** ppuxStackBuffer, 1779 * StaticTask_t ** ppxTaskBuffer ); 1780 * @endcode 1781 * 1782 * Retrieve pointers to a statically created task's data structure 1783 * buffer and stack buffer. These are the same buffers that are supplied 1784 * at the time of creation. 1785 * 1786 * @param xTask The task for which to retrieve the buffers. 1787 * 1788 * @param ppuxStackBuffer Used to return a pointer to the task's stack buffer. 1789 * 1790 * @param ppxTaskBuffer Used to return a pointer to the task's data structure 1791 * buffer. 1792 * 1793 * @return pdTRUE if buffers were retrieved, pdFALSE otherwise. 1794 * 1795 * \defgroup xTaskGetStaticBuffers xTaskGetStaticBuffers 1796 * \ingroup TaskUtils 1797 */ 1798 #if ( configSUPPORT_STATIC_ALLOCATION == 1 ) 1799 BaseType_t xTaskGetStaticBuffers( TaskHandle_t xTask, 1800 StackType_t ** ppuxStackBuffer, 1801 StaticTask_t ** ppxTaskBuffer ) PRIVILEGED_FUNCTION; 1802 #endif /* configSUPPORT_STATIC_ALLOCATION */ 1803 1804 /** 1805 * task.h 1806 * @code{c} 1807 * UBaseType_t uxTaskGetStackHighWaterMark( TaskHandle_t xTask ); 1808 * @endcode 1809 * 1810 * INCLUDE_uxTaskGetStackHighWaterMark must be set to 1 in FreeRTOSConfig.h for 1811 * this function to be available. 1812 * 1813 * Returns the high water mark of the stack associated with xTask. That is, 1814 * the minimum free stack space there has been (in words, so on a 32 bit machine 1815 * a value of 1 means 4 bytes) since the task started. The smaller the returned 1816 * number the closer the task has come to overflowing its stack. 1817 * 1818 * uxTaskGetStackHighWaterMark() and uxTaskGetStackHighWaterMark2() are the 1819 * same except for their return type. Using configSTACK_DEPTH_TYPE allows the 1820 * user to determine the return type. It gets around the problem of the value 1821 * overflowing on 8-bit types without breaking backward compatibility for 1822 * applications that expect an 8-bit return type. 1823 * 1824 * @param xTask Handle of the task associated with the stack to be checked. 1825 * Set xTask to NULL to check the stack of the calling task. 1826 * 1827 * @return The smallest amount of free stack space there has been (in words, so 1828 * actual spaces on the stack rather than bytes) since the task referenced by 1829 * xTask was created. 1830 */ 1831 #if ( INCLUDE_uxTaskGetStackHighWaterMark == 1 ) 1832 UBaseType_t uxTaskGetStackHighWaterMark( TaskHandle_t xTask ) PRIVILEGED_FUNCTION; 1833 #endif 1834 1835 /** 1836 * task.h 1837 * @code{c} 1838 * configSTACK_DEPTH_TYPE uxTaskGetStackHighWaterMark2( TaskHandle_t xTask ); 1839 * @endcode 1840 * 1841 * INCLUDE_uxTaskGetStackHighWaterMark2 must be set to 1 in FreeRTOSConfig.h for 1842 * this function to be available. 1843 * 1844 * Returns the high water mark of the stack associated with xTask. That is, 1845 * the minimum free stack space there has been (in words, so on a 32 bit machine 1846 * a value of 1 means 4 bytes) since the task started. The smaller the returned 1847 * number the closer the task has come to overflowing its stack. 1848 * 1849 * uxTaskGetStackHighWaterMark() and uxTaskGetStackHighWaterMark2() are the 1850 * same except for their return type. Using configSTACK_DEPTH_TYPE allows the 1851 * user to determine the return type. It gets around the problem of the value 1852 * overflowing on 8-bit types without breaking backward compatibility for 1853 * applications that expect an 8-bit return type. 1854 * 1855 * @param xTask Handle of the task associated with the stack to be checked. 1856 * Set xTask to NULL to check the stack of the calling task. 1857 * 1858 * @return The smallest amount of free stack space there has been (in words, so 1859 * actual spaces on the stack rather than bytes) since the task referenced by 1860 * xTask was created. 1861 */ 1862 #if ( INCLUDE_uxTaskGetStackHighWaterMark2 == 1 ) 1863 configSTACK_DEPTH_TYPE uxTaskGetStackHighWaterMark2( TaskHandle_t xTask ) PRIVILEGED_FUNCTION; 1864 #endif 1865 1866 /* When using trace macros it is sometimes necessary to include task.h before 1867 * FreeRTOS.h. When this is done TaskHookFunction_t will not yet have been defined, 1868 * so the following two prototypes will cause a compilation error. This can be 1869 * fixed by simply guarding against the inclusion of these two prototypes unless 1870 * they are explicitly required by the configUSE_APPLICATION_TASK_TAG configuration 1871 * constant. */ 1872 #ifdef configUSE_APPLICATION_TASK_TAG 1873 #if configUSE_APPLICATION_TASK_TAG == 1 1874 1875 /** 1876 * task.h 1877 * @code{c} 1878 * void vTaskSetApplicationTaskTag( TaskHandle_t xTask, TaskHookFunction_t pxHookFunction ); 1879 * @endcode 1880 * 1881 * Sets pxHookFunction to be the task hook function used by the task xTask. 1882 * Passing xTask as NULL has the effect of setting the calling tasks hook 1883 * function. 1884 */ 1885 void vTaskSetApplicationTaskTag( TaskHandle_t xTask, 1886 TaskHookFunction_t pxHookFunction ) PRIVILEGED_FUNCTION; 1887 1888 /** 1889 * task.h 1890 * @code{c} 1891 * void xTaskGetApplicationTaskTag( TaskHandle_t xTask ); 1892 * @endcode 1893 * 1894 * Returns the pxHookFunction value assigned to the task xTask. Do not 1895 * call from an interrupt service routine - call 1896 * xTaskGetApplicationTaskTagFromISR() instead. 1897 */ 1898 TaskHookFunction_t xTaskGetApplicationTaskTag( TaskHandle_t xTask ) PRIVILEGED_FUNCTION; 1899 1900 /** 1901 * task.h 1902 * @code{c} 1903 * void xTaskGetApplicationTaskTagFromISR( TaskHandle_t xTask ); 1904 * @endcode 1905 * 1906 * Returns the pxHookFunction value assigned to the task xTask. Can 1907 * be called from an interrupt service routine. 1908 */ 1909 TaskHookFunction_t xTaskGetApplicationTaskTagFromISR( TaskHandle_t xTask ) PRIVILEGED_FUNCTION; 1910 #endif /* configUSE_APPLICATION_TASK_TAG ==1 */ 1911 #endif /* ifdef configUSE_APPLICATION_TASK_TAG */ 1912 1913 #if ( configNUM_THREAD_LOCAL_STORAGE_POINTERS > 0 ) 1914 1915 /* Each task contains an array of pointers that is dimensioned by the 1916 * configNUM_THREAD_LOCAL_STORAGE_POINTERS setting in FreeRTOSConfig.h. The 1917 * kernel does not use the pointers itself, so the application writer can use 1918 * the pointers for any purpose they wish. The following two functions are 1919 * used to set and query a pointer respectively. */ 1920 void vTaskSetThreadLocalStoragePointer( TaskHandle_t xTaskToSet, 1921 BaseType_t xIndex, 1922 void * pvValue ) PRIVILEGED_FUNCTION; 1923 void * pvTaskGetThreadLocalStoragePointer( TaskHandle_t xTaskToQuery, 1924 BaseType_t xIndex ) PRIVILEGED_FUNCTION; 1925 1926 #endif 1927 1928 #if ( configCHECK_FOR_STACK_OVERFLOW > 0 ) 1929 1930 /** 1931 * task.h 1932 * @code{c} 1933 * void vApplicationStackOverflowHook( TaskHandle_t xTask, char *pcTaskName); 1934 * @endcode 1935 * 1936 * The application stack overflow hook is called when a stack overflow is detected for a task. 1937 * 1938 * Details on stack overflow detection can be found here: https://www.FreeRTOS.org/Stacks-and-stack-overflow-checking.html 1939 * 1940 * @param xTask the task that just exceeded its stack boundaries. 1941 * @param pcTaskName A character string containing the name of the offending task. 1942 */ 1943 /* MISRA Ref 8.6.1 [External linkage] */ 1944 /* More details at: https://github.com/FreeRTOS/FreeRTOS-Kernel/blob/main/MISRA.md#rule-86 */ 1945 /* coverity[misra_c_2012_rule_8_6_violation] */ 1946 void vApplicationStackOverflowHook( TaskHandle_t xTask, 1947 char * pcTaskName ); 1948 1949 #endif 1950 1951 #if ( configUSE_IDLE_HOOK == 1 ) 1952 1953 /** 1954 * task.h 1955 * @code{c} 1956 * void vApplicationIdleHook( void ); 1957 * @endcode 1958 * 1959 * The application idle hook is called by the idle task. 1960 * This allows the application designer to add background functionality without 1961 * the overhead of a separate task. 1962 * NOTE: vApplicationIdleHook() MUST NOT, UNDER ANY CIRCUMSTANCES, CALL A FUNCTION THAT MIGHT BLOCK. 1963 */ 1964 /* MISRA Ref 8.6.1 [External linkage] */ 1965 /* More details at: https://github.com/FreeRTOS/FreeRTOS-Kernel/blob/main/MISRA.md#rule-86 */ 1966 /* coverity[misra_c_2012_rule_8_6_violation] */ 1967 void vApplicationIdleHook( void ); 1968 1969 #endif 1970 1971 1972 #if ( configUSE_TICK_HOOK != 0 ) 1973 1974 /** 1975 * task.h 1976 * @code{c} 1977 * void vApplicationTickHook( void ); 1978 * @endcode 1979 * 1980 * This hook function is called in the system tick handler after any OS work is completed. 1981 */ 1982 /* MISRA Ref 8.6.1 [External linkage] */ 1983 /* More details at: https://github.com/FreeRTOS/FreeRTOS-Kernel/blob/main/MISRA.md#rule-86 */ 1984 /* coverity[misra_c_2012_rule_8_6_violation] */ 1985 void vApplicationTickHook( void ); 1986 1987 #endif 1988 1989 #if ( configSUPPORT_STATIC_ALLOCATION == 1 ) 1990 1991 /** 1992 * task.h 1993 * @code{c} 1994 * void vApplicationGetIdleTaskMemory( StaticTask_t ** ppxIdleTaskTCBBuffer, StackType_t ** ppxIdleTaskStackBuffer, configSTACK_DEPTH_TYPE * puxIdleTaskStackSize ) 1995 * @endcode 1996 * 1997 * This function is used to provide a statically allocated block of memory to FreeRTOS to hold the Idle Task TCB. This function is required when 1998 * configSUPPORT_STATIC_ALLOCATION is set. For more information see this URI: https://www.FreeRTOS.org/a00110.html#configSUPPORT_STATIC_ALLOCATION 1999 * 2000 * @param ppxIdleTaskTCBBuffer A handle to a statically allocated TCB buffer 2001 * @param ppxIdleTaskStackBuffer A handle to a statically allocated Stack buffer for the idle task 2002 * @param puxIdleTaskStackSize A pointer to the number of elements that will fit in the allocated stack buffer 2003 */ 2004 void vApplicationGetIdleTaskMemory( StaticTask_t ** ppxIdleTaskTCBBuffer, 2005 StackType_t ** ppxIdleTaskStackBuffer, 2006 configSTACK_DEPTH_TYPE * puxIdleTaskStackSize ); 2007 2008 /** 2009 * task.h 2010 * @code{c} 2011 * void vApplicationGetPassiveIdleTaskMemory( StaticTask_t ** ppxIdleTaskTCBBuffer, StackType_t ** ppxIdleTaskStackBuffer, configSTACK_DEPTH_TYPE * puxIdleTaskStackSize, BaseType_t xCoreID ) 2012 * @endcode 2013 * 2014 * This function is used to provide a statically allocated block of memory to FreeRTOS to hold the Idle Tasks TCB. This function is required when 2015 * configSUPPORT_STATIC_ALLOCATION is set. For more information see this URI: https://www.FreeRTOS.org/a00110.html#configSUPPORT_STATIC_ALLOCATION 2016 * 2017 * In the FreeRTOS SMP, there are a total of configNUMBER_OF_CORES idle tasks: 2018 * 1. 1 Active idle task which does all the housekeeping. 2019 * 2. ( configNUMBER_OF_CORES - 1 ) Passive idle tasks which do nothing. 2020 * These idle tasks are created to ensure that each core has an idle task to run when 2021 * no other task is available to run. 2022 * 2023 * The function vApplicationGetPassiveIdleTaskMemory is called with passive idle 2024 * task index 0, 1 ... ( configNUMBER_OF_CORES - 2 ) to get memory for passive idle 2025 * tasks. 2026 * 2027 * @param ppxIdleTaskTCBBuffer A handle to a statically allocated TCB buffer 2028 * @param ppxIdleTaskStackBuffer A handle to a statically allocated Stack buffer for the idle task 2029 * @param puxIdleTaskStackSize A pointer to the number of elements that will fit in the allocated stack buffer 2030 * @param xPassiveIdleTaskIndex The passive idle task index of the idle task buffer 2031 */ 2032 #if ( configNUMBER_OF_CORES > 1 ) 2033 void vApplicationGetPassiveIdleTaskMemory( StaticTask_t ** ppxIdleTaskTCBBuffer, 2034 StackType_t ** ppxIdleTaskStackBuffer, 2035 configSTACK_DEPTH_TYPE * puxIdleTaskStackSize, 2036 BaseType_t xPassiveIdleTaskIndex ); 2037 #endif /* #if ( configNUMBER_OF_CORES > 1 ) */ 2038 #endif /* if ( configSUPPORT_STATIC_ALLOCATION == 1 ) */ 2039 2040 /** 2041 * task.h 2042 * @code{c} 2043 * BaseType_t xTaskCallApplicationTaskHook( TaskHandle_t xTask, void *pvParameter ); 2044 * @endcode 2045 * 2046 * Calls the hook function associated with xTask. Passing xTask as NULL has 2047 * the effect of calling the Running tasks (the calling task) hook function. 2048 * 2049 * pvParameter is passed to the hook function for the task to interpret as it 2050 * wants. The return value is the value returned by the task hook function 2051 * registered by the user. 2052 */ 2053 #if ( configUSE_APPLICATION_TASK_TAG == 1 ) 2054 BaseType_t xTaskCallApplicationTaskHook( TaskHandle_t xTask, 2055 void * pvParameter ) PRIVILEGED_FUNCTION; 2056 #endif 2057 2058 /** 2059 * xTaskGetIdleTaskHandle() is only available if 2060 * INCLUDE_xTaskGetIdleTaskHandle is set to 1 in FreeRTOSConfig.h. 2061 * 2062 * In single-core FreeRTOS, this function simply returns the handle of the idle 2063 * task. It is not valid to call xTaskGetIdleTaskHandle() before the scheduler 2064 * has been started. 2065 * 2066 * In the FreeRTOS SMP, there are a total of configNUMBER_OF_CORES idle tasks: 2067 * 1. 1 Active idle task which does all the housekeeping. 2068 * 2. ( configNUMBER_OF_CORES - 1 ) Passive idle tasks which do nothing. 2069 * These idle tasks are created to ensure that each core has an idle task to run when 2070 * no other task is available to run. Call xTaskGetIdleTaskHandle() or 2071 * xTaskGetIdleTaskHandleForCore() with xCoreID set to 0 to get the Active 2072 * idle task handle. Call xTaskGetIdleTaskHandleForCore() with xCoreID set to 2073 * 1,2 ... ( configNUMBER_OF_CORES - 1 ) to get the Passive idle task handles. 2074 */ 2075 #if ( INCLUDE_xTaskGetIdleTaskHandle == 1 ) 2076 #if ( configNUMBER_OF_CORES == 1 ) 2077 TaskHandle_t xTaskGetIdleTaskHandle( void ) PRIVILEGED_FUNCTION; 2078 #endif /* #if ( configNUMBER_OF_CORES == 1 ) */ 2079 2080 TaskHandle_t xTaskGetIdleTaskHandleForCore( BaseType_t xCoreID ) PRIVILEGED_FUNCTION; 2081 #endif /* #if ( INCLUDE_xTaskGetIdleTaskHandle == 1 ) */ 2082 2083 /** 2084 * configUSE_TRACE_FACILITY must be defined as 1 in FreeRTOSConfig.h for 2085 * uxTaskGetSystemState() to be available. 2086 * 2087 * uxTaskGetSystemState() populates an TaskStatus_t structure for each task in 2088 * the system. TaskStatus_t structures contain, among other things, members 2089 * for the task handle, task name, task priority, task state, and total amount 2090 * of run time consumed by the task. See the TaskStatus_t structure 2091 * definition in this file for the full member list. 2092 * 2093 * NOTE: This function is intended for debugging use only as its use results in 2094 * the scheduler remaining suspended for an extended period. 2095 * 2096 * @param pxTaskStatusArray A pointer to an array of TaskStatus_t structures. 2097 * The array must contain at least one TaskStatus_t structure for each task 2098 * that is under the control of the RTOS. The number of tasks under the control 2099 * of the RTOS can be determined using the uxTaskGetNumberOfTasks() API function. 2100 * 2101 * @param uxArraySize The size of the array pointed to by the pxTaskStatusArray 2102 * parameter. The size is specified as the number of indexes in the array, or 2103 * the number of TaskStatus_t structures contained in the array, not by the 2104 * number of bytes in the array. 2105 * 2106 * @param pulTotalRunTime If configGENERATE_RUN_TIME_STATS is set to 1 in 2107 * FreeRTOSConfig.h then *pulTotalRunTime is set by uxTaskGetSystemState() to the 2108 * total run time (as defined by the run time stats clock, see 2109 * https://www.FreeRTOS.org/rtos-run-time-stats.html) since the target booted. 2110 * pulTotalRunTime can be set to NULL to omit the total run time information. 2111 * 2112 * @return The number of TaskStatus_t structures that were populated by 2113 * uxTaskGetSystemState(). This should equal the number returned by the 2114 * uxTaskGetNumberOfTasks() API function, but will be zero if the value passed 2115 * in the uxArraySize parameter was too small. 2116 * 2117 * Example usage: 2118 * @code{c} 2119 * // This example demonstrates how a human readable table of run time stats 2120 * // information is generated from raw data provided by uxTaskGetSystemState(). 2121 * // The human readable table is written to pcWriteBuffer 2122 * void vTaskGetRunTimeStats( char *pcWriteBuffer ) 2123 * { 2124 * TaskStatus_t *pxTaskStatusArray; 2125 * volatile UBaseType_t uxArraySize, x; 2126 * configRUN_TIME_COUNTER_TYPE ulTotalRunTime, ulStatsAsPercentage; 2127 * 2128 * // Make sure the write buffer does not contain a string. 2129 * pcWriteBuffer = 0x00; 2130 * 2131 * // Take a snapshot of the number of tasks in case it changes while this 2132 * // function is executing. 2133 * uxArraySize = uxTaskGetNumberOfTasks(); 2134 * 2135 * // Allocate a TaskStatus_t structure for each task. An array could be 2136 * // allocated statically at compile time. 2137 * pxTaskStatusArray = pvPortMalloc( uxArraySize * sizeof( TaskStatus_t ) ); 2138 * 2139 * if( pxTaskStatusArray != NULL ) 2140 * { 2141 * // Generate raw status information about each task. 2142 * uxArraySize = uxTaskGetSystemState( pxTaskStatusArray, uxArraySize, &ulTotalRunTime ); 2143 * 2144 * // For percentage calculations. 2145 * ulTotalRunTime /= 100U; 2146 * 2147 * // Avoid divide by zero errors. 2148 * if( ulTotalRunTime > 0 ) 2149 * { 2150 * // For each populated position in the pxTaskStatusArray array, 2151 * // format the raw data as human readable ASCII data 2152 * for( x = 0; x < uxArraySize; x++ ) 2153 * { 2154 * // What percentage of the total run time has the task used? 2155 * // This will always be rounded down to the nearest integer. 2156 * // ulTotalRunTimeDiv100 has already been divided by 100. 2157 * ulStatsAsPercentage = pxTaskStatusArray[ x ].ulRunTimeCounter / ulTotalRunTime; 2158 * 2159 * if( ulStatsAsPercentage > 0U ) 2160 * { 2161 * sprintf( pcWriteBuffer, "%s\t\t%lu\t\t%lu%%\r\n", pxTaskStatusArray[ x ].pcTaskName, pxTaskStatusArray[ x ].ulRunTimeCounter, ulStatsAsPercentage ); 2162 * } 2163 * else 2164 * { 2165 * // If the percentage is zero here then the task has 2166 * // consumed less than 1% of the total run time. 2167 * sprintf( pcWriteBuffer, "%s\t\t%lu\t\t<1%%\r\n", pxTaskStatusArray[ x ].pcTaskName, pxTaskStatusArray[ x ].ulRunTimeCounter ); 2168 * } 2169 * 2170 * pcWriteBuffer += strlen( ( char * ) pcWriteBuffer ); 2171 * } 2172 * } 2173 * 2174 * // The array is no longer needed, free the memory it consumes. 2175 * vPortFree( pxTaskStatusArray ); 2176 * } 2177 * } 2178 * @endcode 2179 */ 2180 #if ( configUSE_TRACE_FACILITY == 1 ) 2181 UBaseType_t uxTaskGetSystemState( TaskStatus_t * const pxTaskStatusArray, 2182 const UBaseType_t uxArraySize, 2183 configRUN_TIME_COUNTER_TYPE * const pulTotalRunTime ) PRIVILEGED_FUNCTION; 2184 #endif 2185 2186 /** 2187 * task. h 2188 * @code{c} 2189 * void vTaskListTasks( char *pcWriteBuffer, size_t uxBufferLength ); 2190 * @endcode 2191 * 2192 * configUSE_TRACE_FACILITY and configUSE_STATS_FORMATTING_FUNCTIONS must 2193 * both be defined as 1 for this function to be available. See the 2194 * configuration section of the FreeRTOS.org website for more information. 2195 * 2196 * NOTE 1: This function will disable interrupts for its duration. It is 2197 * not intended for normal application runtime use but as a debug aid. 2198 * 2199 * Lists all the current tasks, along with their current state and stack 2200 * usage high water mark. 2201 * 2202 * Tasks are reported as running ('X'), blocked ('B'), ready ('R'), deleted ('D') 2203 * or suspended ('S'). 2204 * 2205 * PLEASE NOTE: 2206 * 2207 * This function is provided for convenience only, and is used by many of the 2208 * demo applications. Do not consider it to be part of the scheduler. 2209 * 2210 * vTaskListTasks() calls uxTaskGetSystemState(), then formats part of the 2211 * uxTaskGetSystemState() output into a human readable table that displays task 2212 * information in the following format: 2213 * Task Name, Task State, Task Priority, Task Stack High Watermak, Task Number. 2214 * 2215 * The following is a sample output: 2216 * Task A X 2 67 2 2217 * Task B R 1 67 3 2218 * IDLE R 0 67 5 2219 * Tmr Svc B 6 137 6 2220 * 2221 * Stack usage specified as the number of unused StackType_t words stack can hold 2222 * on top of stack - not the number of bytes. 2223 * 2224 * vTaskListTasks() has a dependency on the snprintf() C library function that might 2225 * bloat the code size, use a lot of stack, and provide different results on 2226 * different platforms. An alternative, tiny, third party, and limited 2227 * functionality implementation of snprintf() is provided in many of the 2228 * FreeRTOS/Demo sub-directories in a file called printf-stdarg.c (note 2229 * printf-stdarg.c does not provide a full snprintf() implementation!). 2230 * 2231 * It is recommended that production systems call uxTaskGetSystemState() 2232 * directly to get access to raw stats data, rather than indirectly through a 2233 * call to vTaskListTasks(). 2234 * 2235 * @param pcWriteBuffer A buffer into which the above mentioned details 2236 * will be written, in ASCII form. This buffer is assumed to be large 2237 * enough to contain the generated report. Approximately 40 bytes per 2238 * task should be sufficient. 2239 * 2240 * @param uxBufferLength Length of the pcWriteBuffer. 2241 * 2242 * \defgroup vTaskListTasks vTaskListTasks 2243 * \ingroup TaskUtils 2244 */ 2245 #if ( ( configUSE_TRACE_FACILITY == 1 ) && ( configUSE_STATS_FORMATTING_FUNCTIONS > 0 ) ) 2246 void vTaskListTasks( char * pcWriteBuffer, 2247 size_t uxBufferLength ) PRIVILEGED_FUNCTION; 2248 #endif 2249 2250 /** 2251 * task. h 2252 * @code{c} 2253 * void vTaskList( char *pcWriteBuffer ); 2254 * @endcode 2255 * 2256 * configUSE_TRACE_FACILITY and configUSE_STATS_FORMATTING_FUNCTIONS must 2257 * both be defined as 1 for this function to be available. See the 2258 * configuration section of the FreeRTOS.org website for more information. 2259 * 2260 * WARN: This function assumes that the pcWriteBuffer is of length 2261 * configSTATS_BUFFER_MAX_LENGTH. This function is there only for 2262 * backward compatibility. New applications are recommended to 2263 * use vTaskListTasks and supply the length of the pcWriteBuffer explicitly. 2264 * 2265 * NOTE 1: This function will disable interrupts for its duration. It is 2266 * not intended for normal application runtime use but as a debug aid. 2267 * 2268 * Lists all the current tasks, along with their current state and stack 2269 * usage high water mark. 2270 * 2271 * Tasks are reported as running ('X'), blocked ('B'), ready ('R'), deleted ('D') 2272 * or suspended ('S'). 2273 * 2274 * PLEASE NOTE: 2275 * 2276 * This function is provided for convenience only, and is used by many of the 2277 * demo applications. Do not consider it to be part of the scheduler. 2278 * 2279 * vTaskList() calls uxTaskGetSystemState(), then formats part of the 2280 * uxTaskGetSystemState() output into a human readable table that displays task 2281 * information in the following format: 2282 * Task Name, Task State, Task Priority, Task Stack High Watermak, Task Number. 2283 * 2284 * The following is a sample output: 2285 * Task A X 2 67 2 2286 * Task B R 1 67 3 2287 * IDLE R 0 67 5 2288 * Tmr Svc B 6 137 6 2289 * 2290 * Stack usage specified as the number of unused StackType_t words stack can hold 2291 * on top of stack - not the number of bytes. 2292 * 2293 * vTaskList() has a dependency on the snprintf() C library function that might 2294 * bloat the code size, use a lot of stack, and provide different results on 2295 * different platforms. An alternative, tiny, third party, and limited 2296 * functionality implementation of snprintf() is provided in many of the 2297 * FreeRTOS/Demo sub-directories in a file called printf-stdarg.c (note 2298 * printf-stdarg.c does not provide a full snprintf() implementation!). 2299 * 2300 * It is recommended that production systems call uxTaskGetSystemState() 2301 * directly to get access to raw stats data, rather than indirectly through a 2302 * call to vTaskList(). 2303 * 2304 * @param pcWriteBuffer A buffer into which the above mentioned details 2305 * will be written, in ASCII form. This buffer is assumed to be large 2306 * enough to contain the generated report. Approximately 40 bytes per 2307 * task should be sufficient. 2308 * 2309 * \defgroup vTaskList vTaskList 2310 * \ingroup TaskUtils 2311 */ 2312 #define vTaskList( pcWriteBuffer ) vTaskListTasks( ( pcWriteBuffer ), configSTATS_BUFFER_MAX_LENGTH ) 2313 2314 /** 2315 * task. h 2316 * @code{c} 2317 * void vTaskGetRunTimeStatistics( char *pcWriteBuffer, size_t uxBufferLength ); 2318 * @endcode 2319 * 2320 * configGENERATE_RUN_TIME_STATS and configUSE_STATS_FORMATTING_FUNCTIONS 2321 * must both be defined as 1 for this function to be available. The application 2322 * must also then provide definitions for 2323 * portCONFIGURE_TIMER_FOR_RUN_TIME_STATS() and portGET_RUN_TIME_COUNTER_VALUE() 2324 * to configure a peripheral timer/counter and return the timers current count 2325 * value respectively. The counter should be at least 10 times the frequency of 2326 * the tick count. 2327 * 2328 * NOTE 1: This function will disable interrupts for its duration. It is 2329 * not intended for normal application runtime use but as a debug aid. 2330 * 2331 * Setting configGENERATE_RUN_TIME_STATS to 1 will result in a total 2332 * accumulated execution time being stored for each task. The resolution 2333 * of the accumulated time value depends on the frequency of the timer 2334 * configured by the portCONFIGURE_TIMER_FOR_RUN_TIME_STATS() macro. 2335 * Calling vTaskGetRunTimeStatistics() writes the total execution time of each 2336 * task into a buffer, both as an absolute count value and as a percentage 2337 * of the total system execution time. 2338 * 2339 * NOTE 2: 2340 * 2341 * This function is provided for convenience only, and is used by many of the 2342 * demo applications. Do not consider it to be part of the scheduler. 2343 * 2344 * vTaskGetRunTimeStatistics() calls uxTaskGetSystemState(), then formats part of 2345 * the uxTaskGetSystemState() output into a human readable table that displays the 2346 * amount of time each task has spent in the Running state in both absolute and 2347 * percentage terms. 2348 * 2349 * vTaskGetRunTimeStatistics() has a dependency on the snprintf() C library function 2350 * that might bloat the code size, use a lot of stack, and provide different 2351 * results on different platforms. An alternative, tiny, third party, and 2352 * limited functionality implementation of snprintf() is provided in many of the 2353 * FreeRTOS/Demo sub-directories in a file called printf-stdarg.c (note 2354 * printf-stdarg.c does not provide a full snprintf() implementation!). 2355 * 2356 * It is recommended that production systems call uxTaskGetSystemState() directly 2357 * to get access to raw stats data, rather than indirectly through a call to 2358 * vTaskGetRunTimeStatistics(). 2359 * 2360 * @param pcWriteBuffer A buffer into which the execution times will be 2361 * written, in ASCII form. This buffer is assumed to be large enough to 2362 * contain the generated report. Approximately 40 bytes per task should 2363 * be sufficient. 2364 * 2365 * @param uxBufferLength Length of the pcWriteBuffer. 2366 * 2367 * \defgroup vTaskGetRunTimeStatistics vTaskGetRunTimeStatistics 2368 * \ingroup TaskUtils 2369 */ 2370 #if ( ( configGENERATE_RUN_TIME_STATS == 1 ) && ( configUSE_STATS_FORMATTING_FUNCTIONS > 0 ) && ( configUSE_TRACE_FACILITY == 1 ) ) 2371 void vTaskGetRunTimeStatistics( char * pcWriteBuffer, 2372 size_t uxBufferLength ) PRIVILEGED_FUNCTION; 2373 #endif 2374 2375 /** 2376 * task. h 2377 * @code{c} 2378 * void vTaskGetRunTimeStats( char *pcWriteBuffer ); 2379 * @endcode 2380 * 2381 * configGENERATE_RUN_TIME_STATS and configUSE_STATS_FORMATTING_FUNCTIONS 2382 * must both be defined as 1 for this function to be available. The application 2383 * must also then provide definitions for 2384 * portCONFIGURE_TIMER_FOR_RUN_TIME_STATS() and portGET_RUN_TIME_COUNTER_VALUE() 2385 * to configure a peripheral timer/counter and return the timers current count 2386 * value respectively. The counter should be at least 10 times the frequency of 2387 * the tick count. 2388 * 2389 * WARN: This function assumes that the pcWriteBuffer is of length 2390 * configSTATS_BUFFER_MAX_LENGTH. This function is there only for 2391 * backward compatibility. New applications are recommended to use 2392 * vTaskGetRunTimeStatistics and supply the length of the pcWriteBuffer 2393 * explicitly. 2394 * 2395 * NOTE 1: This function will disable interrupts for its duration. It is 2396 * not intended for normal application runtime use but as a debug aid. 2397 * 2398 * Setting configGENERATE_RUN_TIME_STATS to 1 will result in a total 2399 * accumulated execution time being stored for each task. The resolution 2400 * of the accumulated time value depends on the frequency of the timer 2401 * configured by the portCONFIGURE_TIMER_FOR_RUN_TIME_STATS() macro. 2402 * Calling vTaskGetRunTimeStats() writes the total execution time of each 2403 * task into a buffer, both as an absolute count value and as a percentage 2404 * of the total system execution time. 2405 * 2406 * NOTE 2: 2407 * 2408 * This function is provided for convenience only, and is used by many of the 2409 * demo applications. Do not consider it to be part of the scheduler. 2410 * 2411 * vTaskGetRunTimeStats() calls uxTaskGetSystemState(), then formats part of the 2412 * uxTaskGetSystemState() output into a human readable table that displays the 2413 * amount of time each task has spent in the Running state in both absolute and 2414 * percentage terms. 2415 * 2416 * vTaskGetRunTimeStats() has a dependency on the snprintf() C library function 2417 * that might bloat the code size, use a lot of stack, and provide different 2418 * results on different platforms. An alternative, tiny, third party, and 2419 * limited functionality implementation of snprintf() is provided in many of the 2420 * FreeRTOS/Demo sub-directories in a file called printf-stdarg.c (note 2421 * printf-stdarg.c does not provide a full snprintf() implementation!). 2422 * 2423 * It is recommended that production systems call uxTaskGetSystemState() directly 2424 * to get access to raw stats data, rather than indirectly through a call to 2425 * vTaskGetRunTimeStats(). 2426 * 2427 * @param pcWriteBuffer A buffer into which the execution times will be 2428 * written, in ASCII form. This buffer is assumed to be large enough to 2429 * contain the generated report. Approximately 40 bytes per task should 2430 * be sufficient. 2431 * 2432 * \defgroup vTaskGetRunTimeStats vTaskGetRunTimeStats 2433 * \ingroup TaskUtils 2434 */ 2435 #define vTaskGetRunTimeStats( pcWriteBuffer ) vTaskGetRunTimeStatistics( ( pcWriteBuffer ), configSTATS_BUFFER_MAX_LENGTH ) 2436 2437 /** 2438 * task. h 2439 * @code{c} 2440 * configRUN_TIME_COUNTER_TYPE ulTaskGetRunTimeCounter( const TaskHandle_t xTask ); 2441 * configRUN_TIME_COUNTER_TYPE ulTaskGetRunTimePercent( const TaskHandle_t xTask ); 2442 * @endcode 2443 * 2444 * configGENERATE_RUN_TIME_STATS must be defined as 1 for these functions to be 2445 * available. The application must also then provide definitions for 2446 * portCONFIGURE_TIMER_FOR_RUN_TIME_STATS() and 2447 * portGET_RUN_TIME_COUNTER_VALUE() to configure a peripheral timer/counter and 2448 * return the timers current count value respectively. The counter should be 2449 * at least 10 times the frequency of the tick count. 2450 * 2451 * Setting configGENERATE_RUN_TIME_STATS to 1 will result in a total 2452 * accumulated execution time being stored for each task. The resolution 2453 * of the accumulated time value depends on the frequency of the timer 2454 * configured by the portCONFIGURE_TIMER_FOR_RUN_TIME_STATS() macro. 2455 * While uxTaskGetSystemState() and vTaskGetRunTimeStats() writes the total 2456 * execution time of each task into a buffer, ulTaskGetRunTimeCounter() 2457 * returns the total execution time of just one task and 2458 * ulTaskGetRunTimePercent() returns the percentage of the CPU time used by 2459 * just one task. 2460 * 2461 * @return The total run time of the given task or the percentage of the total 2462 * run time consumed by the given task. This is the amount of time the task 2463 * has actually been executing. The unit of time is dependent on the frequency 2464 * configured using the portCONFIGURE_TIMER_FOR_RUN_TIME_STATS() and 2465 * portGET_RUN_TIME_COUNTER_VALUE() macros. 2466 * 2467 * \defgroup ulTaskGetRunTimeCounter ulTaskGetRunTimeCounter 2468 * \ingroup TaskUtils 2469 */ 2470 #if ( configGENERATE_RUN_TIME_STATS == 1 ) 2471 configRUN_TIME_COUNTER_TYPE ulTaskGetRunTimeCounter( const TaskHandle_t xTask ) PRIVILEGED_FUNCTION; 2472 configRUN_TIME_COUNTER_TYPE ulTaskGetRunTimePercent( const TaskHandle_t xTask ) PRIVILEGED_FUNCTION; 2473 #endif 2474 2475 /** 2476 * task. h 2477 * @code{c} 2478 * configRUN_TIME_COUNTER_TYPE ulTaskGetIdleRunTimeCounter( void ); 2479 * configRUN_TIME_COUNTER_TYPE ulTaskGetIdleRunTimePercent( void ); 2480 * @endcode 2481 * 2482 * configGENERATE_RUN_TIME_STATS must be defined as 1 for these functions to be 2483 * available. The application must also then provide definitions for 2484 * portCONFIGURE_TIMER_FOR_RUN_TIME_STATS() and 2485 * portGET_RUN_TIME_COUNTER_VALUE() to configure a peripheral timer/counter and 2486 * return the timers current count value respectively. The counter should be 2487 * at least 10 times the frequency of the tick count. 2488 * 2489 * Setting configGENERATE_RUN_TIME_STATS to 1 will result in a total 2490 * accumulated execution time being stored for each task. The resolution 2491 * of the accumulated time value depends on the frequency of the timer 2492 * configured by the portCONFIGURE_TIMER_FOR_RUN_TIME_STATS() macro. 2493 * While uxTaskGetSystemState() and vTaskGetRunTimeStats() writes the total 2494 * execution time of each task into a buffer, ulTaskGetIdleRunTimeCounter() 2495 * returns the total execution time of just the idle task and 2496 * ulTaskGetIdleRunTimePercent() returns the percentage of the CPU time used by 2497 * just the idle task. 2498 * 2499 * Note the amount of idle time is only a good measure of the slack time in a 2500 * system if there are no other tasks executing at the idle priority, tickless 2501 * idle is not used, and configIDLE_SHOULD_YIELD is set to 0. 2502 * 2503 * @return The total run time of the idle task or the percentage of the total 2504 * run time consumed by the idle task. This is the amount of time the 2505 * idle task has actually been executing. The unit of time is dependent on the 2506 * frequency configured using the portCONFIGURE_TIMER_FOR_RUN_TIME_STATS() and 2507 * portGET_RUN_TIME_COUNTER_VALUE() macros. 2508 * 2509 * \defgroup ulTaskGetIdleRunTimeCounter ulTaskGetIdleRunTimeCounter 2510 * \ingroup TaskUtils 2511 */ 2512 #if ( ( configGENERATE_RUN_TIME_STATS == 1 ) && ( INCLUDE_xTaskGetIdleTaskHandle == 1 ) ) 2513 configRUN_TIME_COUNTER_TYPE ulTaskGetIdleRunTimeCounter( void ) PRIVILEGED_FUNCTION; 2514 configRUN_TIME_COUNTER_TYPE ulTaskGetIdleRunTimePercent( void ) PRIVILEGED_FUNCTION; 2515 #endif 2516 2517 /** 2518 * task. h 2519 * @code{c} 2520 * BaseType_t xTaskNotifyIndexed( TaskHandle_t xTaskToNotify, UBaseType_t uxIndexToNotify, uint32_t ulValue, eNotifyAction eAction ); 2521 * BaseType_t xTaskNotify( TaskHandle_t xTaskToNotify, uint32_t ulValue, eNotifyAction eAction ); 2522 * @endcode 2523 * 2524 * See https://www.FreeRTOS.org/RTOS-task-notifications.html for details. 2525 * 2526 * configUSE_TASK_NOTIFICATIONS must be undefined or defined as 1 for these 2527 * functions to be available. 2528 * 2529 * Sends a direct to task notification to a task, with an optional value and 2530 * action. 2531 * 2532 * Each task has a private array of "notification values" (or 'notifications'), 2533 * each of which is a 32-bit unsigned integer (uint32_t). The constant 2534 * configTASK_NOTIFICATION_ARRAY_ENTRIES sets the number of indexes in the 2535 * array, and (for backward compatibility) defaults to 1 if left undefined. 2536 * Prior to FreeRTOS V10.4.0 there was only one notification value per task. 2537 * 2538 * Events can be sent to a task using an intermediary object. Examples of such 2539 * objects are queues, semaphores, mutexes and event groups. Task notifications 2540 * are a method of sending an event directly to a task without the need for such 2541 * an intermediary object. 2542 * 2543 * A notification sent to a task can optionally perform an action, such as 2544 * update, overwrite or increment one of the task's notification values. In 2545 * that way task notifications can be used to send data to a task, or be used as 2546 * light weight and fast binary or counting semaphores. 2547 * 2548 * A task can use xTaskNotifyWaitIndexed() or ulTaskNotifyTakeIndexed() to 2549 * [optionally] block to wait for a notification to be pending. The task does 2550 * not consume any CPU time while it is in the Blocked state. 2551 * 2552 * A notification sent to a task will remain pending until it is cleared by the 2553 * task calling xTaskNotifyWaitIndexed() or ulTaskNotifyTakeIndexed() (or their 2554 * un-indexed equivalents). If the task was already in the Blocked state to 2555 * wait for a notification when the notification arrives then the task will 2556 * automatically be removed from the Blocked state (unblocked) and the 2557 * notification cleared. 2558 * 2559 * **NOTE** Each notification within the array operates independently - a task 2560 * can only block on one notification within the array at a time and will not be 2561 * unblocked by a notification sent to any other array index. 2562 * 2563 * Backward compatibility information: 2564 * Prior to FreeRTOS V10.4.0 each task had a single "notification value", and 2565 * all task notification API functions operated on that value. Replacing the 2566 * single notification value with an array of notification values necessitated a 2567 * new set of API functions that could address specific notifications within the 2568 * array. xTaskNotify() is the original API function, and remains backward 2569 * compatible by always operating on the notification value at index 0 in the 2570 * array. Calling xTaskNotify() is equivalent to calling xTaskNotifyIndexed() 2571 * with the uxIndexToNotify parameter set to 0. 2572 * 2573 * @param xTaskToNotify The handle of the task being notified. The handle to a 2574 * task can be returned from the xTaskCreate() API function used to create the 2575 * task, and the handle of the currently running task can be obtained by calling 2576 * xTaskGetCurrentTaskHandle(). 2577 * 2578 * @param uxIndexToNotify The index within the target task's array of 2579 * notification values to which the notification is to be sent. uxIndexToNotify 2580 * must be less than configTASK_NOTIFICATION_ARRAY_ENTRIES. xTaskNotify() does 2581 * not have this parameter and always sends notifications to index 0. 2582 * 2583 * @param ulValue Data that can be sent with the notification. How the data is 2584 * used depends on the value of the eAction parameter. 2585 * 2586 * @param eAction Specifies how the notification updates the task's notification 2587 * value, if at all. Valid values for eAction are as follows: 2588 * 2589 * eSetBits - 2590 * The target notification value is bitwise ORed with ulValue. 2591 * xTaskNotifyIndexed() always returns pdPASS in this case. 2592 * 2593 * eIncrement - 2594 * The target notification value is incremented. ulValue is not used and 2595 * xTaskNotifyIndexed() always returns pdPASS in this case. 2596 * 2597 * eSetValueWithOverwrite - 2598 * The target notification value is set to the value of ulValue, even if the 2599 * task being notified had not yet processed the previous notification at the 2600 * same array index (the task already had a notification pending at that index). 2601 * xTaskNotifyIndexed() always returns pdPASS in this case. 2602 * 2603 * eSetValueWithoutOverwrite - 2604 * If the task being notified did not already have a notification pending at the 2605 * same array index then the target notification value is set to ulValue and 2606 * xTaskNotifyIndexed() will return pdPASS. If the task being notified already 2607 * had a notification pending at the same array index then no action is 2608 * performed and pdFAIL is returned. 2609 * 2610 * eNoAction - 2611 * The task receives a notification at the specified array index without the 2612 * notification value at that index being updated. ulValue is not used and 2613 * xTaskNotifyIndexed() always returns pdPASS in this case. 2614 * 2615 * pulPreviousNotificationValue - 2616 * Can be used to pass out the subject task's notification value before any 2617 * bits are modified by the notify function. 2618 * 2619 * @return Dependent on the value of eAction. See the description of the 2620 * eAction parameter. 2621 * 2622 * \defgroup xTaskNotifyIndexed xTaskNotifyIndexed 2623 * \ingroup TaskNotifications 2624 */ 2625 BaseType_t xTaskGenericNotify( TaskHandle_t xTaskToNotify, 2626 UBaseType_t uxIndexToNotify, 2627 uint32_t ulValue, 2628 eNotifyAction eAction, 2629 uint32_t * pulPreviousNotificationValue ) PRIVILEGED_FUNCTION; 2630 #define xTaskNotify( xTaskToNotify, ulValue, eAction ) \ 2631 xTaskGenericNotify( ( xTaskToNotify ), ( tskDEFAULT_INDEX_TO_NOTIFY ), ( ulValue ), ( eAction ), NULL ) 2632 #define xTaskNotifyIndexed( xTaskToNotify, uxIndexToNotify, ulValue, eAction ) \ 2633 xTaskGenericNotify( ( xTaskToNotify ), ( uxIndexToNotify ), ( ulValue ), ( eAction ), NULL ) 2634 2635 /** 2636 * task. h 2637 * @code{c} 2638 * BaseType_t xTaskNotifyAndQueryIndexed( TaskHandle_t xTaskToNotify, UBaseType_t uxIndexToNotify, uint32_t ulValue, eNotifyAction eAction, uint32_t *pulPreviousNotifyValue ); 2639 * BaseType_t xTaskNotifyAndQuery( TaskHandle_t xTaskToNotify, uint32_t ulValue, eNotifyAction eAction, uint32_t *pulPreviousNotifyValue ); 2640 * @endcode 2641 * 2642 * See https://www.FreeRTOS.org/RTOS-task-notifications.html for details. 2643 * 2644 * xTaskNotifyAndQueryIndexed() performs the same operation as 2645 * xTaskNotifyIndexed() with the addition that it also returns the subject 2646 * task's prior notification value (the notification value at the time the 2647 * function is called rather than when the function returns) in the additional 2648 * pulPreviousNotifyValue parameter. 2649 * 2650 * xTaskNotifyAndQuery() performs the same operation as xTaskNotify() with the 2651 * addition that it also returns the subject task's prior notification value 2652 * (the notification value as it was at the time the function is called, rather 2653 * than when the function returns) in the additional pulPreviousNotifyValue 2654 * parameter. 2655 * 2656 * \defgroup xTaskNotifyAndQueryIndexed xTaskNotifyAndQueryIndexed 2657 * \ingroup TaskNotifications 2658 */ 2659 #define xTaskNotifyAndQuery( xTaskToNotify, ulValue, eAction, pulPreviousNotifyValue ) \ 2660 xTaskGenericNotify( ( xTaskToNotify ), ( tskDEFAULT_INDEX_TO_NOTIFY ), ( ulValue ), ( eAction ), ( pulPreviousNotifyValue ) ) 2661 #define xTaskNotifyAndQueryIndexed( xTaskToNotify, uxIndexToNotify, ulValue, eAction, pulPreviousNotifyValue ) \ 2662 xTaskGenericNotify( ( xTaskToNotify ), ( uxIndexToNotify ), ( ulValue ), ( eAction ), ( pulPreviousNotifyValue ) ) 2663 2664 /** 2665 * task. h 2666 * @code{c} 2667 * BaseType_t xTaskNotifyIndexedFromISR( TaskHandle_t xTaskToNotify, UBaseType_t uxIndexToNotify, uint32_t ulValue, eNotifyAction eAction, BaseType_t *pxHigherPriorityTaskWoken ); 2668 * BaseType_t xTaskNotifyFromISR( TaskHandle_t xTaskToNotify, uint32_t ulValue, eNotifyAction eAction, BaseType_t *pxHigherPriorityTaskWoken ); 2669 * @endcode 2670 * 2671 * See https://www.FreeRTOS.org/RTOS-task-notifications.html for details. 2672 * 2673 * configUSE_TASK_NOTIFICATIONS must be undefined or defined as 1 for these 2674 * functions to be available. 2675 * 2676 * A version of xTaskNotifyIndexed() that can be used from an interrupt service 2677 * routine (ISR). 2678 * 2679 * Each task has a private array of "notification values" (or 'notifications'), 2680 * each of which is a 32-bit unsigned integer (uint32_t). The constant 2681 * configTASK_NOTIFICATION_ARRAY_ENTRIES sets the number of indexes in the 2682 * array, and (for backward compatibility) defaults to 1 if left undefined. 2683 * Prior to FreeRTOS V10.4.0 there was only one notification value per task. 2684 * 2685 * Events can be sent to a task using an intermediary object. Examples of such 2686 * objects are queues, semaphores, mutexes and event groups. Task notifications 2687 * are a method of sending an event directly to a task without the need for such 2688 * an intermediary object. 2689 * 2690 * A notification sent to a task can optionally perform an action, such as 2691 * update, overwrite or increment one of the task's notification values. In 2692 * that way task notifications can be used to send data to a task, or be used as 2693 * light weight and fast binary or counting semaphores. 2694 * 2695 * A task can use xTaskNotifyWaitIndexed() to [optionally] block to wait for a 2696 * notification to be pending, or ulTaskNotifyTakeIndexed() to [optionally] block 2697 * to wait for a notification value to have a non-zero value. The task does 2698 * not consume any CPU time while it is in the Blocked state. 2699 * 2700 * A notification sent to a task will remain pending until it is cleared by the 2701 * task calling xTaskNotifyWaitIndexed() or ulTaskNotifyTakeIndexed() (or their 2702 * un-indexed equivalents). If the task was already in the Blocked state to 2703 * wait for a notification when the notification arrives then the task will 2704 * automatically be removed from the Blocked state (unblocked) and the 2705 * notification cleared. 2706 * 2707 * **NOTE** Each notification within the array operates independently - a task 2708 * can only block on one notification within the array at a time and will not be 2709 * unblocked by a notification sent to any other array index. 2710 * 2711 * Backward compatibility information: 2712 * Prior to FreeRTOS V10.4.0 each task had a single "notification value", and 2713 * all task notification API functions operated on that value. Replacing the 2714 * single notification value with an array of notification values necessitated a 2715 * new set of API functions that could address specific notifications within the 2716 * array. xTaskNotifyFromISR() is the original API function, and remains 2717 * backward compatible by always operating on the notification value at index 0 2718 * within the array. Calling xTaskNotifyFromISR() is equivalent to calling 2719 * xTaskNotifyIndexedFromISR() with the uxIndexToNotify parameter set to 0. 2720 * 2721 * @param uxIndexToNotify The index within the target task's array of 2722 * notification values to which the notification is to be sent. uxIndexToNotify 2723 * must be less than configTASK_NOTIFICATION_ARRAY_ENTRIES. xTaskNotifyFromISR() 2724 * does not have this parameter and always sends notifications to index 0. 2725 * 2726 * @param xTaskToNotify The handle of the task being notified. The handle to a 2727 * task can be returned from the xTaskCreate() API function used to create the 2728 * task, and the handle of the currently running task can be obtained by calling 2729 * xTaskGetCurrentTaskHandle(). 2730 * 2731 * @param ulValue Data that can be sent with the notification. How the data is 2732 * used depends on the value of the eAction parameter. 2733 * 2734 * @param eAction Specifies how the notification updates the task's notification 2735 * value, if at all. Valid values for eAction are as follows: 2736 * 2737 * eSetBits - 2738 * The task's notification value is bitwise ORed with ulValue. xTaskNotify() 2739 * always returns pdPASS in this case. 2740 * 2741 * eIncrement - 2742 * The task's notification value is incremented. ulValue is not used and 2743 * xTaskNotify() always returns pdPASS in this case. 2744 * 2745 * eSetValueWithOverwrite - 2746 * The task's notification value is set to the value of ulValue, even if the 2747 * task being notified had not yet processed the previous notification (the 2748 * task already had a notification pending). xTaskNotify() always returns 2749 * pdPASS in this case. 2750 * 2751 * eSetValueWithoutOverwrite - 2752 * If the task being notified did not already have a notification pending then 2753 * the task's notification value is set to ulValue and xTaskNotify() will 2754 * return pdPASS. If the task being notified already had a notification 2755 * pending then no action is performed and pdFAIL is returned. 2756 * 2757 * eNoAction - 2758 * The task receives a notification without its notification value being 2759 * updated. ulValue is not used and xTaskNotify() always returns pdPASS in 2760 * this case. 2761 * 2762 * @param pxHigherPriorityTaskWoken xTaskNotifyFromISR() will set 2763 * *pxHigherPriorityTaskWoken to pdTRUE if sending the notification caused the 2764 * task to which the notification was sent to leave the Blocked state, and the 2765 * unblocked task has a priority higher than the currently running task. If 2766 * xTaskNotifyFromISR() sets this value to pdTRUE then a context switch should 2767 * be requested before the interrupt is exited. How a context switch is 2768 * requested from an ISR is dependent on the port - see the documentation page 2769 * for the port in use. 2770 * 2771 * @return Dependent on the value of eAction. See the description of the 2772 * eAction parameter. 2773 * 2774 * \defgroup xTaskNotifyIndexedFromISR xTaskNotifyIndexedFromISR 2775 * \ingroup TaskNotifications 2776 */ 2777 BaseType_t xTaskGenericNotifyFromISR( TaskHandle_t xTaskToNotify, 2778 UBaseType_t uxIndexToNotify, 2779 uint32_t ulValue, 2780 eNotifyAction eAction, 2781 uint32_t * pulPreviousNotificationValue, 2782 BaseType_t * pxHigherPriorityTaskWoken ) PRIVILEGED_FUNCTION; 2783 #define xTaskNotifyFromISR( xTaskToNotify, ulValue, eAction, pxHigherPriorityTaskWoken ) \ 2784 xTaskGenericNotifyFromISR( ( xTaskToNotify ), ( tskDEFAULT_INDEX_TO_NOTIFY ), ( ulValue ), ( eAction ), NULL, ( pxHigherPriorityTaskWoken ) ) 2785 #define xTaskNotifyIndexedFromISR( xTaskToNotify, uxIndexToNotify, ulValue, eAction, pxHigherPriorityTaskWoken ) \ 2786 xTaskGenericNotifyFromISR( ( xTaskToNotify ), ( uxIndexToNotify ), ( ulValue ), ( eAction ), NULL, ( pxHigherPriorityTaskWoken ) ) 2787 2788 /** 2789 * task. h 2790 * @code{c} 2791 * BaseType_t xTaskNotifyAndQueryIndexedFromISR( TaskHandle_t xTaskToNotify, UBaseType_t uxIndexToNotify, uint32_t ulValue, eNotifyAction eAction, uint32_t *pulPreviousNotificationValue, BaseType_t *pxHigherPriorityTaskWoken ); 2792 * BaseType_t xTaskNotifyAndQueryFromISR( TaskHandle_t xTaskToNotify, uint32_t ulValue, eNotifyAction eAction, uint32_t *pulPreviousNotificationValue, BaseType_t *pxHigherPriorityTaskWoken ); 2793 * @endcode 2794 * 2795 * See https://www.FreeRTOS.org/RTOS-task-notifications.html for details. 2796 * 2797 * xTaskNotifyAndQueryIndexedFromISR() performs the same operation as 2798 * xTaskNotifyIndexedFromISR() with the addition that it also returns the 2799 * subject task's prior notification value (the notification value at the time 2800 * the function is called rather than at the time the function returns) in the 2801 * additional pulPreviousNotifyValue parameter. 2802 * 2803 * xTaskNotifyAndQueryFromISR() performs the same operation as 2804 * xTaskNotifyFromISR() with the addition that it also returns the subject 2805 * task's prior notification value (the notification value at the time the 2806 * function is called rather than at the time the function returns) in the 2807 * additional pulPreviousNotifyValue parameter. 2808 * 2809 * \defgroup xTaskNotifyAndQueryIndexedFromISR xTaskNotifyAndQueryIndexedFromISR 2810 * \ingroup TaskNotifications 2811 */ 2812 #define xTaskNotifyAndQueryIndexedFromISR( xTaskToNotify, uxIndexToNotify, ulValue, eAction, pulPreviousNotificationValue, pxHigherPriorityTaskWoken ) \ 2813 xTaskGenericNotifyFromISR( ( xTaskToNotify ), ( uxIndexToNotify ), ( ulValue ), ( eAction ), ( pulPreviousNotificationValue ), ( pxHigherPriorityTaskWoken ) ) 2814 #define xTaskNotifyAndQueryFromISR( xTaskToNotify, ulValue, eAction, pulPreviousNotificationValue, pxHigherPriorityTaskWoken ) \ 2815 xTaskGenericNotifyFromISR( ( xTaskToNotify ), ( tskDEFAULT_INDEX_TO_NOTIFY ), ( ulValue ), ( eAction ), ( pulPreviousNotificationValue ), ( pxHigherPriorityTaskWoken ) ) 2816 2817 /** 2818 * task. h 2819 * @code{c} 2820 * BaseType_t xTaskNotifyWaitIndexed( UBaseType_t uxIndexToWaitOn, uint32_t ulBitsToClearOnEntry, uint32_t ulBitsToClearOnExit, uint32_t *pulNotificationValue, TickType_t xTicksToWait ); 2821 * 2822 * BaseType_t xTaskNotifyWait( uint32_t ulBitsToClearOnEntry, uint32_t ulBitsToClearOnExit, uint32_t *pulNotificationValue, TickType_t xTicksToWait ); 2823 * @endcode 2824 * 2825 * Waits for a direct to task notification to be pending at a given index within 2826 * an array of direct to task notifications. 2827 * 2828 * See https://www.FreeRTOS.org/RTOS-task-notifications.html for details. 2829 * 2830 * configUSE_TASK_NOTIFICATIONS must be undefined or defined as 1 for this 2831 * function to be available. 2832 * 2833 * Each task has a private array of "notification values" (or 'notifications'), 2834 * each of which is a 32-bit unsigned integer (uint32_t). The constant 2835 * configTASK_NOTIFICATION_ARRAY_ENTRIES sets the number of indexes in the 2836 * array, and (for backward compatibility) defaults to 1 if left undefined. 2837 * Prior to FreeRTOS V10.4.0 there was only one notification value per task. 2838 * 2839 * Events can be sent to a task using an intermediary object. Examples of such 2840 * objects are queues, semaphores, mutexes and event groups. Task notifications 2841 * are a method of sending an event directly to a task without the need for such 2842 * an intermediary object. 2843 * 2844 * A notification sent to a task can optionally perform an action, such as 2845 * update, overwrite or increment one of the task's notification values. In 2846 * that way task notifications can be used to send data to a task, or be used as 2847 * light weight and fast binary or counting semaphores. 2848 * 2849 * A notification sent to a task will remain pending until it is cleared by the 2850 * task calling xTaskNotifyWaitIndexed() or ulTaskNotifyTakeIndexed() (or their 2851 * un-indexed equivalents). If the task was already in the Blocked state to 2852 * wait for a notification when the notification arrives then the task will 2853 * automatically be removed from the Blocked state (unblocked) and the 2854 * notification cleared. 2855 * 2856 * A task can use xTaskNotifyWaitIndexed() to [optionally] block to wait for a 2857 * notification to be pending, or ulTaskNotifyTakeIndexed() to [optionally] block 2858 * to wait for a notification value to have a non-zero value. The task does 2859 * not consume any CPU time while it is in the Blocked state. 2860 * 2861 * **NOTE** Each notification within the array operates independently - a task 2862 * can only block on one notification within the array at a time and will not be 2863 * unblocked by a notification sent to any other array index. 2864 * 2865 * Backward compatibility information: 2866 * Prior to FreeRTOS V10.4.0 each task had a single "notification value", and 2867 * all task notification API functions operated on that value. Replacing the 2868 * single notification value with an array of notification values necessitated a 2869 * new set of API functions that could address specific notifications within the 2870 * array. xTaskNotifyWait() is the original API function, and remains backward 2871 * compatible by always operating on the notification value at index 0 in the 2872 * array. Calling xTaskNotifyWait() is equivalent to calling 2873 * xTaskNotifyWaitIndexed() with the uxIndexToWaitOn parameter set to 0. 2874 * 2875 * @param uxIndexToWaitOn The index within the calling task's array of 2876 * notification values on which the calling task will wait for a notification to 2877 * be received. uxIndexToWaitOn must be less than 2878 * configTASK_NOTIFICATION_ARRAY_ENTRIES. xTaskNotifyWait() does 2879 * not have this parameter and always waits for notifications on index 0. 2880 * 2881 * @param ulBitsToClearOnEntry Bits that are set in ulBitsToClearOnEntry value 2882 * will be cleared in the calling task's notification value before the task 2883 * checks to see if any notifications are pending, and optionally blocks if no 2884 * notifications are pending. Setting ulBitsToClearOnEntry to ULONG_MAX (if 2885 * limits.h is included) or 0xffffffffU (if limits.h is not included) will have 2886 * the effect of resetting the task's notification value to 0. Setting 2887 * ulBitsToClearOnEntry to 0 will leave the task's notification value unchanged. 2888 * 2889 * @param ulBitsToClearOnExit If a notification is pending or received before 2890 * the calling task exits the xTaskNotifyWait() function then the task's 2891 * notification value (see the xTaskNotify() API function) is passed out using 2892 * the pulNotificationValue parameter. Then any bits that are set in 2893 * ulBitsToClearOnExit will be cleared in the task's notification value (note 2894 * *pulNotificationValue is set before any bits are cleared). Setting 2895 * ulBitsToClearOnExit to ULONG_MAX (if limits.h is included) or 0xffffffffUL 2896 * (if limits.h is not included) will have the effect of resetting the task's 2897 * notification value to 0 before the function exits. Setting 2898 * ulBitsToClearOnExit to 0 will leave the task's notification value unchanged 2899 * when the function exits (in which case the value passed out in 2900 * pulNotificationValue will match the task's notification value). 2901 * 2902 * @param pulNotificationValue Used to pass the task's notification value out 2903 * of the function. Note the value passed out will not be effected by the 2904 * clearing of any bits caused by ulBitsToClearOnExit being non-zero. 2905 * 2906 * @param xTicksToWait The maximum amount of time that the task should wait in 2907 * the Blocked state for a notification to be received, should a notification 2908 * not already be pending when xTaskNotifyWait() was called. The task 2909 * will not consume any processing time while it is in the Blocked state. This 2910 * is specified in kernel ticks, the macro pdMS_TO_TICKS( value_in_ms ) can be 2911 * used to convert a time specified in milliseconds to a time specified in 2912 * ticks. 2913 * 2914 * @return If a notification was received (including notifications that were 2915 * already pending when xTaskNotifyWait was called) then pdPASS is 2916 * returned. Otherwise pdFAIL is returned. 2917 * 2918 * \defgroup xTaskNotifyWaitIndexed xTaskNotifyWaitIndexed 2919 * \ingroup TaskNotifications 2920 */ 2921 BaseType_t xTaskGenericNotifyWait( UBaseType_t uxIndexToWaitOn, 2922 uint32_t ulBitsToClearOnEntry, 2923 uint32_t ulBitsToClearOnExit, 2924 uint32_t * pulNotificationValue, 2925 TickType_t xTicksToWait ) PRIVILEGED_FUNCTION; 2926 #define xTaskNotifyWait( ulBitsToClearOnEntry, ulBitsToClearOnExit, pulNotificationValue, xTicksToWait ) \ 2927 xTaskGenericNotifyWait( tskDEFAULT_INDEX_TO_NOTIFY, ( ulBitsToClearOnEntry ), ( ulBitsToClearOnExit ), ( pulNotificationValue ), ( xTicksToWait ) ) 2928 #define xTaskNotifyWaitIndexed( uxIndexToWaitOn, ulBitsToClearOnEntry, ulBitsToClearOnExit, pulNotificationValue, xTicksToWait ) \ 2929 xTaskGenericNotifyWait( ( uxIndexToWaitOn ), ( ulBitsToClearOnEntry ), ( ulBitsToClearOnExit ), ( pulNotificationValue ), ( xTicksToWait ) ) 2930 2931 /** 2932 * task. h 2933 * @code{c} 2934 * BaseType_t xTaskNotifyGiveIndexed( TaskHandle_t xTaskToNotify, UBaseType_t uxIndexToNotify ); 2935 * BaseType_t xTaskNotifyGive( TaskHandle_t xTaskToNotify ); 2936 * @endcode 2937 * 2938 * Sends a direct to task notification to a particular index in the target 2939 * task's notification array in a manner similar to giving a counting semaphore. 2940 * 2941 * See https://www.FreeRTOS.org/RTOS-task-notifications.html for more details. 2942 * 2943 * configUSE_TASK_NOTIFICATIONS must be undefined or defined as 1 for these 2944 * macros to be available. 2945 * 2946 * Each task has a private array of "notification values" (or 'notifications'), 2947 * each of which is a 32-bit unsigned integer (uint32_t). The constant 2948 * configTASK_NOTIFICATION_ARRAY_ENTRIES sets the number of indexes in the 2949 * array, and (for backward compatibility) defaults to 1 if left undefined. 2950 * Prior to FreeRTOS V10.4.0 there was only one notification value per task. 2951 * 2952 * Events can be sent to a task using an intermediary object. Examples of such 2953 * objects are queues, semaphores, mutexes and event groups. Task notifications 2954 * are a method of sending an event directly to a task without the need for such 2955 * an intermediary object. 2956 * 2957 * A notification sent to a task can optionally perform an action, such as 2958 * update, overwrite or increment one of the task's notification values. In 2959 * that way task notifications can be used to send data to a task, or be used as 2960 * light weight and fast binary or counting semaphores. 2961 * 2962 * xTaskNotifyGiveIndexed() is a helper macro intended for use when task 2963 * notifications are used as light weight and faster binary or counting 2964 * semaphore equivalents. Actual FreeRTOS semaphores are given using the 2965 * xSemaphoreGive() API function, the equivalent action that instead uses a task 2966 * notification is xTaskNotifyGiveIndexed(). 2967 * 2968 * When task notifications are being used as a binary or counting semaphore 2969 * equivalent then the task being notified should wait for the notification 2970 * using the ulTaskNotifyTakeIndexed() API function rather than the 2971 * xTaskNotifyWaitIndexed() API function. 2972 * 2973 * **NOTE** Each notification within the array operates independently - a task 2974 * can only block on one notification within the array at a time and will not be 2975 * unblocked by a notification sent to any other array index. 2976 * 2977 * Backward compatibility information: 2978 * Prior to FreeRTOS V10.4.0 each task had a single "notification value", and 2979 * all task notification API functions operated on that value. Replacing the 2980 * single notification value with an array of notification values necessitated a 2981 * new set of API functions that could address specific notifications within the 2982 * array. xTaskNotifyGive() is the original API function, and remains backward 2983 * compatible by always operating on the notification value at index 0 in the 2984 * array. Calling xTaskNotifyGive() is equivalent to calling 2985 * xTaskNotifyGiveIndexed() with the uxIndexToNotify parameter set to 0. 2986 * 2987 * @param xTaskToNotify The handle of the task being notified. The handle to a 2988 * task can be returned from the xTaskCreate() API function used to create the 2989 * task, and the handle of the currently running task can be obtained by calling 2990 * xTaskGetCurrentTaskHandle(). 2991 * 2992 * @param uxIndexToNotify The index within the target task's array of 2993 * notification values to which the notification is to be sent. uxIndexToNotify 2994 * must be less than configTASK_NOTIFICATION_ARRAY_ENTRIES. xTaskNotifyGive() 2995 * does not have this parameter and always sends notifications to index 0. 2996 * 2997 * @return xTaskNotifyGive() is a macro that calls xTaskNotify() with the 2998 * eAction parameter set to eIncrement - so pdPASS is always returned. 2999 * 3000 * \defgroup xTaskNotifyGiveIndexed xTaskNotifyGiveIndexed 3001 * \ingroup TaskNotifications 3002 */ 3003 #define xTaskNotifyGive( xTaskToNotify ) \ 3004 xTaskGenericNotify( ( xTaskToNotify ), ( tskDEFAULT_INDEX_TO_NOTIFY ), ( 0 ), eIncrement, NULL ) 3005 #define xTaskNotifyGiveIndexed( xTaskToNotify, uxIndexToNotify ) \ 3006 xTaskGenericNotify( ( xTaskToNotify ), ( uxIndexToNotify ), ( 0 ), eIncrement, NULL ) 3007 3008 /** 3009 * task. h 3010 * @code{c} 3011 * void vTaskNotifyGiveIndexedFromISR( TaskHandle_t xTaskHandle, UBaseType_t uxIndexToNotify, BaseType_t *pxHigherPriorityTaskWoken ); 3012 * void vTaskNotifyGiveFromISR( TaskHandle_t xTaskHandle, BaseType_t *pxHigherPriorityTaskWoken ); 3013 * @endcode 3014 * 3015 * A version of xTaskNotifyGiveIndexed() that can be called from an interrupt 3016 * service routine (ISR). 3017 * 3018 * See https://www.FreeRTOS.org/RTOS-task-notifications.html for more details. 3019 * 3020 * configUSE_TASK_NOTIFICATIONS must be undefined or defined as 1 for this macro 3021 * to be available. 3022 * 3023 * Each task has a private array of "notification values" (or 'notifications'), 3024 * each of which is a 32-bit unsigned integer (uint32_t). The constant 3025 * configTASK_NOTIFICATION_ARRAY_ENTRIES sets the number of indexes in the 3026 * array, and (for backward compatibility) defaults to 1 if left undefined. 3027 * Prior to FreeRTOS V10.4.0 there was only one notification value per task. 3028 * 3029 * Events can be sent to a task using an intermediary object. Examples of such 3030 * objects are queues, semaphores, mutexes and event groups. Task notifications 3031 * are a method of sending an event directly to a task without the need for such 3032 * an intermediary object. 3033 * 3034 * A notification sent to a task can optionally perform an action, such as 3035 * update, overwrite or increment one of the task's notification values. In 3036 * that way task notifications can be used to send data to a task, or be used as 3037 * light weight and fast binary or counting semaphores. 3038 * 3039 * vTaskNotifyGiveIndexedFromISR() is intended for use when task notifications 3040 * are used as light weight and faster binary or counting semaphore equivalents. 3041 * Actual FreeRTOS semaphores are given from an ISR using the 3042 * xSemaphoreGiveFromISR() API function, the equivalent action that instead uses 3043 * a task notification is vTaskNotifyGiveIndexedFromISR(). 3044 * 3045 * When task notifications are being used as a binary or counting semaphore 3046 * equivalent then the task being notified should wait for the notification 3047 * using the ulTaskNotifyTakeIndexed() API function rather than the 3048 * xTaskNotifyWaitIndexed() API function. 3049 * 3050 * **NOTE** Each notification within the array operates independently - a task 3051 * can only block on one notification within the array at a time and will not be 3052 * unblocked by a notification sent to any other array index. 3053 * 3054 * Backward compatibility information: 3055 * Prior to FreeRTOS V10.4.0 each task had a single "notification value", and 3056 * all task notification API functions operated on that value. Replacing the 3057 * single notification value with an array of notification values necessitated a 3058 * new set of API functions that could address specific notifications within the 3059 * array. xTaskNotifyFromISR() is the original API function, and remains 3060 * backward compatible by always operating on the notification value at index 0 3061 * within the array. Calling xTaskNotifyGiveFromISR() is equivalent to calling 3062 * xTaskNotifyGiveIndexedFromISR() with the uxIndexToNotify parameter set to 0. 3063 * 3064 * @param xTaskToNotify The handle of the task being notified. The handle to a 3065 * task can be returned from the xTaskCreate() API function used to create the 3066 * task, and the handle of the currently running task can be obtained by calling 3067 * xTaskGetCurrentTaskHandle(). 3068 * 3069 * @param uxIndexToNotify The index within the target task's array of 3070 * notification values to which the notification is to be sent. uxIndexToNotify 3071 * must be less than configTASK_NOTIFICATION_ARRAY_ENTRIES. 3072 * xTaskNotifyGiveFromISR() does not have this parameter and always sends 3073 * notifications to index 0. 3074 * 3075 * @param pxHigherPriorityTaskWoken vTaskNotifyGiveFromISR() will set 3076 * *pxHigherPriorityTaskWoken to pdTRUE if sending the notification caused the 3077 * task to which the notification was sent to leave the Blocked state, and the 3078 * unblocked task has a priority higher than the currently running task. If 3079 * vTaskNotifyGiveFromISR() sets this value to pdTRUE then a context switch 3080 * should be requested before the interrupt is exited. How a context switch is 3081 * requested from an ISR is dependent on the port - see the documentation page 3082 * for the port in use. 3083 * 3084 * \defgroup vTaskNotifyGiveIndexedFromISR vTaskNotifyGiveIndexedFromISR 3085 * \ingroup TaskNotifications 3086 */ 3087 void vTaskGenericNotifyGiveFromISR( TaskHandle_t xTaskToNotify, 3088 UBaseType_t uxIndexToNotify, 3089 BaseType_t * pxHigherPriorityTaskWoken ) PRIVILEGED_FUNCTION; 3090 #define vTaskNotifyGiveFromISR( xTaskToNotify, pxHigherPriorityTaskWoken ) \ 3091 vTaskGenericNotifyGiveFromISR( ( xTaskToNotify ), ( tskDEFAULT_INDEX_TO_NOTIFY ), ( pxHigherPriorityTaskWoken ) ) 3092 #define vTaskNotifyGiveIndexedFromISR( xTaskToNotify, uxIndexToNotify, pxHigherPriorityTaskWoken ) \ 3093 vTaskGenericNotifyGiveFromISR( ( xTaskToNotify ), ( uxIndexToNotify ), ( pxHigherPriorityTaskWoken ) ) 3094 3095 /** 3096 * task. h 3097 * @code{c} 3098 * uint32_t ulTaskNotifyTakeIndexed( UBaseType_t uxIndexToWaitOn, BaseType_t xClearCountOnExit, TickType_t xTicksToWait ); 3099 * 3100 * uint32_t ulTaskNotifyTake( BaseType_t xClearCountOnExit, TickType_t xTicksToWait ); 3101 * @endcode 3102 * 3103 * Waits for a direct to task notification on a particular index in the calling 3104 * task's notification array in a manner similar to taking a counting semaphore. 3105 * 3106 * See https://www.FreeRTOS.org/RTOS-task-notifications.html for details. 3107 * 3108 * configUSE_TASK_NOTIFICATIONS must be undefined or defined as 1 for this 3109 * function to be available. 3110 * 3111 * Each task has a private array of "notification values" (or 'notifications'), 3112 * each of which is a 32-bit unsigned integer (uint32_t). The constant 3113 * configTASK_NOTIFICATION_ARRAY_ENTRIES sets the number of indexes in the 3114 * array, and (for backward compatibility) defaults to 1 if left undefined. 3115 * Prior to FreeRTOS V10.4.0 there was only one notification value per task. 3116 * 3117 * Events can be sent to a task using an intermediary object. Examples of such 3118 * objects are queues, semaphores, mutexes and event groups. Task notifications 3119 * are a method of sending an event directly to a task without the need for such 3120 * an intermediary object. 3121 * 3122 * A notification sent to a task can optionally perform an action, such as 3123 * update, overwrite or increment one of the task's notification values. In 3124 * that way task notifications can be used to send data to a task, or be used as 3125 * light weight and fast binary or counting semaphores. 3126 * 3127 * ulTaskNotifyTakeIndexed() is intended for use when a task notification is 3128 * used as a faster and lighter weight binary or counting semaphore alternative. 3129 * Actual FreeRTOS semaphores are taken using the xSemaphoreTake() API function, 3130 * the equivalent action that instead uses a task notification is 3131 * ulTaskNotifyTakeIndexed(). 3132 * 3133 * When a task is using its notification value as a binary or counting semaphore 3134 * other tasks should send notifications to it using the xTaskNotifyGiveIndexed() 3135 * macro, or xTaskNotifyIndex() function with the eAction parameter set to 3136 * eIncrement. 3137 * 3138 * ulTaskNotifyTakeIndexed() can either clear the task's notification value at 3139 * the array index specified by the uxIndexToWaitOn parameter to zero on exit, 3140 * in which case the notification value acts like a binary semaphore, or 3141 * decrement the notification value on exit, in which case the notification 3142 * value acts like a counting semaphore. 3143 * 3144 * A task can use ulTaskNotifyTakeIndexed() to [optionally] block to wait for 3145 * a notification. The task does not consume any CPU time while it is in the 3146 * Blocked state. 3147 * 3148 * Where as xTaskNotifyWaitIndexed() will return when a notification is pending, 3149 * ulTaskNotifyTakeIndexed() will return when the task's notification value is 3150 * not zero. 3151 * 3152 * **NOTE** Each notification within the array operates independently - a task 3153 * can only block on one notification within the array at a time and will not be 3154 * unblocked by a notification sent to any other array index. 3155 * 3156 * Backward compatibility information: 3157 * Prior to FreeRTOS V10.4.0 each task had a single "notification value", and 3158 * all task notification API functions operated on that value. Replacing the 3159 * single notification value with an array of notification values necessitated a 3160 * new set of API functions that could address specific notifications within the 3161 * array. ulTaskNotifyTake() is the original API function, and remains backward 3162 * compatible by always operating on the notification value at index 0 in the 3163 * array. Calling ulTaskNotifyTake() is equivalent to calling 3164 * ulTaskNotifyTakeIndexed() with the uxIndexToWaitOn parameter set to 0. 3165 * 3166 * @param uxIndexToWaitOn The index within the calling task's array of 3167 * notification values on which the calling task will wait for a notification to 3168 * be non-zero. uxIndexToWaitOn must be less than 3169 * configTASK_NOTIFICATION_ARRAY_ENTRIES. xTaskNotifyTake() does 3170 * not have this parameter and always waits for notifications on index 0. 3171 * 3172 * @param xClearCountOnExit if xClearCountOnExit is pdFALSE then the task's 3173 * notification value is decremented when the function exits. In this way the 3174 * notification value acts like a counting semaphore. If xClearCountOnExit is 3175 * not pdFALSE then the task's notification value is cleared to zero when the 3176 * function exits. In this way the notification value acts like a binary 3177 * semaphore. 3178 * 3179 * @param xTicksToWait The maximum amount of time that the task should wait in 3180 * the Blocked state for the task's notification value to be greater than zero, 3181 * should the count not already be greater than zero when 3182 * ulTaskNotifyTake() was called. The task will not consume any processing 3183 * time while it is in the Blocked state. This is specified in kernel ticks, 3184 * the macro pdMS_TO_TICKS( value_in_ms ) can be used to convert a time 3185 * specified in milliseconds to a time specified in ticks. 3186 * 3187 * @return The task's notification count before it is either cleared to zero or 3188 * decremented (see the xClearCountOnExit parameter). 3189 * 3190 * \defgroup ulTaskNotifyTakeIndexed ulTaskNotifyTakeIndexed 3191 * \ingroup TaskNotifications 3192 */ 3193 uint32_t ulTaskGenericNotifyTake( UBaseType_t uxIndexToWaitOn, 3194 BaseType_t xClearCountOnExit, 3195 TickType_t xTicksToWait ) PRIVILEGED_FUNCTION; 3196 #define ulTaskNotifyTake( xClearCountOnExit, xTicksToWait ) \ 3197 ulTaskGenericNotifyTake( ( tskDEFAULT_INDEX_TO_NOTIFY ), ( xClearCountOnExit ), ( xTicksToWait ) ) 3198 #define ulTaskNotifyTakeIndexed( uxIndexToWaitOn, xClearCountOnExit, xTicksToWait ) \ 3199 ulTaskGenericNotifyTake( ( uxIndexToWaitOn ), ( xClearCountOnExit ), ( xTicksToWait ) ) 3200 3201 /** 3202 * task. h 3203 * @code{c} 3204 * BaseType_t xTaskNotifyStateClearIndexed( TaskHandle_t xTask, UBaseType_t uxIndexToCLear ); 3205 * 3206 * BaseType_t xTaskNotifyStateClear( TaskHandle_t xTask ); 3207 * @endcode 3208 * 3209 * See https://www.FreeRTOS.org/RTOS-task-notifications.html for details. 3210 * 3211 * configUSE_TASK_NOTIFICATIONS must be undefined or defined as 1 for these 3212 * functions to be available. 3213 * 3214 * Each task has a private array of "notification values" (or 'notifications'), 3215 * each of which is a 32-bit unsigned integer (uint32_t). The constant 3216 * configTASK_NOTIFICATION_ARRAY_ENTRIES sets the number of indexes in the 3217 * array, and (for backward compatibility) defaults to 1 if left undefined. 3218 * Prior to FreeRTOS V10.4.0 there was only one notification value per task. 3219 * 3220 * If a notification is sent to an index within the array of notifications then 3221 * the notification at that index is said to be 'pending' until it is read or 3222 * explicitly cleared by the receiving task. xTaskNotifyStateClearIndexed() 3223 * is the function that clears a pending notification without reading the 3224 * notification value. The notification value at the same array index is not 3225 * altered. Set xTask to NULL to clear the notification state of the calling 3226 * task. 3227 * 3228 * Backward compatibility information: 3229 * Prior to FreeRTOS V10.4.0 each task had a single "notification value", and 3230 * all task notification API functions operated on that value. Replacing the 3231 * single notification value with an array of notification values necessitated a 3232 * new set of API functions that could address specific notifications within the 3233 * array. xTaskNotifyStateClear() is the original API function, and remains 3234 * backward compatible by always operating on the notification value at index 0 3235 * within the array. Calling xTaskNotifyStateClear() is equivalent to calling 3236 * xTaskNotifyStateClearIndexed() with the uxIndexToNotify parameter set to 0. 3237 * 3238 * @param xTask The handle of the RTOS task that will have a notification state 3239 * cleared. Set xTask to NULL to clear a notification state in the calling 3240 * task. To obtain a task's handle create the task using xTaskCreate() and 3241 * make use of the pxCreatedTask parameter, or create the task using 3242 * xTaskCreateStatic() and store the returned value, or use the task's name in 3243 * a call to xTaskGetHandle(). 3244 * 3245 * @param uxIndexToClear The index within the target task's array of 3246 * notification values to act upon. For example, setting uxIndexToClear to 1 3247 * will clear the state of the notification at index 1 within the array. 3248 * uxIndexToClear must be less than configTASK_NOTIFICATION_ARRAY_ENTRIES. 3249 * ulTaskNotifyStateClear() does not have this parameter and always acts on the 3250 * notification at index 0. 3251 * 3252 * @return pdTRUE if the task's notification state was set to 3253 * eNotWaitingNotification, otherwise pdFALSE. 3254 * 3255 * \defgroup xTaskNotifyStateClearIndexed xTaskNotifyStateClearIndexed 3256 * \ingroup TaskNotifications 3257 */ 3258 BaseType_t xTaskGenericNotifyStateClear( TaskHandle_t xTask, 3259 UBaseType_t uxIndexToClear ) PRIVILEGED_FUNCTION; 3260 #define xTaskNotifyStateClear( xTask ) \ 3261 xTaskGenericNotifyStateClear( ( xTask ), ( tskDEFAULT_INDEX_TO_NOTIFY ) ) 3262 #define xTaskNotifyStateClearIndexed( xTask, uxIndexToClear ) \ 3263 xTaskGenericNotifyStateClear( ( xTask ), ( uxIndexToClear ) ) 3264 3265 /** 3266 * task. h 3267 * @code{c} 3268 * uint32_t ulTaskNotifyValueClearIndexed( TaskHandle_t xTask, UBaseType_t uxIndexToClear, uint32_t ulBitsToClear ); 3269 * 3270 * uint32_t ulTaskNotifyValueClear( TaskHandle_t xTask, uint32_t ulBitsToClear ); 3271 * @endcode 3272 * 3273 * See https://www.FreeRTOS.org/RTOS-task-notifications.html for details. 3274 * 3275 * configUSE_TASK_NOTIFICATIONS must be undefined or defined as 1 for these 3276 * functions to be available. 3277 * 3278 * Each task has a private array of "notification values" (or 'notifications'), 3279 * each of which is a 32-bit unsigned integer (uint32_t). The constant 3280 * configTASK_NOTIFICATION_ARRAY_ENTRIES sets the number of indexes in the 3281 * array, and (for backward compatibility) defaults to 1 if left undefined. 3282 * Prior to FreeRTOS V10.4.0 there was only one notification value per task. 3283 * 3284 * ulTaskNotifyValueClearIndexed() clears the bits specified by the 3285 * ulBitsToClear bit mask in the notification value at array index uxIndexToClear 3286 * of the task referenced by xTask. 3287 * 3288 * Backward compatibility information: 3289 * Prior to FreeRTOS V10.4.0 each task had a single "notification value", and 3290 * all task notification API functions operated on that value. Replacing the 3291 * single notification value with an array of notification values necessitated a 3292 * new set of API functions that could address specific notifications within the 3293 * array. ulTaskNotifyValueClear() is the original API function, and remains 3294 * backward compatible by always operating on the notification value at index 0 3295 * within the array. Calling ulTaskNotifyValueClear() is equivalent to calling 3296 * ulTaskNotifyValueClearIndexed() with the uxIndexToClear parameter set to 0. 3297 * 3298 * @param xTask The handle of the RTOS task that will have bits in one of its 3299 * notification values cleared. Set xTask to NULL to clear bits in a 3300 * notification value of the calling task. To obtain a task's handle create the 3301 * task using xTaskCreate() and make use of the pxCreatedTask parameter, or 3302 * create the task using xTaskCreateStatic() and store the returned value, or 3303 * use the task's name in a call to xTaskGetHandle(). 3304 * 3305 * @param uxIndexToClear The index within the target task's array of 3306 * notification values in which to clear the bits. uxIndexToClear 3307 * must be less than configTASK_NOTIFICATION_ARRAY_ENTRIES. 3308 * ulTaskNotifyValueClear() does not have this parameter and always clears bits 3309 * in the notification value at index 0. 3310 * 3311 * @param ulBitsToClear Bit mask of the bits to clear in the notification value of 3312 * xTask. Set a bit to 1 to clear the corresponding bits in the task's notification 3313 * value. Set ulBitsToClear to 0xffffffff (UINT_MAX on 32-bit architectures) to clear 3314 * the notification value to 0. Set ulBitsToClear to 0 to query the task's 3315 * notification value without clearing any bits. 3316 * 3317 * 3318 * @return The value of the target task's notification value before the bits 3319 * specified by ulBitsToClear were cleared. 3320 * \defgroup ulTaskNotifyValueClear ulTaskNotifyValueClear 3321 * \ingroup TaskNotifications 3322 */ 3323 uint32_t ulTaskGenericNotifyValueClear( TaskHandle_t xTask, 3324 UBaseType_t uxIndexToClear, 3325 uint32_t ulBitsToClear ) PRIVILEGED_FUNCTION; 3326 #define ulTaskNotifyValueClear( xTask, ulBitsToClear ) \ 3327 ulTaskGenericNotifyValueClear( ( xTask ), ( tskDEFAULT_INDEX_TO_NOTIFY ), ( ulBitsToClear ) ) 3328 #define ulTaskNotifyValueClearIndexed( xTask, uxIndexToClear, ulBitsToClear ) \ 3329 ulTaskGenericNotifyValueClear( ( xTask ), ( uxIndexToClear ), ( ulBitsToClear ) ) 3330 3331 /** 3332 * task.h 3333 * @code{c} 3334 * void vTaskSetTimeOutState( TimeOut_t * const pxTimeOut ); 3335 * @endcode 3336 * 3337 * Capture the current time for future use with xTaskCheckForTimeOut(). 3338 * 3339 * @param pxTimeOut Pointer to a timeout object into which the current time 3340 * is to be captured. The captured time includes the tick count and the number 3341 * of times the tick count has overflowed since the system first booted. 3342 * \defgroup vTaskSetTimeOutState vTaskSetTimeOutState 3343 * \ingroup TaskCtrl 3344 */ 3345 void vTaskSetTimeOutState( TimeOut_t * const pxTimeOut ) PRIVILEGED_FUNCTION; 3346 3347 /** 3348 * task.h 3349 * @code{c} 3350 * BaseType_t xTaskCheckForTimeOut( TimeOut_t * const pxTimeOut, TickType_t * const pxTicksToWait ); 3351 * @endcode 3352 * 3353 * Determines if pxTicksToWait ticks has passed since a time was captured 3354 * using a call to vTaskSetTimeOutState(). The captured time includes the tick 3355 * count and the number of times the tick count has overflowed. 3356 * 3357 * @param pxTimeOut The time status as captured previously using 3358 * vTaskSetTimeOutState. If the timeout has not yet occurred, it is updated 3359 * to reflect the current time status. 3360 * @param pxTicksToWait The number of ticks to check for timeout i.e. if 3361 * pxTicksToWait ticks have passed since pxTimeOut was last updated (either by 3362 * vTaskSetTimeOutState() or xTaskCheckForTimeOut()), the timeout has occurred. 3363 * If the timeout has not occurred, pxTicksToWait is updated to reflect the 3364 * number of remaining ticks. 3365 * 3366 * @return If timeout has occurred, pdTRUE is returned. Otherwise pdFALSE is 3367 * returned and pxTicksToWait is updated to reflect the number of remaining 3368 * ticks. 3369 * 3370 * @see https://www.FreeRTOS.org/xTaskCheckForTimeOut.html 3371 * 3372 * Example Usage: 3373 * @code{c} 3374 * // Driver library function used to receive uxWantedBytes from an Rx buffer 3375 * // that is filled by a UART interrupt. If there are not enough bytes in the 3376 * // Rx buffer then the task enters the Blocked state until it is notified that 3377 * // more data has been placed into the buffer. If there is still not enough 3378 * // data then the task re-enters the Blocked state, and xTaskCheckForTimeOut() 3379 * // is used to re-calculate the Block time to ensure the total amount of time 3380 * // spent in the Blocked state does not exceed MAX_TIME_TO_WAIT. This 3381 * // continues until either the buffer contains at least uxWantedBytes bytes, 3382 * // or the total amount of time spent in the Blocked state reaches 3383 * // MAX_TIME_TO_WAIT - at which point the task reads however many bytes are 3384 * // available up to a maximum of uxWantedBytes. 3385 * 3386 * size_t xUART_Receive( uint8_t *pucBuffer, size_t uxWantedBytes ) 3387 * { 3388 * size_t uxReceived = 0; 3389 * TickType_t xTicksToWait = MAX_TIME_TO_WAIT; 3390 * TimeOut_t xTimeOut; 3391 * 3392 * // Initialize xTimeOut. This records the time at which this function 3393 * // was entered. 3394 * vTaskSetTimeOutState( &xTimeOut ); 3395 * 3396 * // Loop until the buffer contains the wanted number of bytes, or a 3397 * // timeout occurs. 3398 * while( UART_bytes_in_rx_buffer( pxUARTInstance ) < uxWantedBytes ) 3399 * { 3400 * // The buffer didn't contain enough data so this task is going to 3401 * // enter the Blocked state. Adjusting xTicksToWait to account for 3402 * // any time that has been spent in the Blocked state within this 3403 * // function so far to ensure the total amount of time spent in the 3404 * // Blocked state does not exceed MAX_TIME_TO_WAIT. 3405 * if( xTaskCheckForTimeOut( &xTimeOut, &xTicksToWait ) != pdFALSE ) 3406 * { 3407 * //Timed out before the wanted number of bytes were available, 3408 * // exit the loop. 3409 * break; 3410 * } 3411 * 3412 * // Wait for a maximum of xTicksToWait ticks to be notified that the 3413 * // receive interrupt has placed more data into the buffer. 3414 * ulTaskNotifyTake( pdTRUE, xTicksToWait ); 3415 * } 3416 * 3417 * // Attempt to read uxWantedBytes from the receive buffer into pucBuffer. 3418 * // The actual number of bytes read (which might be less than 3419 * // uxWantedBytes) is returned. 3420 * uxReceived = UART_read_from_receive_buffer( pxUARTInstance, 3421 * pucBuffer, 3422 * uxWantedBytes ); 3423 * 3424 * return uxReceived; 3425 * } 3426 * @endcode 3427 * \defgroup xTaskCheckForTimeOut xTaskCheckForTimeOut 3428 * \ingroup TaskCtrl 3429 */ 3430 BaseType_t xTaskCheckForTimeOut( TimeOut_t * const pxTimeOut, 3431 TickType_t * const pxTicksToWait ) PRIVILEGED_FUNCTION; 3432 3433 /** 3434 * task.h 3435 * @code{c} 3436 * BaseType_t xTaskCatchUpTicks( TickType_t xTicksToCatchUp ); 3437 * @endcode 3438 * 3439 * This function corrects the tick count value after the application code has held 3440 * interrupts disabled for an extended period resulting in tick interrupts having 3441 * been missed. 3442 * 3443 * This function is similar to vTaskStepTick(), however, unlike 3444 * vTaskStepTick(), xTaskCatchUpTicks() may move the tick count forward past a 3445 * time at which a task should be removed from the blocked state. That means 3446 * tasks may have to be removed from the blocked state as the tick count is 3447 * moved. 3448 * 3449 * @param xTicksToCatchUp The number of tick interrupts that have been missed due to 3450 * interrupts being disabled. Its value is not computed automatically, so must be 3451 * computed by the application writer. 3452 * 3453 * @return pdTRUE if moving the tick count forward resulted in a task leaving the 3454 * blocked state and a context switch being performed. Otherwise pdFALSE. 3455 * 3456 * \defgroup xTaskCatchUpTicks xTaskCatchUpTicks 3457 * \ingroup TaskCtrl 3458 */ 3459 BaseType_t xTaskCatchUpTicks( TickType_t xTicksToCatchUp ) PRIVILEGED_FUNCTION; 3460 3461 /** 3462 * task.h 3463 * @code{c} 3464 * void vTaskResetState( void ); 3465 * @endcode 3466 * 3467 * This function resets the internal state of the task. It must be called by the 3468 * application before restarting the scheduler. 3469 * 3470 * \defgroup vTaskResetState vTaskResetState 3471 * \ingroup SchedulerControl 3472 */ 3473 void vTaskResetState( void ) PRIVILEGED_FUNCTION; 3474 3475 3476 /*----------------------------------------------------------- 3477 * SCHEDULER INTERNALS AVAILABLE FOR PORTING PURPOSES 3478 *----------------------------------------------------------*/ 3479 3480 #if ( configNUMBER_OF_CORES == 1 ) 3481 #define taskYIELD_WITHIN_API() portYIELD_WITHIN_API() 3482 #else /* #if ( configNUMBER_OF_CORES == 1 ) */ 3483 #define taskYIELD_WITHIN_API() vTaskYieldWithinAPI() 3484 #endif /* #if ( configNUMBER_OF_CORES == 1 ) */ 3485 3486 /* 3487 * THIS FUNCTION MUST NOT BE USED FROM APPLICATION CODE. IT IS ONLY 3488 * INTENDED FOR USE WHEN IMPLEMENTING A PORT OF THE SCHEDULER AND IS 3489 * AN INTERFACE WHICH IS FOR THE EXCLUSIVE USE OF THE SCHEDULER. 3490 * 3491 * Called from the real time kernel tick (either preemptive or cooperative), 3492 * this increments the tick count and checks if any tasks that are blocked 3493 * for a finite period required removing from a blocked list and placing on 3494 * a ready list. If a non-zero value is returned then a context switch is 3495 * required because either: 3496 * + A task was removed from a blocked list because its timeout had expired, 3497 * or 3498 * + Time slicing is in use and there is a task of equal priority to the 3499 * currently running task. 3500 */ 3501 BaseType_t xTaskIncrementTick( void ) PRIVILEGED_FUNCTION; 3502 3503 /* 3504 * THIS FUNCTION MUST NOT BE USED FROM APPLICATION CODE. IT IS AN 3505 * INTERFACE WHICH IS FOR THE EXCLUSIVE USE OF THE SCHEDULER. 3506 * 3507 * THIS FUNCTION MUST BE CALLED WITH INTERRUPTS DISABLED. 3508 * 3509 * Removes the calling task from the ready list and places it both 3510 * on the list of tasks waiting for a particular event, and the 3511 * list of delayed tasks. The task will be removed from both lists 3512 * and replaced on the ready list should either the event occur (and 3513 * there be no higher priority tasks waiting on the same event) or 3514 * the delay period expires. 3515 * 3516 * The 'unordered' version replaces the event list item value with the 3517 * xItemValue value, and inserts the list item at the end of the list. 3518 * 3519 * The 'ordered' version uses the existing event list item value (which is the 3520 * owning task's priority) to insert the list item into the event list in task 3521 * priority order. 3522 * 3523 * @param pxEventList The list containing tasks that are blocked waiting 3524 * for the event to occur. 3525 * 3526 * @param xItemValue The item value to use for the event list item when the 3527 * event list is not ordered by task priority. 3528 * 3529 * @param xTicksToWait The maximum amount of time that the task should wait 3530 * for the event to occur. This is specified in kernel ticks, the constant 3531 * portTICK_PERIOD_MS can be used to convert kernel ticks into a real time 3532 * period. 3533 */ 3534 void vTaskPlaceOnEventList( List_t * const pxEventList, 3535 const TickType_t xTicksToWait ) PRIVILEGED_FUNCTION; 3536 void vTaskPlaceOnUnorderedEventList( List_t * pxEventList, 3537 const TickType_t xItemValue, 3538 const TickType_t xTicksToWait ) PRIVILEGED_FUNCTION; 3539 3540 /* 3541 * THIS FUNCTION MUST NOT BE USED FROM APPLICATION CODE. IT IS AN 3542 * INTERFACE WHICH IS FOR THE EXCLUSIVE USE OF THE SCHEDULER. 3543 * 3544 * THIS FUNCTION MUST BE CALLED WITH INTERRUPTS DISABLED. 3545 * 3546 * This function performs nearly the same function as vTaskPlaceOnEventList(). 3547 * The difference being that this function does not permit tasks to block 3548 * indefinitely, whereas vTaskPlaceOnEventList() does. 3549 * 3550 */ 3551 void vTaskPlaceOnEventListRestricted( List_t * const pxEventList, 3552 TickType_t xTicksToWait, 3553 const BaseType_t xWaitIndefinitely ) PRIVILEGED_FUNCTION; 3554 3555 /* 3556 * THIS FUNCTION MUST NOT BE USED FROM APPLICATION CODE. IT IS AN 3557 * INTERFACE WHICH IS FOR THE EXCLUSIVE USE OF THE SCHEDULER. 3558 * 3559 * THIS FUNCTION MUST BE CALLED WITH INTERRUPTS DISABLED. 3560 * 3561 * Removes a task from both the specified event list and the list of blocked 3562 * tasks, and places it on a ready queue. 3563 * 3564 * xTaskRemoveFromEventList()/vTaskRemoveFromUnorderedEventList() will be called 3565 * if either an event occurs to unblock a task, or the block timeout period 3566 * expires. 3567 * 3568 * xTaskRemoveFromEventList() is used when the event list is in task priority 3569 * order. It removes the list item from the head of the event list as that will 3570 * have the highest priority owning task of all the tasks on the event list. 3571 * vTaskRemoveFromUnorderedEventList() is used when the event list is not 3572 * ordered and the event list items hold something other than the owning tasks 3573 * priority. In this case the event list item value is updated to the value 3574 * passed in the xItemValue parameter. 3575 * 3576 * @return pdTRUE if the task being removed has a higher priority than the task 3577 * making the call, otherwise pdFALSE. 3578 */ 3579 BaseType_t xTaskRemoveFromEventList( const List_t * const pxEventList ) PRIVILEGED_FUNCTION; 3580 void vTaskRemoveFromUnorderedEventList( ListItem_t * pxEventListItem, 3581 const TickType_t xItemValue ) PRIVILEGED_FUNCTION; 3582 3583 /* 3584 * THIS FUNCTION MUST NOT BE USED FROM APPLICATION CODE. IT IS ONLY 3585 * INTENDED FOR USE WHEN IMPLEMENTING A PORT OF THE SCHEDULER AND IS 3586 * AN INTERFACE WHICH IS FOR THE EXCLUSIVE USE OF THE SCHEDULER. 3587 * 3588 * Sets the pointer to the current TCB to the TCB of the highest priority task 3589 * that is ready to run. 3590 */ 3591 #if ( configNUMBER_OF_CORES == 1 ) 3592 portDONT_DISCARD void vTaskSwitchContext( void ) PRIVILEGED_FUNCTION; 3593 #else 3594 portDONT_DISCARD void vTaskSwitchContext( BaseType_t xCoreID ) PRIVILEGED_FUNCTION; 3595 #endif 3596 3597 /* 3598 * THESE FUNCTIONS MUST NOT BE USED FROM APPLICATION CODE. THEY ARE USED BY 3599 * THE EVENT BITS MODULE. 3600 */ 3601 TickType_t uxTaskResetEventItemValue( void ) PRIVILEGED_FUNCTION; 3602 3603 /* 3604 * Return the handle of the calling task. 3605 */ 3606 TaskHandle_t xTaskGetCurrentTaskHandle( void ) PRIVILEGED_FUNCTION; 3607 3608 /* 3609 * Return the handle of the task running on specified core. 3610 */ 3611 TaskHandle_t xTaskGetCurrentTaskHandleForCore( BaseType_t xCoreID ) PRIVILEGED_FUNCTION; 3612 3613 /* 3614 * Shortcut used by the queue implementation to prevent unnecessary call to 3615 * taskYIELD(); 3616 */ 3617 void vTaskMissedYield( void ) PRIVILEGED_FUNCTION; 3618 3619 /* 3620 * Returns the scheduler state as taskSCHEDULER_RUNNING, 3621 * taskSCHEDULER_NOT_STARTED or taskSCHEDULER_SUSPENDED. 3622 */ 3623 BaseType_t xTaskGetSchedulerState( void ) PRIVILEGED_FUNCTION; 3624 3625 /* 3626 * Raises the priority of the mutex holder to that of the calling task should 3627 * the mutex holder have a priority less than the calling task. 3628 */ 3629 BaseType_t xTaskPriorityInherit( TaskHandle_t const pxMutexHolder ) PRIVILEGED_FUNCTION; 3630 3631 /* 3632 * Set the priority of a task back to its proper priority in the case that it 3633 * inherited a higher priority while it was holding a semaphore. 3634 */ 3635 BaseType_t xTaskPriorityDisinherit( TaskHandle_t const pxMutexHolder ) PRIVILEGED_FUNCTION; 3636 3637 /* 3638 * If a higher priority task attempting to obtain a mutex caused a lower 3639 * priority task to inherit the higher priority task's priority - but the higher 3640 * priority task then timed out without obtaining the mutex, then the lower 3641 * priority task will disinherit the priority again - but only down as far as 3642 * the highest priority task that is still waiting for the mutex (if there were 3643 * more than one task waiting for the mutex). 3644 */ 3645 void vTaskPriorityDisinheritAfterTimeout( TaskHandle_t const pxMutexHolder, 3646 UBaseType_t uxHighestPriorityWaitingTask ) PRIVILEGED_FUNCTION; 3647 3648 /* 3649 * Get the uxTaskNumber assigned to the task referenced by the xTask parameter. 3650 */ 3651 #if ( configUSE_TRACE_FACILITY == 1 ) 3652 UBaseType_t uxTaskGetTaskNumber( TaskHandle_t xTask ) PRIVILEGED_FUNCTION; 3653 #endif 3654 3655 /* 3656 * Set the uxTaskNumber of the task referenced by the xTask parameter to 3657 * uxHandle. 3658 */ 3659 #if ( configUSE_TRACE_FACILITY == 1 ) 3660 void vTaskSetTaskNumber( TaskHandle_t xTask, 3661 const UBaseType_t uxHandle ) PRIVILEGED_FUNCTION; 3662 #endif 3663 3664 /* 3665 * Only available when configUSE_TICKLESS_IDLE is set to 1. 3666 * If tickless mode is being used, or a low power mode is implemented, then 3667 * the tick interrupt will not execute during idle periods. When this is the 3668 * case, the tick count value maintained by the scheduler needs to be kept up 3669 * to date with the actual execution time by being skipped forward by a time 3670 * equal to the idle period. 3671 */ 3672 #if ( configUSE_TICKLESS_IDLE != 0 ) 3673 void vTaskStepTick( TickType_t xTicksToJump ) PRIVILEGED_FUNCTION; 3674 #endif 3675 3676 /* 3677 * Only available when configUSE_TICKLESS_IDLE is set to 1. 3678 * Provided for use within portSUPPRESS_TICKS_AND_SLEEP() to allow the port 3679 * specific sleep function to determine if it is ok to proceed with the sleep, 3680 * and if it is ok to proceed, if it is ok to sleep indefinitely. 3681 * 3682 * This function is necessary because portSUPPRESS_TICKS_AND_SLEEP() is only 3683 * called with the scheduler suspended, not from within a critical section. It 3684 * is therefore possible for an interrupt to request a context switch between 3685 * portSUPPRESS_TICKS_AND_SLEEP() and the low power mode actually being 3686 * entered. eTaskConfirmSleepModeStatus() should be called from a short 3687 * critical section between the timer being stopped and the sleep mode being 3688 * entered to ensure it is ok to proceed into the sleep mode. 3689 */ 3690 #if ( configUSE_TICKLESS_IDLE != 0 ) 3691 eSleepModeStatus eTaskConfirmSleepModeStatus( void ) PRIVILEGED_FUNCTION; 3692 #endif 3693 3694 /* 3695 * For internal use only. Increment the mutex held count when a mutex is 3696 * taken and return the handle of the task that has taken the mutex. 3697 */ 3698 TaskHandle_t pvTaskIncrementMutexHeldCount( void ) PRIVILEGED_FUNCTION; 3699 3700 /* 3701 * For internal use only. Same as vTaskSetTimeOutState(), but without a critical 3702 * section. 3703 */ 3704 void vTaskInternalSetTimeOutState( TimeOut_t * const pxTimeOut ) PRIVILEGED_FUNCTION; 3705 3706 /* 3707 * For internal use only. Same as portYIELD_WITHIN_API() in single core FreeRTOS. 3708 * For SMP this is not defined by the port. 3709 */ 3710 #if ( configNUMBER_OF_CORES > 1 ) 3711 void vTaskYieldWithinAPI( void ); 3712 #endif 3713 3714 /* 3715 * This function is only intended for use when implementing a port of the scheduler 3716 * and is only available when portCRITICAL_NESTING_IN_TCB is set to 1 or configNUMBER_OF_CORES 3717 * is greater than 1. This function can be used in the implementation of portENTER_CRITICAL 3718 * if port wants to maintain critical nesting count in TCB in single core FreeRTOS. 3719 * It should be used in the implementation of portENTER_CRITICAL if port is running a 3720 * multiple core FreeRTOS. 3721 */ 3722 #if ( ( portCRITICAL_NESTING_IN_TCB == 1 ) || ( configNUMBER_OF_CORES > 1 ) ) 3723 void vTaskEnterCritical( void ); 3724 #endif 3725 3726 /* 3727 * This function is only intended for use when implementing a port of the scheduler 3728 * and is only available when portCRITICAL_NESTING_IN_TCB is set to 1 or configNUMBER_OF_CORES 3729 * is greater than 1. This function can be used in the implementation of portEXIT_CRITICAL 3730 * if port wants to maintain critical nesting count in TCB in single core FreeRTOS. 3731 * It should be used in the implementation of portEXIT_CRITICAL if port is running a 3732 * multiple core FreeRTOS. 3733 */ 3734 #if ( ( portCRITICAL_NESTING_IN_TCB == 1 ) || ( configNUMBER_OF_CORES > 1 ) ) 3735 void vTaskExitCritical( void ); 3736 #endif 3737 3738 /* 3739 * This function is only intended for use when implementing a port of the scheduler 3740 * and is only available when configNUMBER_OF_CORES is greater than 1. This function 3741 * should be used in the implementation of portENTER_CRITICAL_FROM_ISR if port is 3742 * running a multiple core FreeRTOS. 3743 */ 3744 #if ( configNUMBER_OF_CORES > 1 ) 3745 UBaseType_t vTaskEnterCriticalFromISR( void ); 3746 #endif 3747 3748 /* 3749 * This function is only intended for use when implementing a port of the scheduler 3750 * and is only available when configNUMBER_OF_CORES is greater than 1. This function 3751 * should be used in the implementation of portEXIT_CRITICAL_FROM_ISR if port is 3752 * running a multiple core FreeRTOS. 3753 */ 3754 #if ( configNUMBER_OF_CORES > 1 ) 3755 void vTaskExitCriticalFromISR( UBaseType_t uxSavedInterruptStatus ); 3756 #endif 3757 3758 #if ( portUSING_MPU_WRAPPERS == 1 ) 3759 3760 /* 3761 * For internal use only. Get MPU settings associated with a task. 3762 */ 3763 xMPU_SETTINGS * xTaskGetMPUSettings( TaskHandle_t xTask ) PRIVILEGED_FUNCTION; 3764 3765 #endif /* portUSING_MPU_WRAPPERS */ 3766 3767 3768 #if ( ( portUSING_MPU_WRAPPERS == 1 ) && ( configUSE_MPU_WRAPPERS_V1 == 0 ) && ( configENABLE_ACCESS_CONTROL_LIST == 1 ) ) 3769 3770 /* 3771 * For internal use only. Grant/Revoke a task's access to a kernel object. 3772 */ 3773 void vGrantAccessToKernelObject( TaskHandle_t xExternalTaskHandle, 3774 int32_t lExternalKernelObjectHandle ) PRIVILEGED_FUNCTION; 3775 void vRevokeAccessToKernelObject( TaskHandle_t xExternalTaskHandle, 3776 int32_t lExternalKernelObjectHandle ) PRIVILEGED_FUNCTION; 3777 3778 /* 3779 * For internal use only. Grant/Revoke a task's access to a kernel object. 3780 */ 3781 void vPortGrantAccessToKernelObject( TaskHandle_t xInternalTaskHandle, 3782 int32_t lInternalIndexOfKernelObject ) PRIVILEGED_FUNCTION; 3783 void vPortRevokeAccessToKernelObject( TaskHandle_t xInternalTaskHandle, 3784 int32_t lInternalIndexOfKernelObject ) PRIVILEGED_FUNCTION; 3785 3786 #endif /* #if ( ( portUSING_MPU_WRAPPERS == 1 ) && ( configUSE_MPU_WRAPPERS_V1 == 0 ) && ( configENABLE_ACCESS_CONTROL_LIST == 1 ) ) */ 3787 3788 /* *INDENT-OFF* */ 3789 #ifdef __cplusplus 3790 } 3791 #endif 3792 /* *INDENT-ON* */ 3793 #endif /* INC_TASK_H */ 3794