1 /*
2  * FreeRTOS Kernel <DEVELOPMENT BRANCH>
3  * Copyright (C) 2021 Amazon.com, Inc. or its affiliates. All Rights Reserved.
4  *
5  * SPDX-License-Identifier: MIT
6  *
7  * Permission is hereby granted, free of charge, to any person obtaining a copy of
8  * this software and associated documentation files (the "Software"), to deal in
9  * the Software without restriction, including without limitation the rights to
10  * use, copy, modify, merge, publish, distribute, sublicense, and/or sell copies of
11  * the Software, and to permit persons to whom the Software is furnished to do so,
12  * subject to the following conditions:
13  *
14  * The above copyright notice and this permission notice shall be included in all
15  * copies or substantial portions of the Software.
16  *
17  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
18  * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, FITNESS
19  * FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR
20  * COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER
21  * IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN
22  * CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.
23  *
24  * https://www.FreeRTOS.org
25  * https://github.com/FreeRTOS
26  *
27  */
28 
29 /*-----------------------------------------------------------
30 * Implementation of functions defined in portable.h for the ARM CM4F port.
31 *----------------------------------------------------------*/
32 
33 /* Scheduler includes. */
34 #include "FreeRTOS.h"
35 #include "task.h"
36 
37 #ifndef __ARM_FP
38     #error This port can only be used when the project options are configured to enable hardware floating point support.
39 #endif
40 
41 /* Prototype of all Interrupt Service Routines (ISRs). */
42 typedef void ( * portISR_t )( void );
43 
44 /* Constants required to manipulate the core.  Registers first... */
45 #define portNVIC_SYSTICK_CTRL_REG             ( *( ( volatile uint32_t * ) 0xe000e010 ) )
46 #define portNVIC_SYSTICK_LOAD_REG             ( *( ( volatile uint32_t * ) 0xe000e014 ) )
47 #define portNVIC_SYSTICK_CURRENT_VALUE_REG    ( *( ( volatile uint32_t * ) 0xe000e018 ) )
48 #define portNVIC_SHPR2_REG                    ( *( ( volatile uint32_t * ) 0xe000ed1c ) )
49 #define portNVIC_SHPR3_REG                    ( *( ( volatile uint32_t * ) 0xe000ed20 ) )
50 /* ...then bits in the registers. */
51 #define portNVIC_SYSTICK_CLK_BIT              ( 1UL << 2UL )
52 #define portNVIC_SYSTICK_INT_BIT              ( 1UL << 1UL )
53 #define portNVIC_SYSTICK_ENABLE_BIT           ( 1UL << 0UL )
54 #define portNVIC_SYSTICK_COUNT_FLAG_BIT       ( 1UL << 16UL )
55 #define portNVIC_PENDSVCLEAR_BIT              ( 1UL << 27UL )
56 #define portNVIC_PEND_SYSTICK_SET_BIT         ( 1UL << 26UL )
57 #define portNVIC_PEND_SYSTICK_CLEAR_BIT       ( 1UL << 25UL )
58 
59 /* Constants used to detect a Cortex-M7 r0p1 core, which should use the ARM_CM7
60  * r0p1 port. */
61 #define portCPUID                             ( *( ( volatile uint32_t * ) 0xE000ed00 ) )
62 #define portCORTEX_M7_r0p1_ID                 ( 0x410FC271UL )
63 #define portCORTEX_M7_r0p0_ID                 ( 0x410FC270UL )
64 
65 #define portMIN_INTERRUPT_PRIORITY            ( 255UL )
66 #define portNVIC_PENDSV_PRI                   ( ( ( uint32_t ) portMIN_INTERRUPT_PRIORITY ) << 16UL )
67 #define portNVIC_SYSTICK_PRI                  ( ( ( uint32_t ) portMIN_INTERRUPT_PRIORITY ) << 24UL )
68 
69 /* Constants used to check the installation of the FreeRTOS interrupt handlers. */
70 #define portSCB_VTOR_REG                      ( *( ( portISR_t ** ) 0xE000ED08 ) )
71 #define portVECTOR_INDEX_SVC                  ( 11 )
72 #define portVECTOR_INDEX_PENDSV               ( 14 )
73 
74 /* Constants required to check the validity of an interrupt priority. */
75 #define portFIRST_USER_INTERRUPT_NUMBER       ( 16 )
76 #define portNVIC_IP_REGISTERS_OFFSET_16       ( 0xE000E3F0 )
77 #define portAIRCR_REG                         ( *( ( volatile uint32_t * ) 0xE000ED0C ) )
78 #define portMAX_8_BIT_VALUE                   ( ( uint8_t ) 0xff )
79 #define portTOP_BIT_OF_BYTE                   ( ( uint8_t ) 0x80 )
80 #define portMAX_PRIGROUP_BITS                 ( ( uint8_t ) 7 )
81 #define portPRIORITY_GROUP_MASK               ( 0x07UL << 8UL )
82 #define portPRIGROUP_SHIFT                    ( 8UL )
83 
84 /* Masks off all bits but the VECTACTIVE bits in the ICSR register. */
85 #define portVECTACTIVE_MASK                   ( 0xFFUL )
86 
87 /* Constants required to manipulate the VFP. */
88 #define portFPCCR                             ( ( volatile uint32_t * ) 0xe000ef34 ) /* Floating point context control register. */
89 #define portASPEN_AND_LSPEN_BITS              ( 0x3UL << 30UL )
90 
91 /* Constants required to set up the initial stack. */
92 #define portINITIAL_XPSR                      ( 0x01000000 )
93 #define portINITIAL_EXC_RETURN                ( 0xfffffffd )
94 
95 /* The systick is a 24-bit counter. */
96 #define portMAX_24_BIT_NUMBER                 ( 0xffffffUL )
97 
98 /* For strict compliance with the Cortex-M spec the task start address should
99  * have bit-0 clear, as it is loaded into the PC on exit from an ISR. */
100 #define portSTART_ADDRESS_MASK                ( ( StackType_t ) 0xfffffffeUL )
101 
102 /* A fiddle factor to estimate the number of SysTick counts that would have
103  * occurred while the SysTick counter is stopped during tickless idle
104  * calculations. */
105 #define portMISSED_COUNTS_FACTOR              ( 94UL )
106 
107 /* Let the user override the default SysTick clock rate.  If defined by the
108  * user, this symbol must equal the SysTick clock rate when the CLK bit is 0 in the
109  * configuration register. */
110 #ifndef configSYSTICK_CLOCK_HZ
111     #define configSYSTICK_CLOCK_HZ             ( configCPU_CLOCK_HZ )
112     /* Ensure the SysTick is clocked at the same frequency as the core. */
113     #define portNVIC_SYSTICK_CLK_BIT_CONFIG    ( portNVIC_SYSTICK_CLK_BIT )
114 #else
115     /* Select the option to clock SysTick not at the same frequency as the core. */
116     #define portNVIC_SYSTICK_CLK_BIT_CONFIG    ( 0 )
117 #endif
118 
119 /* Let the user override the pre-loading of the initial LR with the address of
120  * prvTaskExitError() in case it messes up unwinding of the stack in the
121  * debugger. */
122 #ifdef configTASK_RETURN_ADDRESS
123     #define portTASK_RETURN_ADDRESS    configTASK_RETURN_ADDRESS
124 #else
125     #define portTASK_RETURN_ADDRESS    prvTaskExitError
126 #endif
127 
128 /*
129  * Setup the timer to generate the tick interrupts.  The implementation in this
130  * file is weak to allow application writers to change the timer used to
131  * generate the tick interrupt.
132  */
133 void vPortSetupTimerInterrupt( void );
134 
135 /*
136  * Exception handlers.
137  */
138 void xPortPendSVHandler( void ) __attribute__( ( naked ) );
139 void xPortSysTickHandler( void );
140 void vPortSVCHandler( void ) __attribute__( ( naked ) );
141 
142 /*
143  * Start first task is a separate function so it can be tested in isolation.
144  */
145 static void prvPortStartFirstTask( void ) __attribute__( ( naked ) );
146 
147 /*
148  * Function to enable the VFP.
149  */
150 static void vPortEnableVFP( void ) __attribute__( ( naked ) );
151 
152 /*
153  * Used to catch tasks that attempt to return from their implementing function.
154  */
155 static void prvTaskExitError( void );
156 
157 /*-----------------------------------------------------------*/
158 
159 /* Each task maintains its own interrupt status in the critical nesting
160  * variable. */
161 static UBaseType_t uxCriticalNesting = 0xaaaaaaaa;
162 
163 /*
164  * The number of SysTick increments that make up one tick period.
165  */
166 #if ( configUSE_TICKLESS_IDLE == 1 )
167     static uint32_t ulTimerCountsForOneTick = 0;
168 #endif /* configUSE_TICKLESS_IDLE */
169 
170 /*
171  * The maximum number of tick periods that can be suppressed is limited by the
172  * 24 bit resolution of the SysTick timer.
173  */
174 #if ( configUSE_TICKLESS_IDLE == 1 )
175     static uint32_t xMaximumPossibleSuppressedTicks = 0;
176 #endif /* configUSE_TICKLESS_IDLE */
177 
178 /*
179  * Compensate for the CPU cycles that pass while the SysTick is stopped (low
180  * power functionality only.
181  */
182 #if ( configUSE_TICKLESS_IDLE == 1 )
183     static uint32_t ulStoppedTimerCompensation = 0;
184 #endif /* configUSE_TICKLESS_IDLE */
185 
186 /*
187  * Used by the portASSERT_IF_INTERRUPT_PRIORITY_INVALID() macro to ensure
188  * FreeRTOS API functions are not called from interrupts that have been assigned
189  * a priority above configMAX_SYSCALL_INTERRUPT_PRIORITY.
190  */
191 #if ( configASSERT_DEFINED == 1 )
192     static uint8_t ucMaxSysCallPriority = 0;
193     static uint32_t ulMaxPRIGROUPValue = 0;
194     static const volatile uint8_t * const pcInterruptPriorityRegisters = ( const volatile uint8_t * const ) portNVIC_IP_REGISTERS_OFFSET_16;
195 #endif /* configASSERT_DEFINED */
196 
197 /*-----------------------------------------------------------*/
198 
199 /*
200  * See header file for description.
201  */
pxPortInitialiseStack(StackType_t * pxTopOfStack,TaskFunction_t pxCode,void * pvParameters)202 StackType_t * pxPortInitialiseStack( StackType_t * pxTopOfStack,
203                                      TaskFunction_t pxCode,
204                                      void * pvParameters )
205 {
206     /* Simulate the stack frame as it would be created by a context switch
207      * interrupt. */
208 
209     /* Offset added to account for the way the MCU uses the stack on entry/exit
210      * of interrupts, and to ensure alignment. */
211     pxTopOfStack--;
212 
213     *pxTopOfStack = portINITIAL_XPSR;                                    /* xPSR */
214     pxTopOfStack--;
215     *pxTopOfStack = ( ( StackType_t ) pxCode ) & portSTART_ADDRESS_MASK; /* PC */
216     pxTopOfStack--;
217     *pxTopOfStack = ( StackType_t ) portTASK_RETURN_ADDRESS;             /* LR */
218 
219     /* Save code space by skipping register initialisation. */
220     pxTopOfStack -= 5;                            /* R12, R3, R2 and R1. */
221     *pxTopOfStack = ( StackType_t ) pvParameters; /* R0 */
222 
223     /* A save method is being used that requires each task to maintain its
224      * own exec return value. */
225     pxTopOfStack--;
226     *pxTopOfStack = portINITIAL_EXC_RETURN;
227 
228     pxTopOfStack -= 8; /* R11, R10, R9, R8, R7, R6, R5 and R4. */
229 
230     return pxTopOfStack;
231 }
232 /*-----------------------------------------------------------*/
233 
prvTaskExitError(void)234 static void prvTaskExitError( void )
235 {
236     volatile uint32_t ulDummy = 0;
237 
238     /* A function that implements a task must not exit or attempt to return to
239      * its caller as there is nothing to return to.  If a task wants to exit it
240      * should instead call vTaskDelete( NULL ).
241      *
242      * Artificially force an assert() to be triggered if configASSERT() is
243      * defined, then stop here so application writers can catch the error. */
244     configASSERT( uxCriticalNesting == ~0UL );
245     portDISABLE_INTERRUPTS();
246 
247     while( ulDummy == 0 )
248     {
249         /* This file calls prvTaskExitError() after the scheduler has been
250          * started to remove a compiler warning about the function being defined
251          * but never called.  ulDummy is used purely to quieten other warnings
252          * about code appearing after this function is called - making ulDummy
253          * volatile makes the compiler think the function could return and
254          * therefore not output an 'unreachable code' warning for code that appears
255          * after it. */
256     }
257 }
258 /*-----------------------------------------------------------*/
259 
vPortSVCHandler(void)260 void vPortSVCHandler( void )
261 {
262     __asm volatile (
263         "   ldr r3, =pxCurrentTCB           \n" /* Restore the context. */
264         "   ldr r1, [r3]                    \n" /* Get the pxCurrentTCB address. */
265         "   ldr r0, [r1]                    \n" /* The first item in pxCurrentTCB is the task top of stack. */
266         "   ldmia r0!, {r4-r11, r14}        \n" /* Pop the registers that are not automatically saved on exception entry and the critical nesting count. */
267         "   msr psp, r0                     \n" /* Restore the task stack pointer. */
268         "   isb                             \n"
269         "   mov r0, #0                      \n"
270         "   msr basepri, r0                 \n"
271         "   bx r14                          \n"
272         "                                   \n"
273         "   .ltorg                          \n"
274         );
275 }
276 /*-----------------------------------------------------------*/
277 
prvPortStartFirstTask(void)278 static void prvPortStartFirstTask( void )
279 {
280     /* Start the first task.  This also clears the bit that indicates the FPU is
281      * in use in case the FPU was used before the scheduler was started - which
282      * would otherwise result in the unnecessary leaving of space in the SVC stack
283      * for lazy saving of FPU registers. */
284     __asm volatile (
285         " ldr r0, =0xE000ED08   \n" /* Use the NVIC offset register to locate the stack. */
286         " ldr r0, [r0]          \n"
287         " ldr r0, [r0]          \n"
288         " msr msp, r0           \n" /* Set the msp back to the start of the stack. */
289         " mov r0, #0            \n" /* Clear the bit that indicates the FPU is in use, see comment above. */
290         " msr control, r0       \n"
291         " cpsie i               \n" /* Globally enable interrupts. */
292         " cpsie f               \n"
293         " dsb                   \n"
294         " isb                   \n"
295         " svc 0                 \n" /* System call to start first task. */
296         " nop                   \n"
297         " .ltorg                \n"
298         );
299 }
300 /*-----------------------------------------------------------*/
301 
302 /*
303  * See header file for description.
304  */
xPortStartScheduler(void)305 BaseType_t xPortStartScheduler( void )
306 {
307     /* This port can be used on all revisions of the Cortex-M7 core other than
308      * the r0p1 parts.  r0p1 parts should use the port from the
309      * /source/portable/GCC/ARM_CM7/r0p1 directory. */
310     configASSERT( portCPUID != portCORTEX_M7_r0p1_ID );
311     configASSERT( portCPUID != portCORTEX_M7_r0p0_ID );
312 
313     /* An application can install FreeRTOS interrupt handlers in one of the
314      * following ways:
315      * 1. Direct Routing - Install the functions vPortSVCHandler and
316      *    xPortPendSVHandler for SVCall and PendSV interrupts respectively.
317      * 2. Indirect Routing - Install separate handlers for SVCall and PendSV
318      *    interrupts and route program control from those handlers to
319      *    vPortSVCHandler and xPortPendSVHandler functions.
320      *
321      * Applications that use Indirect Routing must set
322      * configCHECK_HANDLER_INSTALLATION to 0 in their FreeRTOSConfig.h. Direct
323      * routing, which is validated here when configCHECK_HANDLER_INSTALLATION
324      * is 1, should be preferred when possible. */
325     #if ( configCHECK_HANDLER_INSTALLATION == 1 )
326     {
327         const portISR_t * const pxVectorTable = portSCB_VTOR_REG;
328 
329         /* Validate that the application has correctly installed the FreeRTOS
330          * handlers for SVCall and PendSV interrupts. We do not check the
331          * installation of the SysTick handler because the application may
332          * choose to drive the RTOS tick using a timer other than the SysTick
333          * timer by overriding the weak function vPortSetupTimerInterrupt().
334          *
335          * Assertion failures here indicate incorrect installation of the
336          * FreeRTOS handlers. For help installing the FreeRTOS handlers, see
337          * https://www.freertos.org/Why-FreeRTOS/FAQs.
338          *
339          * Systems with a configurable address for the interrupt vector table
340          * can also encounter assertion failures or even system faults here if
341          * VTOR is not set correctly to point to the application's vector table. */
342         configASSERT( pxVectorTable[ portVECTOR_INDEX_SVC ] == vPortSVCHandler );
343         configASSERT( pxVectorTable[ portVECTOR_INDEX_PENDSV ] == xPortPendSVHandler );
344     }
345     #endif /* configCHECK_HANDLER_INSTALLATION */
346 
347     #if ( configASSERT_DEFINED == 1 )
348     {
349         volatile uint8_t ucOriginalPriority;
350         volatile uint32_t ulImplementedPrioBits = 0;
351         volatile uint8_t * const pucFirstUserPriorityRegister = ( volatile uint8_t * const ) ( portNVIC_IP_REGISTERS_OFFSET_16 + portFIRST_USER_INTERRUPT_NUMBER );
352         volatile uint8_t ucMaxPriorityValue;
353 
354         /* Determine the maximum priority from which ISR safe FreeRTOS API
355          * functions can be called.  ISR safe functions are those that end in
356          * "FromISR".  FreeRTOS maintains separate thread and ISR API functions to
357          * ensure interrupt entry is as fast and simple as possible.
358          *
359          * Save the interrupt priority value that is about to be clobbered. */
360         ucOriginalPriority = *pucFirstUserPriorityRegister;
361 
362         /* Determine the number of priority bits available.  First write to all
363          * possible bits. */
364         *pucFirstUserPriorityRegister = portMAX_8_BIT_VALUE;
365 
366         /* Read the value back to see how many bits stuck. */
367         ucMaxPriorityValue = *pucFirstUserPriorityRegister;
368 
369         /* Use the same mask on the maximum system call priority. */
370         ucMaxSysCallPriority = configMAX_SYSCALL_INTERRUPT_PRIORITY & ucMaxPriorityValue;
371 
372         /* Check that the maximum system call priority is nonzero after
373          * accounting for the number of priority bits supported by the
374          * hardware. A priority of 0 is invalid because setting the BASEPRI
375          * register to 0 unmasks all interrupts, and interrupts with priority 0
376          * cannot be masked using BASEPRI.
377          * See https://www.FreeRTOS.org/RTOS-Cortex-M3-M4.html */
378         configASSERT( ucMaxSysCallPriority );
379 
380         /* Check that the bits not implemented in hardware are zero in
381          * configMAX_SYSCALL_INTERRUPT_PRIORITY. */
382         configASSERT( ( configMAX_SYSCALL_INTERRUPT_PRIORITY & ( ~ucMaxPriorityValue ) ) == 0U );
383 
384         /* Calculate the maximum acceptable priority group value for the number
385          * of bits read back. */
386 
387         while( ( ucMaxPriorityValue & portTOP_BIT_OF_BYTE ) == portTOP_BIT_OF_BYTE )
388         {
389             ulImplementedPrioBits++;
390             ucMaxPriorityValue <<= ( uint8_t ) 0x01;
391         }
392 
393         if( ulImplementedPrioBits == 8 )
394         {
395             /* When the hardware implements 8 priority bits, there is no way for
396              * the software to configure PRIGROUP to not have sub-priorities. As
397              * a result, the least significant bit is always used for sub-priority
398              * and there are 128 preemption priorities and 2 sub-priorities.
399              *
400              * This may cause some confusion in some cases - for example, if
401              * configMAX_SYSCALL_INTERRUPT_PRIORITY is set to 5, both 5 and 4
402              * priority interrupts will be masked in Critical Sections as those
403              * are at the same preemption priority. This may appear confusing as
404              * 4 is higher (numerically lower) priority than
405              * configMAX_SYSCALL_INTERRUPT_PRIORITY and therefore, should not
406              * have been masked. Instead, if we set configMAX_SYSCALL_INTERRUPT_PRIORITY
407              * to 4, this confusion does not happen and the behaviour remains the same.
408              *
409              * The following assert ensures that the sub-priority bit in the
410              * configMAX_SYSCALL_INTERRUPT_PRIORITY is clear to avoid the above mentioned
411              * confusion. */
412             configASSERT( ( configMAX_SYSCALL_INTERRUPT_PRIORITY & 0x1U ) == 0U );
413             ulMaxPRIGROUPValue = 0;
414         }
415         else
416         {
417             ulMaxPRIGROUPValue = portMAX_PRIGROUP_BITS - ulImplementedPrioBits;
418         }
419 
420         /* Shift the priority group value back to its position within the AIRCR
421          * register. */
422         ulMaxPRIGROUPValue <<= portPRIGROUP_SHIFT;
423         ulMaxPRIGROUPValue &= portPRIORITY_GROUP_MASK;
424 
425         /* Restore the clobbered interrupt priority register to its original
426          * value. */
427         *pucFirstUserPriorityRegister = ucOriginalPriority;
428     }
429     #endif /* configASSERT_DEFINED */
430 
431     /* Make PendSV and SysTick the lowest priority interrupts, and make SVCall
432      * the highest priority. */
433     portNVIC_SHPR3_REG |= portNVIC_PENDSV_PRI;
434     portNVIC_SHPR3_REG |= portNVIC_SYSTICK_PRI;
435     portNVIC_SHPR2_REG = 0;
436 
437     /* Start the timer that generates the tick ISR.  Interrupts are disabled
438      * here already. */
439     vPortSetupTimerInterrupt();
440 
441     /* Initialise the critical nesting count ready for the first task. */
442     uxCriticalNesting = 0;
443 
444     /* Ensure the VFP is enabled - it should be anyway. */
445     vPortEnableVFP();
446 
447     /* Lazy save always. */
448     *( portFPCCR ) |= portASPEN_AND_LSPEN_BITS;
449 
450     /* Start the first task. */
451     prvPortStartFirstTask();
452 
453     /* Should never get here as the tasks will now be executing!  Call the task
454      * exit error function to prevent compiler warnings about a static function
455      * not being called in the case that the application writer overrides this
456      * functionality by defining configTASK_RETURN_ADDRESS.  Call
457      * vTaskSwitchContext() so link time optimisation does not remove the
458      * symbol. */
459     vTaskSwitchContext();
460     prvTaskExitError();
461 
462     /* Should not get here! */
463     return 0;
464 }
465 /*-----------------------------------------------------------*/
466 
vPortEndScheduler(void)467 void vPortEndScheduler( void )
468 {
469     /* Not implemented in ports where there is nothing to return to.
470      * Artificially force an assert. */
471     configASSERT( uxCriticalNesting == 1000UL );
472 }
473 /*-----------------------------------------------------------*/
474 
vPortEnterCritical(void)475 void vPortEnterCritical( void )
476 {
477     portDISABLE_INTERRUPTS();
478     uxCriticalNesting++;
479 
480     /* This is not the interrupt safe version of the enter critical function so
481      * assert() if it is being called from an interrupt context.  Only API
482      * functions that end in "FromISR" can be used in an interrupt.  Only assert if
483      * the critical nesting count is 1 to protect against recursive calls if the
484      * assert function also uses a critical section. */
485     if( uxCriticalNesting == 1 )
486     {
487         configASSERT( ( portNVIC_INT_CTRL_REG & portVECTACTIVE_MASK ) == 0 );
488     }
489 }
490 /*-----------------------------------------------------------*/
491 
vPortExitCritical(void)492 void vPortExitCritical( void )
493 {
494     configASSERT( uxCriticalNesting );
495     uxCriticalNesting--;
496 
497     if( uxCriticalNesting == 0 )
498     {
499         portENABLE_INTERRUPTS();
500     }
501 }
502 /*-----------------------------------------------------------*/
503 
xPortPendSVHandler(void)504 void xPortPendSVHandler( void )
505 {
506     /* This is a naked function. */
507 
508     __asm volatile
509     (
510         "   mrs r0, psp                         \n"
511         "   isb                                 \n"
512         "                                       \n"
513         "   ldr r3, =pxCurrentTCB               \n" /* Get the location of the current TCB. */
514         "   ldr r2, [r3]                        \n"
515         "                                       \n"
516         "   tst r14, #0x10                      \n" /* Is the task using the FPU context?  If so, push high vfp registers. */
517         "   it eq                               \n"
518         "   vstmdbeq r0!, {s16-s31}             \n"
519         "                                       \n"
520         "   stmdb r0!, {r4-r11, r14}            \n" /* Save the core registers. */
521         "   str r0, [r2]                        \n" /* Save the new top of stack into the first member of the TCB. */
522         "                                       \n"
523         "   stmdb sp!, {r0, r3}                 \n"
524         "   mov r0, %0                          \n"
525         "   msr basepri, r0                     \n"
526         "   dsb                                 \n"
527         "   isb                                 \n"
528         "   bl vTaskSwitchContext               \n"
529         "   mov r0, #0                          \n"
530         "   msr basepri, r0                     \n"
531         "   ldmia sp!, {r0, r3}                 \n"
532         "                                       \n"
533         "   ldr r1, [r3]                        \n" /* The first item in pxCurrentTCB is the task top of stack. */
534         "   ldr r0, [r1]                        \n"
535         "                                       \n"
536         "   ldmia r0!, {r4-r11, r14}            \n" /* Pop the core registers. */
537         "                                       \n"
538         "   tst r14, #0x10                      \n" /* Is the task using the FPU context?  If so, pop the high vfp registers too. */
539         "   it eq                               \n"
540         "   vldmiaeq r0!, {s16-s31}             \n"
541         "                                       \n"
542         "   msr psp, r0                         \n"
543         "   isb                                 \n"
544         "                                       \n"
545         #ifdef WORKAROUND_PMU_CM001 /* XMC4000 specific errata workaround. */
546             #if WORKAROUND_PMU_CM001 == 1
547                 "           push { r14 }                \n"
548                 "           pop { pc }                  \n"
549             #endif
550         #endif
551         "                                       \n"
552         "   bx r14                              \n"
553         "                                       \n"
554         "   .ltorg                              \n"
555         ::"i" ( configMAX_SYSCALL_INTERRUPT_PRIORITY )
556     );
557 }
558 /*-----------------------------------------------------------*/
559 
xPortSysTickHandler(void)560 void xPortSysTickHandler( void )
561 {
562     /* The SysTick runs at the lowest interrupt priority, so when this interrupt
563      * executes all interrupts must be unmasked.  There is therefore no need to
564      * save and then restore the interrupt mask value as its value is already
565      * known. */
566     portDISABLE_INTERRUPTS();
567     traceISR_ENTER();
568     {
569         /* Increment the RTOS tick. */
570         if( xTaskIncrementTick() != pdFALSE )
571         {
572             traceISR_EXIT_TO_SCHEDULER();
573 
574             /* A context switch is required.  Context switching is performed in
575              * the PendSV interrupt.  Pend the PendSV interrupt. */
576             portNVIC_INT_CTRL_REG = portNVIC_PENDSVSET_BIT;
577         }
578         else
579         {
580             traceISR_EXIT();
581         }
582     }
583     portENABLE_INTERRUPTS();
584 }
585 /*-----------------------------------------------------------*/
586 
587 #if ( configUSE_TICKLESS_IDLE == 1 )
588 
vPortSuppressTicksAndSleep(TickType_t xExpectedIdleTime)589     __attribute__( ( weak ) ) void vPortSuppressTicksAndSleep( TickType_t xExpectedIdleTime )
590     {
591         uint32_t ulReloadValue, ulCompleteTickPeriods, ulCompletedSysTickDecrements, ulSysTickDecrementsLeft;
592         TickType_t xModifiableIdleTime;
593 
594         /* Make sure the SysTick reload value does not overflow the counter. */
595         if( xExpectedIdleTime > xMaximumPossibleSuppressedTicks )
596         {
597             xExpectedIdleTime = xMaximumPossibleSuppressedTicks;
598         }
599 
600         /* Enter a critical section but don't use the taskENTER_CRITICAL()
601          * method as that will mask interrupts that should exit sleep mode. */
602         __asm volatile ( "cpsid i" ::: "memory" );
603         __asm volatile ( "dsb" );
604         __asm volatile ( "isb" );
605 
606         /* If a context switch is pending or a task is waiting for the scheduler
607          * to be unsuspended then abandon the low power entry. */
608         if( eTaskConfirmSleepModeStatus() == eAbortSleep )
609         {
610             /* Re-enable interrupts - see comments above the cpsid instruction
611              * above. */
612             __asm volatile ( "cpsie i" ::: "memory" );
613         }
614         else
615         {
616             /* Stop the SysTick momentarily.  The time the SysTick is stopped for
617              * is accounted for as best it can be, but using the tickless mode will
618              * inevitably result in some tiny drift of the time maintained by the
619              * kernel with respect to calendar time. */
620             portNVIC_SYSTICK_CTRL_REG = ( portNVIC_SYSTICK_CLK_BIT_CONFIG | portNVIC_SYSTICK_INT_BIT );
621 
622             /* Use the SysTick current-value register to determine the number of
623              * SysTick decrements remaining until the next tick interrupt.  If the
624              * current-value register is zero, then there are actually
625              * ulTimerCountsForOneTick decrements remaining, not zero, because the
626              * SysTick requests the interrupt when decrementing from 1 to 0. */
627             ulSysTickDecrementsLeft = portNVIC_SYSTICK_CURRENT_VALUE_REG;
628 
629             if( ulSysTickDecrementsLeft == 0 )
630             {
631                 ulSysTickDecrementsLeft = ulTimerCountsForOneTick;
632             }
633 
634             /* Calculate the reload value required to wait xExpectedIdleTime
635              * tick periods.  -1 is used because this code normally executes part
636              * way through the first tick period.  But if the SysTick IRQ is now
637              * pending, then clear the IRQ, suppressing the first tick, and correct
638              * the reload value to reflect that the second tick period is already
639              * underway.  The expected idle time is always at least two ticks. */
640             ulReloadValue = ulSysTickDecrementsLeft + ( ulTimerCountsForOneTick * ( xExpectedIdleTime - 1UL ) );
641 
642             if( ( portNVIC_INT_CTRL_REG & portNVIC_PEND_SYSTICK_SET_BIT ) != 0 )
643             {
644                 portNVIC_INT_CTRL_REG = portNVIC_PEND_SYSTICK_CLEAR_BIT;
645                 ulReloadValue -= ulTimerCountsForOneTick;
646             }
647 
648             if( ulReloadValue > ulStoppedTimerCompensation )
649             {
650                 ulReloadValue -= ulStoppedTimerCompensation;
651             }
652 
653             /* Set the new reload value. */
654             portNVIC_SYSTICK_LOAD_REG = ulReloadValue;
655 
656             /* Clear the SysTick count flag and set the count value back to
657              * zero. */
658             portNVIC_SYSTICK_CURRENT_VALUE_REG = 0UL;
659 
660             /* Restart SysTick. */
661             portNVIC_SYSTICK_CTRL_REG |= portNVIC_SYSTICK_ENABLE_BIT;
662 
663             /* Sleep until something happens.  configPRE_SLEEP_PROCESSING() can
664              * set its parameter to 0 to indicate that its implementation contains
665              * its own wait for interrupt or wait for event instruction, and so wfi
666              * should not be executed again.  However, the original expected idle
667              * time variable must remain unmodified, so a copy is taken. */
668             xModifiableIdleTime = xExpectedIdleTime;
669             configPRE_SLEEP_PROCESSING( xModifiableIdleTime );
670 
671             if( xModifiableIdleTime > 0 )
672             {
673                 __asm volatile ( "dsb" ::: "memory" );
674                 __asm volatile ( "wfi" );
675                 __asm volatile ( "isb" );
676             }
677 
678             configPOST_SLEEP_PROCESSING( xExpectedIdleTime );
679 
680             /* Re-enable interrupts to allow the interrupt that brought the MCU
681              * out of sleep mode to execute immediately.  See comments above
682              * the cpsid instruction above. */
683             __asm volatile ( "cpsie i" ::: "memory" );
684             __asm volatile ( "dsb" );
685             __asm volatile ( "isb" );
686 
687             /* Disable interrupts again because the clock is about to be stopped
688              * and interrupts that execute while the clock is stopped will increase
689              * any slippage between the time maintained by the RTOS and calendar
690              * time. */
691             __asm volatile ( "cpsid i" ::: "memory" );
692             __asm volatile ( "dsb" );
693             __asm volatile ( "isb" );
694 
695             /* Disable the SysTick clock without reading the
696              * portNVIC_SYSTICK_CTRL_REG register to ensure the
697              * portNVIC_SYSTICK_COUNT_FLAG_BIT is not cleared if it is set.  Again,
698              * the time the SysTick is stopped for is accounted for as best it can
699              * be, but using the tickless mode will inevitably result in some tiny
700              * drift of the time maintained by the kernel with respect to calendar
701              * time*/
702             portNVIC_SYSTICK_CTRL_REG = ( portNVIC_SYSTICK_CLK_BIT_CONFIG | portNVIC_SYSTICK_INT_BIT );
703 
704             /* Determine whether the SysTick has already counted to zero. */
705             if( ( portNVIC_SYSTICK_CTRL_REG & portNVIC_SYSTICK_COUNT_FLAG_BIT ) != 0 )
706             {
707                 uint32_t ulCalculatedLoadValue;
708 
709                 /* The tick interrupt ended the sleep (or is now pending), and
710                  * a new tick period has started.  Reset portNVIC_SYSTICK_LOAD_REG
711                  * with whatever remains of the new tick period. */
712                 ulCalculatedLoadValue = ( ulTimerCountsForOneTick - 1UL ) - ( ulReloadValue - portNVIC_SYSTICK_CURRENT_VALUE_REG );
713 
714                 /* Don't allow a tiny value, or values that have somehow
715                  * underflowed because the post sleep hook did something
716                  * that took too long or because the SysTick current-value register
717                  * is zero. */
718                 if( ( ulCalculatedLoadValue <= ulStoppedTimerCompensation ) || ( ulCalculatedLoadValue > ulTimerCountsForOneTick ) )
719                 {
720                     ulCalculatedLoadValue = ( ulTimerCountsForOneTick - 1UL );
721                 }
722 
723                 portNVIC_SYSTICK_LOAD_REG = ulCalculatedLoadValue;
724 
725                 /* As the pending tick will be processed as soon as this
726                  * function exits, the tick value maintained by the tick is stepped
727                  * forward by one less than the time spent waiting. */
728                 ulCompleteTickPeriods = xExpectedIdleTime - 1UL;
729             }
730             else
731             {
732                 /* Something other than the tick interrupt ended the sleep. */
733 
734                 /* Use the SysTick current-value register to determine the
735                  * number of SysTick decrements remaining until the expected idle
736                  * time would have ended. */
737                 ulSysTickDecrementsLeft = portNVIC_SYSTICK_CURRENT_VALUE_REG;
738                 #if ( portNVIC_SYSTICK_CLK_BIT_CONFIG != portNVIC_SYSTICK_CLK_BIT )
739                 {
740                     /* If the SysTick is not using the core clock, the current-
741                      * value register might still be zero here.  In that case, the
742                      * SysTick didn't load from the reload register, and there are
743                      * ulReloadValue decrements remaining in the expected idle
744                      * time, not zero. */
745                     if( ulSysTickDecrementsLeft == 0 )
746                     {
747                         ulSysTickDecrementsLeft = ulReloadValue;
748                     }
749                 }
750                 #endif /* portNVIC_SYSTICK_CLK_BIT_CONFIG */
751 
752                 /* Work out how long the sleep lasted rounded to complete tick
753                  * periods (not the ulReload value which accounted for part
754                  * ticks). */
755                 ulCompletedSysTickDecrements = ( xExpectedIdleTime * ulTimerCountsForOneTick ) - ulSysTickDecrementsLeft;
756 
757                 /* How many complete tick periods passed while the processor
758                  * was waiting? */
759                 ulCompleteTickPeriods = ulCompletedSysTickDecrements / ulTimerCountsForOneTick;
760 
761                 /* The reload value is set to whatever fraction of a single tick
762                  * period remains. */
763                 portNVIC_SYSTICK_LOAD_REG = ( ( ulCompleteTickPeriods + 1UL ) * ulTimerCountsForOneTick ) - ulCompletedSysTickDecrements;
764             }
765 
766             /* Restart SysTick so it runs from portNVIC_SYSTICK_LOAD_REG again,
767              * then set portNVIC_SYSTICK_LOAD_REG back to its standard value.  If
768              * the SysTick is not using the core clock, temporarily configure it to
769              * use the core clock.  This configuration forces the SysTick to load
770              * from portNVIC_SYSTICK_LOAD_REG immediately instead of at the next
771              * cycle of the other clock.  Then portNVIC_SYSTICK_LOAD_REG is ready
772              * to receive the standard value immediately. */
773             portNVIC_SYSTICK_CURRENT_VALUE_REG = 0UL;
774             portNVIC_SYSTICK_CTRL_REG = portNVIC_SYSTICK_CLK_BIT | portNVIC_SYSTICK_INT_BIT | portNVIC_SYSTICK_ENABLE_BIT;
775             #if ( portNVIC_SYSTICK_CLK_BIT_CONFIG == portNVIC_SYSTICK_CLK_BIT )
776             {
777                 portNVIC_SYSTICK_LOAD_REG = ulTimerCountsForOneTick - 1UL;
778             }
779             #else
780             {
781                 /* The temporary usage of the core clock has served its purpose,
782                  * as described above.  Resume usage of the other clock. */
783                 portNVIC_SYSTICK_CTRL_REG = portNVIC_SYSTICK_CLK_BIT | portNVIC_SYSTICK_INT_BIT;
784 
785                 if( ( portNVIC_SYSTICK_CTRL_REG & portNVIC_SYSTICK_COUNT_FLAG_BIT ) != 0 )
786                 {
787                     /* The partial tick period already ended.  Be sure the SysTick
788                      * counts it only once. */
789                     portNVIC_SYSTICK_CURRENT_VALUE_REG = 0;
790                 }
791 
792                 portNVIC_SYSTICK_LOAD_REG = ulTimerCountsForOneTick - 1UL;
793                 portNVIC_SYSTICK_CTRL_REG = portNVIC_SYSTICK_CLK_BIT_CONFIG | portNVIC_SYSTICK_INT_BIT | portNVIC_SYSTICK_ENABLE_BIT;
794             }
795             #endif /* portNVIC_SYSTICK_CLK_BIT_CONFIG */
796 
797             /* Step the tick to account for any tick periods that elapsed. */
798             vTaskStepTick( ulCompleteTickPeriods );
799 
800             /* Exit with interrupts enabled. */
801             __asm volatile ( "cpsie i" ::: "memory" );
802         }
803     }
804 
805 #endif /* #if configUSE_TICKLESS_IDLE */
806 /*-----------------------------------------------------------*/
807 
808 /*
809  * Setup the systick timer to generate the tick interrupts at the required
810  * frequency.
811  */
vPortSetupTimerInterrupt(void)812 __attribute__( ( weak ) ) void vPortSetupTimerInterrupt( void )
813 {
814     /* Calculate the constants required to configure the tick interrupt. */
815     #if ( configUSE_TICKLESS_IDLE == 1 )
816     {
817         ulTimerCountsForOneTick = ( configSYSTICK_CLOCK_HZ / configTICK_RATE_HZ );
818         xMaximumPossibleSuppressedTicks = portMAX_24_BIT_NUMBER / ulTimerCountsForOneTick;
819         ulStoppedTimerCompensation = portMISSED_COUNTS_FACTOR / ( configCPU_CLOCK_HZ / configSYSTICK_CLOCK_HZ );
820     }
821     #endif /* configUSE_TICKLESS_IDLE */
822 
823     /* Stop and clear the SysTick. */
824     portNVIC_SYSTICK_CTRL_REG = 0UL;
825     portNVIC_SYSTICK_CURRENT_VALUE_REG = 0UL;
826 
827     /* Configure SysTick to interrupt at the requested rate. */
828     portNVIC_SYSTICK_LOAD_REG = ( configSYSTICK_CLOCK_HZ / configTICK_RATE_HZ ) - 1UL;
829     portNVIC_SYSTICK_CTRL_REG = ( portNVIC_SYSTICK_CLK_BIT_CONFIG | portNVIC_SYSTICK_INT_BIT | portNVIC_SYSTICK_ENABLE_BIT );
830 }
831 /*-----------------------------------------------------------*/
832 
833 /* This is a naked function. */
vPortEnableVFP(void)834 static void vPortEnableVFP( void )
835 {
836     __asm volatile
837     (
838         "   ldr.w r0, =0xE000ED88       \n" /* The FPU enable bits are in the CPACR. */
839         "   ldr r1, [r0]                \n"
840         "                               \n"
841         "   orr r1, r1, #( 0xf << 20 )  \n" /* Enable CP10 and CP11 coprocessors, then save back. */
842         "   str r1, [r0]                \n"
843         "   bx r14                      \n"
844         "   .ltorg                      \n"
845     );
846 }
847 /*-----------------------------------------------------------*/
848 
849 #if ( configASSERT_DEFINED == 1 )
850 
vPortValidateInterruptPriority(void)851     void vPortValidateInterruptPriority( void )
852     {
853         uint32_t ulCurrentInterrupt;
854         uint8_t ucCurrentPriority;
855 
856         /* Obtain the number of the currently executing interrupt. */
857         __asm volatile ( "mrs %0, ipsr" : "=r" ( ulCurrentInterrupt )::"memory" );
858 
859         /* Is the interrupt number a user defined interrupt? */
860         if( ulCurrentInterrupt >= portFIRST_USER_INTERRUPT_NUMBER )
861         {
862             /* Look up the interrupt's priority. */
863             ucCurrentPriority = pcInterruptPriorityRegisters[ ulCurrentInterrupt ];
864 
865             /* The following assertion will fail if a service routine (ISR) for
866              * an interrupt that has been assigned a priority above
867              * configMAX_SYSCALL_INTERRUPT_PRIORITY calls an ISR safe FreeRTOS API
868              * function.  ISR safe FreeRTOS API functions must *only* be called
869              * from interrupts that have been assigned a priority at or below
870              * configMAX_SYSCALL_INTERRUPT_PRIORITY.
871              *
872              * Numerically low interrupt priority numbers represent logically high
873              * interrupt priorities, therefore the priority of the interrupt must
874              * be set to a value equal to or numerically *higher* than
875              * configMAX_SYSCALL_INTERRUPT_PRIORITY.
876              *
877              * Interrupts that  use the FreeRTOS API must not be left at their
878              * default priority of  zero as that is the highest possible priority,
879              * which is guaranteed to be above configMAX_SYSCALL_INTERRUPT_PRIORITY,
880              * and  therefore also guaranteed to be invalid.
881              *
882              * FreeRTOS maintains separate thread and ISR API functions to ensure
883              * interrupt entry is as fast and simple as possible.
884              *
885              * The following links provide detailed information:
886              * https://www.FreeRTOS.org/RTOS-Cortex-M3-M4.html
887              * https://www.freertos.org/Why-FreeRTOS/FAQs */
888             configASSERT( ucCurrentPriority >= ucMaxSysCallPriority );
889         }
890 
891         /* Priority grouping:  The interrupt controller (NVIC) allows the bits
892          * that define each interrupt's priority to be split between bits that
893          * define the interrupt's pre-emption priority bits and bits that define
894          * the interrupt's sub-priority.  For simplicity all bits must be defined
895          * to be pre-emption priority bits.  The following assertion will fail if
896          * this is not the case (if some bits represent a sub-priority).
897          *
898          * If the application only uses CMSIS libraries for interrupt
899          * configuration then the correct setting can be achieved on all Cortex-M
900          * devices by calling NVIC_SetPriorityGrouping( 0 ); before starting the
901          * scheduler.  Note however that some vendor specific peripheral libraries
902          * assume a non-zero priority group setting, in which cases using a value
903          * of zero will result in unpredictable behaviour. */
904         configASSERT( ( portAIRCR_REG & portPRIORITY_GROUP_MASK ) <= ulMaxPRIGROUPValue );
905     }
906 
907 #endif /* configASSERT_DEFINED */
908