1 /*
2  * FreeRTOS Kernel <DEVELOPMENT BRANCH>
3  * Copyright (C) 2021 Amazon.com, Inc. or its affiliates. All Rights Reserved.
4  *
5  * SPDX-License-Identifier: MIT
6  *
7  * Permission is hereby granted, free of charge, to any person obtaining a copy of
8  * this software and associated documentation files (the "Software"), to deal in
9  * the Software without restriction, including without limitation the rights to
10  * use, copy, modify, merge, publish, distribute, sublicense, and/or sell copies of
11  * the Software, and to permit persons to whom the Software is furnished to do so,
12  * subject to the following conditions:
13  *
14  * The above copyright notice and this permission notice shall be included in all
15  * copies or substantial portions of the Software.
16  *
17  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
18  * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, FITNESS
19  * FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR
20  * COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER
21  * IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN
22  * CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.
23  *
24  * https://www.FreeRTOS.org
25  * https://github.com/FreeRTOS
26  *
27  */
28 
29 /*-----------------------------------------------------------
30 * Implementation of functions defined in portable.h for the ARM CM4 MPU port.
31 *----------------------------------------------------------*/
32 
33 /* Defining MPU_WRAPPERS_INCLUDED_FROM_API_FILE prevents task.h from redefining
34  * all the API functions to use the MPU wrappers.  That should only be done when
35  * task.h is included from an application file. */
36 #define MPU_WRAPPERS_INCLUDED_FROM_API_FILE
37 
38 /* Scheduler includes. */
39 #include "FreeRTOS.h"
40 #include "task.h"
41 #include "mpu_syscall_numbers.h"
42 
43 #ifndef __ARM_FP
44     #error This port can only be used when the project options are configured to enable hardware floating point support.
45 #endif
46 
47 #undef MPU_WRAPPERS_INCLUDED_FROM_API_FILE
48 
49 #ifndef configSYSTICK_CLOCK_HZ
50     #define configSYSTICK_CLOCK_HZ    configCPU_CLOCK_HZ
51     /* Ensure the SysTick is clocked at the same frequency as the core. */
52     #define portNVIC_SYSTICK_CLK      ( 1UL << 2UL )
53 #else
54 
55 /* The way the SysTick is clocked is not modified in case it is not the same
56  * as the core. */
57     #define portNVIC_SYSTICK_CLK    ( 0 )
58 #endif
59 
60 #ifndef configALLOW_UNPRIVILEGED_CRITICAL_SECTIONS
61     #warning "configALLOW_UNPRIVILEGED_CRITICAL_SECTIONS is not defined. We recommend defining it to 0 in FreeRTOSConfig.h for better security."
62     #define configALLOW_UNPRIVILEGED_CRITICAL_SECTIONS    1
63 #endif
64 
65 /* Prototype of all Interrupt Service Routines (ISRs). */
66 typedef void ( * portISR_t )( void );
67 
68 /* Constants required to access and manipulate the NVIC. */
69 #define portNVIC_SYSTICK_CTRL_REG                 ( *( ( volatile uint32_t * ) 0xe000e010 ) )
70 #define portNVIC_SYSTICK_LOAD_REG                 ( *( ( volatile uint32_t * ) 0xe000e014 ) )
71 #define portNVIC_SYSTICK_CURRENT_VALUE_REG        ( *( ( volatile uint32_t * ) 0xe000e018 ) )
72 #define portNVIC_SHPR3_REG                        ( *( ( volatile uint32_t * ) 0xe000ed20 ) )
73 #define portNVIC_SHPR2_REG                        ( *( ( volatile uint32_t * ) 0xe000ed1c ) )
74 #define portNVIC_SYS_CTRL_STATE_REG               ( *( ( volatile uint32_t * ) 0xe000ed24 ) )
75 #define portNVIC_MEM_FAULT_ENABLE                 ( 1UL << 16UL )
76 
77 /* Constants used to detect Cortex-M7 r0p0 and r0p1 cores, and ensure
78  * that a work around is active for errata 837070. */
79 #define portCPUID                                 ( *( ( volatile uint32_t * ) 0xE000ed00 ) )
80 #define portCORTEX_M7_r0p1_ID                     ( 0x410FC271UL )
81 #define portCORTEX_M7_r0p0_ID                     ( 0x410FC270UL )
82 
83 /* Constants required to access and manipulate the MPU. */
84 #define portMPU_TYPE_REG                          ( *( ( volatile uint32_t * ) 0xe000ed90 ) )
85 #define portMPU_REGION_BASE_ADDRESS_REG           ( *( ( volatile uint32_t * ) 0xe000ed9C ) )
86 #define portMPU_REGION_ATTRIBUTE_REG              ( *( ( volatile uint32_t * ) 0xe000edA0 ) )
87 #define portMPU_CTRL_REG                          ( *( ( volatile uint32_t * ) 0xe000ed94 ) )
88 #define portEXPECTED_MPU_TYPE_VALUE               ( configTOTAL_MPU_REGIONS << 8UL )
89 #define portMPU_ENABLE                            ( 0x01UL )
90 #define portMPU_BACKGROUND_ENABLE                 ( 1UL << 2UL )
91 #define portPRIVILEGED_EXECUTION_START_ADDRESS    ( 0UL )
92 #define portMPU_REGION_VALID                      ( 0x10UL )
93 #define portMPU_REGION_ENABLE                     ( 0x01UL )
94 #define portPERIPHERALS_START_ADDRESS             0x40000000UL
95 #define portPERIPHERALS_END_ADDRESS               0x5FFFFFFFUL
96 
97 /* Constants required to access and manipulate the SysTick. */
98 #define portNVIC_SYSTICK_INT                      ( 0x00000002UL )
99 #define portNVIC_SYSTICK_ENABLE                   ( 0x00000001UL )
100 #define portMIN_INTERRUPT_PRIORITY                ( 255UL )
101 #define portNVIC_PENDSV_PRI                       ( ( ( uint32_t ) portMIN_INTERRUPT_PRIORITY ) << 16UL )
102 #define portNVIC_SYSTICK_PRI                      ( ( ( uint32_t ) portMIN_INTERRUPT_PRIORITY ) << 24UL )
103 
104 /* Constants required to manipulate the VFP. */
105 #define portFPCCR                                 ( ( volatile uint32_t * ) 0xe000ef34UL ) /* Floating point context control register. */
106 #define portASPEN_AND_LSPEN_BITS                  ( 0x3UL << 30UL )
107 
108 /* Constants required to set up the initial stack. */
109 #define portINITIAL_XPSR                          ( 0x01000000UL )
110 #define portINITIAL_EXC_RETURN                    ( 0xfffffffdUL )
111 #define portINITIAL_CONTROL_IF_UNPRIVILEGED       ( 0x03 )
112 #define portINITIAL_CONTROL_IF_PRIVILEGED         ( 0x02 )
113 
114 /* Constants used to check the installation of the FreeRTOS interrupt handlers. */
115 #define portSCB_VTOR_REG                          ( *( ( portISR_t ** ) 0xE000ED08 ) )
116 #define portVECTOR_INDEX_SVC                      ( 11 )
117 #define portVECTOR_INDEX_PENDSV                   ( 14 )
118 
119 /* Constants required to check the validity of an interrupt priority. */
120 #define portFIRST_USER_INTERRUPT_NUMBER           ( 16 )
121 #define portNVIC_IP_REGISTERS_OFFSET_16           ( 0xE000E3F0 )
122 #define portAIRCR_REG                             ( *( ( volatile uint32_t * ) 0xE000ED0C ) )
123 #define portMAX_8_BIT_VALUE                       ( ( uint8_t ) 0xff )
124 #define portTOP_BIT_OF_BYTE                       ( ( uint8_t ) 0x80 )
125 #define portMAX_PRIGROUP_BITS                     ( ( uint8_t ) 7 )
126 #define portPRIORITY_GROUP_MASK                   ( 0x07UL << 8UL )
127 #define portPRIGROUP_SHIFT                        ( 8UL )
128 
129 /* Constants used during system call enter and exit. */
130 #define portPSR_STACK_PADDING_MASK                ( 1UL << 9UL )
131 #define portEXC_RETURN_STACK_FRAME_TYPE_MASK      ( 1UL << 4UL )
132 
133 /* Offsets in the stack to the parameters when inside the SVC handler. */
134 #define portOFFSET_TO_LR                          ( 5 )
135 #define portOFFSET_TO_PC                          ( 6 )
136 #define portOFFSET_TO_PSR                         ( 7 )
137 
138 
139 /* For strict compliance with the Cortex-M spec the task start address should
140  * have bit-0 clear, as it is loaded into the PC on exit from an ISR. */
141 #define portSTART_ADDRESS_MASK    ( ( StackType_t ) 0xfffffffeUL )
142 
143 /* Does addr lie within [start, end] address range? */
144 #define portIS_ADDRESS_WITHIN_RANGE( addr, start, end ) \
145     ( ( ( addr ) >= ( start ) ) && ( ( addr ) <= ( end ) ) )
146 
147 /* Is the access request satisfied by the available permissions? */
148 #define portIS_AUTHORIZED( accessRequest, permissions ) \
149     ( ( ( permissions ) & ( accessRequest ) ) == accessRequest )
150 
151 /* Max value that fits in a uint32_t type. */
152 #define portUINT32_MAX    ( ~( ( uint32_t ) 0 ) )
153 
154 /* Check if adding a and b will result in overflow. */
155 #define portADD_UINT32_WILL_OVERFLOW( a, b )    ( ( a ) > ( portUINT32_MAX - ( b ) ) )
156 /*-----------------------------------------------------------*/
157 
158 /*
159  * Configure a number of standard MPU regions that are used by all tasks.
160  */
161 static void prvSetupMPU( void ) PRIVILEGED_FUNCTION;
162 
163 /*
164  * Return the smallest MPU region size that a given number of bytes will fit
165  * into.  The region size is returned as the value that should be programmed
166  * into the region attribute register for that region.
167  */
168 static uint32_t prvGetMPURegionSizeSetting( uint32_t ulActualSizeInBytes ) PRIVILEGED_FUNCTION;
169 
170 /*
171  * Setup the timer to generate the tick interrupts.  The implementation in this
172  * file is weak to allow application writers to change the timer used to
173  * generate the tick interrupt.
174  */
175 void vPortSetupTimerInterrupt( void );
176 
177 /*
178  * Standard FreeRTOS exception handlers.
179  */
180 void xPortPendSVHandler( void ) __attribute__( ( naked ) ) PRIVILEGED_FUNCTION;
181 void xPortSysTickHandler( void ) PRIVILEGED_FUNCTION;
182 void vPortSVCHandler( void ) __attribute__( ( naked ) ) PRIVILEGED_FUNCTION;
183 
184 /*
185  * Starts the scheduler by restoring the context of the first task to run.
186  */
187 static void prvRestoreContextOfFirstTask( void ) __attribute__( ( naked ) ) PRIVILEGED_FUNCTION;
188 
189 /*
190  * C portion of the SVC handler.  The SVC handler is split between an asm entry
191  * and a C wrapper for simplicity of coding and maintenance.
192  */
193 void vSVCHandler_C( uint32_t * pulRegisters ) __attribute__( ( noinline ) ) PRIVILEGED_FUNCTION;
194 
195 /*
196  * Function to enable the VFP.
197  */
198 static void vPortEnableVFP( void ) __attribute__( ( naked ) );
199 
200 /**
201  * @brief Checks whether or not the processor is privileged.
202  *
203  * @return 1 if the processor is already privileged, 0 otherwise.
204  */
205 BaseType_t xIsPrivileged( void ) __attribute__( ( naked ) );
206 
207 /**
208  * @brief Lowers the privilege level by setting the bit 0 of the CONTROL
209  * register.
210  *
211  * Bit 0 of the CONTROL register defines the privilege level of Thread Mode.
212  *  Bit[0] = 0 --> The processor is running privileged
213  *  Bit[0] = 1 --> The processor is running unprivileged.
214  */
215 void vResetPrivilege( void ) __attribute__( ( naked ) );
216 
217 /**
218  * @brief Make a task unprivileged.
219  */
220 void vPortSwitchToUserMode( void );
221 
222 /**
223  * @brief Enter critical section.
224  */
225 #if ( configALLOW_UNPRIVILEGED_CRITICAL_SECTIONS == 1 )
226     void vPortEnterCritical( void ) FREERTOS_SYSTEM_CALL;
227 #else
228     void vPortEnterCritical( void ) PRIVILEGED_FUNCTION;
229 #endif
230 
231 /**
232  * @brief Exit from critical section.
233  */
234 #if ( configALLOW_UNPRIVILEGED_CRITICAL_SECTIONS == 1 )
235     void vPortExitCritical( void ) FREERTOS_SYSTEM_CALL;
236 #else
237     void vPortExitCritical( void ) PRIVILEGED_FUNCTION;
238 #endif
239 
240 #if ( configUSE_MPU_WRAPPERS_V1 == 0 )
241 
242 /**
243  * @brief Sets up the system call stack so that upon returning from
244  * SVC, the system call stack is used.
245  *
246  * @param pulTaskStack The current SP when the SVC was raised.
247  * @param ulLR The value of Link Register (EXC_RETURN) in the SVC handler.
248  * @param ucSystemCallNumber The system call number of the system call.
249  */
250     void vSystemCallEnter( uint32_t * pulTaskStack,
251                            uint32_t ulLR,
252                            uint8_t ucSystemCallNumber ) PRIVILEGED_FUNCTION;
253 
254 #endif /* #if ( configUSE_MPU_WRAPPERS_V1 == 0 ) */
255 
256 #if ( configUSE_MPU_WRAPPERS_V1 == 0 )
257 
258 /**
259  * @brief Raise SVC for exiting from a system call.
260  */
261     void vRequestSystemCallExit( void ) __attribute__( ( naked ) ) PRIVILEGED_FUNCTION;
262 
263 #endif /* #if ( configUSE_MPU_WRAPPERS_V1 == 0 ) */
264 
265 #if ( configUSE_MPU_WRAPPERS_V1 == 0 )
266 
267 /**
268  * @brief Sets up the task stack so that upon returning from
269  * SVC, the task stack is used again.
270  *
271  * @param pulSystemCallStack The current SP when the SVC was raised.
272  * @param ulLR The value of Link Register (EXC_RETURN) in the SVC handler.
273  */
274     void vSystemCallExit( uint32_t * pulSystemCallStack,
275                           uint32_t ulLR ) PRIVILEGED_FUNCTION;
276 
277 #endif /* #if ( configUSE_MPU_WRAPPERS_V1 == 0 ) */
278 
279 /**
280  * @brief Checks whether or not the calling task is privileged.
281  *
282  * @return pdTRUE if the calling task is privileged, pdFALSE otherwise.
283  */
284 BaseType_t xPortIsTaskPrivileged( void ) PRIVILEGED_FUNCTION;
285 /*-----------------------------------------------------------*/
286 
287 /* Each task maintains its own interrupt status in the critical nesting
288  * variable.  Note this is not saved as part of the task context as context
289  * switches can only occur when uxCriticalNesting is zero. */
290 static UBaseType_t uxCriticalNesting = 0xaaaaaaaa;
291 
292 #if ( configUSE_MPU_WRAPPERS_V1 == 0 )
293 
294 /*
295  * This variable is set to pdTRUE when the scheduler is started.
296  */
297     PRIVILEGED_DATA static BaseType_t xSchedulerRunning = pdFALSE;
298 
299 #endif /* #if ( configUSE_MPU_WRAPPERS_V1 == 0 ) */
300 
301 /*
302  * Used by the portASSERT_IF_INTERRUPT_PRIORITY_INVALID() macro to ensure
303  * FreeRTOS API functions are not called from interrupts that have been assigned
304  * a priority above configMAX_SYSCALL_INTERRUPT_PRIORITY.
305  */
306 #if ( configASSERT_DEFINED == 1 )
307     static uint8_t ucMaxSysCallPriority = 0;
308     static uint32_t ulMaxPRIGROUPValue = 0;
309     static const volatile uint8_t * const pcInterruptPriorityRegisters = ( const volatile uint8_t * const ) portNVIC_IP_REGISTERS_OFFSET_16;
310 #endif /* configASSERT_DEFINED */
311 
312 /*-----------------------------------------------------------*/
313 
314 /*
315  * See header file for description.
316  */
pxPortInitialiseStack(StackType_t * pxTopOfStack,TaskFunction_t pxCode,void * pvParameters,BaseType_t xRunPrivileged,xMPU_SETTINGS * xMPUSettings)317 StackType_t * pxPortInitialiseStack( StackType_t * pxTopOfStack,
318                                      TaskFunction_t pxCode,
319                                      void * pvParameters,
320                                      BaseType_t xRunPrivileged,
321                                      xMPU_SETTINGS * xMPUSettings )
322 {
323     if( xRunPrivileged == pdTRUE )
324     {
325         xMPUSettings->ulTaskFlags |= portTASK_IS_PRIVILEGED_FLAG;
326         xMPUSettings->ulContext[ 0 ] = portINITIAL_CONTROL_IF_PRIVILEGED;
327     }
328     else
329     {
330         xMPUSettings->ulTaskFlags &= ( ~( portTASK_IS_PRIVILEGED_FLAG ) );
331         xMPUSettings->ulContext[ 0 ] = portINITIAL_CONTROL_IF_UNPRIVILEGED;
332     }
333 
334     xMPUSettings->ulContext[ 1 ] = 0x04040404;                                        /* r4. */
335     xMPUSettings->ulContext[ 2 ] = 0x05050505;                                        /* r5. */
336     xMPUSettings->ulContext[ 3 ] = 0x06060606;                                        /* r6. */
337     xMPUSettings->ulContext[ 4 ] = 0x07070707;                                        /* r7. */
338     xMPUSettings->ulContext[ 5 ] = 0x08080808;                                        /* r8. */
339     xMPUSettings->ulContext[ 6 ] = 0x09090909;                                        /* r9. */
340     xMPUSettings->ulContext[ 7 ] = 0x10101010;                                        /* r10. */
341     xMPUSettings->ulContext[ 8 ] = 0x11111111;                                        /* r11. */
342     xMPUSettings->ulContext[ 9 ] = portINITIAL_EXC_RETURN;                            /* EXC_RETURN. */
343 
344     xMPUSettings->ulContext[ 10 ] = ( uint32_t ) ( pxTopOfStack - 8 );                /* PSP with the hardware saved stack. */
345     xMPUSettings->ulContext[ 11 ] = ( uint32_t ) pvParameters;                        /* r0. */
346     xMPUSettings->ulContext[ 12 ] = 0x01010101;                                       /* r1. */
347     xMPUSettings->ulContext[ 13 ] = 0x02020202;                                       /* r2. */
348     xMPUSettings->ulContext[ 14 ] = 0x03030303;                                       /* r3. */
349     xMPUSettings->ulContext[ 15 ] = 0x12121212;                                       /* r12. */
350     xMPUSettings->ulContext[ 16 ] = 0;                                                /* LR. */
351     xMPUSettings->ulContext[ 17 ] = ( ( uint32_t ) pxCode ) & portSTART_ADDRESS_MASK; /* PC. */
352     xMPUSettings->ulContext[ 18 ] = portINITIAL_XPSR;                                 /* xPSR. */
353 
354     #if ( configUSE_MPU_WRAPPERS_V1 == 0 )
355     {
356         /* Ensure that the system call stack is double word aligned. */
357         xMPUSettings->xSystemCallStackInfo.pulSystemCallStack = &( xMPUSettings->xSystemCallStackInfo.ulSystemCallStackBuffer[ configSYSTEM_CALL_STACK_SIZE - 1 ] );
358         xMPUSettings->xSystemCallStackInfo.pulSystemCallStack = ( uint32_t * ) ( ( uint32_t ) ( xMPUSettings->xSystemCallStackInfo.pulSystemCallStack ) &
359                                                                                  ( uint32_t ) ( ~( portBYTE_ALIGNMENT_MASK ) ) );
360 
361         /* This is not NULL only for the duration of a system call. */
362         xMPUSettings->xSystemCallStackInfo.pulTaskStack = NULL;
363     }
364     #endif /* #if ( configUSE_MPU_WRAPPERS_V1 == 0 ) */
365 
366     return &( xMPUSettings->ulContext[ 19 ] );
367 }
368 /*-----------------------------------------------------------*/
369 
370 #if ( configUSE_MPU_WRAPPERS_V1 == 0 )
371 
vPortSVCHandler(void)372     void vPortSVCHandler( void ) /* __attribute__( ( naked ) ) PRIVILEGED_FUNCTION */
373     {
374         __asm volatile
375         (
376             ".syntax unified                \n"
377             ".extern vSVCHandler_C          \n"
378             ".extern vSystemCallEnter       \n"
379             ".extern vSystemCallExit        \n"
380             "                               \n"
381             "tst lr, #4                     \n"
382             "ite eq                         \n"
383             "mrseq r0, msp                  \n"
384             "mrsne r0, psp                  \n"
385             "                               \n"
386             "ldr r1, [r0, #24]              \n"
387             "ldrb r2, [r1, #-2]             \n"
388             "cmp r2, %0                     \n"
389             "blt syscall_enter              \n"
390             "cmp r2, %1                     \n"
391             "beq syscall_exit               \n"
392             "b vSVCHandler_C                \n"
393             "                               \n"
394             "syscall_enter:                 \n"
395             "    mov r1, lr                 \n"
396             "    b vSystemCallEnter         \n"
397             "                               \n"
398             "syscall_exit:                  \n"
399             "    mov r1, lr                 \n"
400             "    b vSystemCallExit          \n"
401             "                               \n"
402             : /* No outputs. */
403             : "i" ( NUM_SYSTEM_CALLS ), "i" ( portSVC_SYSTEM_CALL_EXIT )
404             : "r0", "r1", "r2", "memory"
405         );
406     }
407 
408 #else /* #if ( configUSE_MPU_WRAPPERS_V1 == 0 ) */
409 
vPortSVCHandler(void)410     void vPortSVCHandler( void )
411     {
412         /* Assumes psp was in use. */
413         __asm volatile
414         (
415             #ifndef USE_PROCESS_STACK /* Code should not be required if a main() is using the process stack. */
416                 "   tst lr, #4                      \n"
417                 "   ite eq                          \n"
418                 "   mrseq r0, msp                   \n"
419                 "   mrsne r0, psp                   \n"
420             #else
421                 "   mrs r0, psp                     \n"
422             #endif
423             "   b %0                            \n"
424             ::"i" ( vSVCHandler_C ) : "r0", "memory"
425         );
426     }
427 
428 #endif /* #if ( configUSE_MPU_WRAPPERS_V1 == 0 ) */
429 /*-----------------------------------------------------------*/
430 
vSVCHandler_C(uint32_t * pulParam)431 void vSVCHandler_C( uint32_t * pulParam ) /* PRIVILEGED_FUNCTION */
432 {
433     uint8_t ucSVCNumber;
434     uint32_t ulPC;
435 
436     #if ( ( configUSE_MPU_WRAPPERS_V1 == 1 ) && ( configENFORCE_SYSTEM_CALLS_FROM_KERNEL_ONLY == 1 ) )
437         #if defined( __ARMCC_VERSION )
438 
439             /* Declaration when these variable are defined in code instead of being
440              * exported from linker scripts. */
441             extern uint32_t * __syscalls_flash_start__;
442             extern uint32_t * __syscalls_flash_end__;
443         #else
444             /* Declaration when these variable are exported from linker scripts. */
445             extern uint32_t __syscalls_flash_start__[];
446             extern uint32_t __syscalls_flash_end__[];
447         #endif /* #if defined( __ARMCC_VERSION ) */
448     #endif /* #if ( ( configUSE_MPU_WRAPPERS_V1 == 1 ) && ( configENFORCE_SYSTEM_CALLS_FROM_KERNEL_ONLY == 1 ) ) */
449 
450     /* The stack contains: r0, r1, r2, r3, r12, LR, PC and xPSR.  The first
451      * argument (r0) is pulParam[ 0 ]. */
452     ulPC = pulParam[ portOFFSET_TO_PC ];
453     ucSVCNumber = ( ( uint8_t * ) ulPC )[ -2 ];
454 
455     switch( ucSVCNumber )
456     {
457         case portSVC_START_SCHEDULER:
458             prvRestoreContextOfFirstTask();
459             break;
460 
461         case portSVC_YIELD:
462             portNVIC_INT_CTRL_REG = portNVIC_PENDSVSET_BIT;
463 
464             /* Barriers are normally not required
465              * but do ensure the code is completely
466              * within the specified behaviour for the
467              * architecture. */
468             __asm volatile ( "dsb" ::: "memory" );
469             __asm volatile ( "isb" );
470 
471             break;
472 
473     #if ( configUSE_MPU_WRAPPERS_V1 == 1 )
474         #if ( configENFORCE_SYSTEM_CALLS_FROM_KERNEL_ONLY == 1 )
475             case portSVC_RAISE_PRIVILEGE: /* Only raise the privilege, if the
476                                            * svc was raised from any of the
477                                            * system calls. */
478 
479                 if( ( ulPC >= ( uint32_t ) __syscalls_flash_start__ ) &&
480                     ( ulPC <= ( uint32_t ) __syscalls_flash_end__ ) )
481                 {
482                     __asm volatile
483                     (
484                         "   mrs r1, control     \n" /* Obtain current control value. */
485                         "   bic r1, #1          \n" /* Set privilege bit. */
486                         "   msr control, r1     \n" /* Write back new control value. */
487                         ::: "r1", "memory"
488                     );
489                 }
490 
491                 break;
492         #else /* if ( configENFORCE_SYSTEM_CALLS_FROM_KERNEL_ONLY == 1 ) */
493             case portSVC_RAISE_PRIVILEGE:
494                 __asm volatile
495                 (
496                     "   mrs r1, control     \n" /* Obtain current control value. */
497                     "   bic r1, #1          \n" /* Set privilege bit. */
498                     "   msr control, r1     \n" /* Write back new control value. */
499                     ::: "r1", "memory"
500                 );
501                 break;
502         #endif /* #if( configENFORCE_SYSTEM_CALLS_FROM_KERNEL_ONLY == 1 ) */
503     #endif /* #if ( configUSE_MPU_WRAPPERS_V1 == 1 ) */
504 
505         default: /* Unknown SVC call. */
506             break;
507     }
508 }
509 /*-----------------------------------------------------------*/
510 
511 #if ( configUSE_MPU_WRAPPERS_V1 == 0 )
512 
vSystemCallEnter(uint32_t * pulTaskStack,uint32_t ulLR,uint8_t ucSystemCallNumber)513     void vSystemCallEnter( uint32_t * pulTaskStack,
514                            uint32_t ulLR,
515                            uint8_t ucSystemCallNumber ) /* PRIVILEGED_FUNCTION */
516     {
517         extern TaskHandle_t pxCurrentTCB;
518         extern UBaseType_t uxSystemCallImplementations[ NUM_SYSTEM_CALLS ];
519         xMPU_SETTINGS * pxMpuSettings;
520         uint32_t * pulSystemCallStack;
521         uint32_t ulStackFrameSize, ulSystemCallLocation, i;
522 
523         #if defined( __ARMCC_VERSION )
524             /* Declaration when these variable are defined in code instead of being
525              * exported from linker scripts. */
526             extern uint32_t * __syscalls_flash_start__;
527             extern uint32_t * __syscalls_flash_end__;
528         #else
529             /* Declaration when these variable are exported from linker scripts. */
530             extern uint32_t __syscalls_flash_start__[];
531             extern uint32_t __syscalls_flash_end__[];
532         #endif /* #if defined( __ARMCC_VERSION ) */
533 
534         ulSystemCallLocation = pulTaskStack[ portOFFSET_TO_PC ];
535         pxMpuSettings = xTaskGetMPUSettings( pxCurrentTCB );
536 
537         /* Checks:
538          * 1. SVC is raised from the system call section (i.e. application is
539          *    not raising SVC directly).
540          * 2. pxMpuSettings->xSystemCallStackInfo.pulTaskStack must be NULL as
541          *    it is non-NULL only during the execution of a system call (i.e.
542          *    between system call enter and exit).
543          * 3. System call is not for a kernel API disabled by the configuration
544          *    in FreeRTOSConfig.h.
545          * 4. We do not need to check that ucSystemCallNumber is within range
546          *    because the assembly SVC handler checks that before calling
547          *    this function.
548          */
549         if( ( ulSystemCallLocation >= ( uint32_t ) __syscalls_flash_start__ ) &&
550             ( ulSystemCallLocation <= ( uint32_t ) __syscalls_flash_end__ ) &&
551             ( pxMpuSettings->xSystemCallStackInfo.pulTaskStack == NULL ) &&
552             ( uxSystemCallImplementations[ ucSystemCallNumber ] != ( UBaseType_t ) 0 ) )
553         {
554             pulSystemCallStack = pxMpuSettings->xSystemCallStackInfo.pulSystemCallStack;
555 
556             if( ( ulLR & portEXC_RETURN_STACK_FRAME_TYPE_MASK ) == 0UL )
557             {
558                 /* Extended frame i.e. FPU in use. */
559                 ulStackFrameSize = 26;
560                 __asm volatile (
561                     " vpush {s0}         \n" /* Trigger lazy stacking. */
562                     " vpop  {s0}         \n" /* Nullify the affect of the above instruction. */
563                     ::: "memory"
564                     );
565             }
566             else
567             {
568                 /* Standard frame i.e. FPU not in use. */
569                 ulStackFrameSize = 8;
570             }
571 
572             /* Make space on the system call stack for the stack frame. */
573             pulSystemCallStack = pulSystemCallStack - ulStackFrameSize;
574 
575             /* Copy the stack frame. */
576             for( i = 0; i < ulStackFrameSize; i++ )
577             {
578                 pulSystemCallStack[ i ] = pulTaskStack[ i ];
579             }
580 
581             /* Use the pulSystemCallStack in thread mode. */
582             __asm volatile ( "msr psp, %0" : : "r" ( pulSystemCallStack ) );
583 
584             /* Raise the privilege for the duration of the system call. */
585             __asm volatile (
586                 " mrs r1, control     \n" /* Obtain current control value. */
587                 " bic r1, #1          \n" /* Clear nPRIV bit. */
588                 " msr control, r1     \n" /* Write back new control value. */
589                 ::: "r1", "memory"
590                 );
591 
592             /* Remember the location where we should copy the stack frame when we exit from
593              * the system call. */
594             pxMpuSettings->xSystemCallStackInfo.pulTaskStack = pulTaskStack + ulStackFrameSize;
595 
596             /* Store the value of the Link Register before the SVC was raised.
597              * It contains the address of the caller of the System Call entry
598              * point (i.e. the caller of the MPU_<API>). We need to restore it
599              * when we exit from the system call. */
600             pxMpuSettings->xSystemCallStackInfo.ulLinkRegisterAtSystemCallEntry = pulTaskStack[ portOFFSET_TO_LR ];
601 
602             /* Start executing the system call upon returning from this handler. */
603             pulSystemCallStack[ portOFFSET_TO_PC ] = uxSystemCallImplementations[ ucSystemCallNumber ];
604             /* Raise a request to exit from the system call upon finishing the
605              * system call. */
606             pulSystemCallStack[ portOFFSET_TO_LR ] = ( uint32_t ) vRequestSystemCallExit;
607 
608             /* Record if the hardware used padding to force the stack pointer
609              * to be double word aligned. */
610             if( ( pulTaskStack[ portOFFSET_TO_PSR ] & portPSR_STACK_PADDING_MASK ) == portPSR_STACK_PADDING_MASK )
611             {
612                 pxMpuSettings->ulTaskFlags |= portSTACK_FRAME_HAS_PADDING_FLAG;
613             }
614             else
615             {
616                 pxMpuSettings->ulTaskFlags &= ( ~portSTACK_FRAME_HAS_PADDING_FLAG );
617             }
618 
619             /* We ensure in pxPortInitialiseStack that the system call stack is
620              * double word aligned and therefore, there is no need of padding.
621              * Clear the bit[9] of stacked xPSR. */
622             pulSystemCallStack[ portOFFSET_TO_PSR ] &= ( ~portPSR_STACK_PADDING_MASK );
623         }
624     }
625 
626 #endif /* #if ( configUSE_MPU_WRAPPERS_V1 == 0 ) */
627 /*-----------------------------------------------------------*/
628 
629 #if ( configUSE_MPU_WRAPPERS_V1 == 0 )
630 
vRequestSystemCallExit(void)631     void vRequestSystemCallExit( void ) /* __attribute__( ( naked ) ) PRIVILEGED_FUNCTION */
632     {
633         __asm volatile ( "svc %0 \n" ::"i" ( portSVC_SYSTEM_CALL_EXIT ) : "memory" );
634     }
635 
636 #endif /* #if ( configUSE_MPU_WRAPPERS_V1 == 0 ) */
637 /*-----------------------------------------------------------*/
638 
639 #if ( configUSE_MPU_WRAPPERS_V1 == 0 )
640 
vSystemCallExit(uint32_t * pulSystemCallStack,uint32_t ulLR)641     void vSystemCallExit( uint32_t * pulSystemCallStack,
642                           uint32_t ulLR ) /* PRIVILEGED_FUNCTION */
643     {
644         extern TaskHandle_t pxCurrentTCB;
645         xMPU_SETTINGS * pxMpuSettings;
646         uint32_t * pulTaskStack;
647         uint32_t ulStackFrameSize, ulSystemCallLocation, i;
648 
649         #if defined( __ARMCC_VERSION )
650             /* Declaration when these variable are defined in code instead of being
651              * exported from linker scripts. */
652             extern uint32_t * __privileged_functions_start__;
653             extern uint32_t * __privileged_functions_end__;
654         #else
655             /* Declaration when these variable are exported from linker scripts. */
656             extern uint32_t __privileged_functions_start__[];
657             extern uint32_t __privileged_functions_end__[];
658         #endif /* #if defined( __ARMCC_VERSION ) */
659 
660         ulSystemCallLocation = pulSystemCallStack[ portOFFSET_TO_PC ];
661         pxMpuSettings = xTaskGetMPUSettings( pxCurrentTCB );
662 
663         /* Checks:
664          * 1. SVC is raised from the privileged code (i.e. application is not
665          *    raising SVC directly). This SVC is only raised from
666          *    vRequestSystemCallExit which is in the privileged code section.
667          * 2. pxMpuSettings->xSystemCallStackInfo.pulTaskStack must not be NULL -
668          *    this means that we previously entered a system call and the
669          *    application is not attempting to exit without entering a system
670          *    call.
671          */
672         if( ( ulSystemCallLocation >= ( uint32_t ) __privileged_functions_start__ ) &&
673             ( ulSystemCallLocation <= ( uint32_t ) __privileged_functions_end__ ) &&
674             ( pxMpuSettings->xSystemCallStackInfo.pulTaskStack != NULL ) )
675         {
676             pulTaskStack = pxMpuSettings->xSystemCallStackInfo.pulTaskStack;
677 
678             if( ( ulLR & portEXC_RETURN_STACK_FRAME_TYPE_MASK ) == 0UL )
679             {
680                 /* Extended frame i.e. FPU in use. */
681                 ulStackFrameSize = 26;
682                 __asm volatile (
683                     " vpush {s0}         \n" /* Trigger lazy stacking. */
684                     " vpop  {s0}         \n" /* Nullify the affect of the above instruction. */
685                     ::: "memory"
686                     );
687             }
688             else
689             {
690                 /* Standard frame i.e. FPU not in use. */
691                 ulStackFrameSize = 8;
692             }
693 
694             /* Make space on the task stack for the stack frame. */
695             pulTaskStack = pulTaskStack - ulStackFrameSize;
696 
697             /* Copy the stack frame. */
698             for( i = 0; i < ulStackFrameSize; i++ )
699             {
700                 pulTaskStack[ i ] = pulSystemCallStack[ i ];
701             }
702 
703             /* Use the pulTaskStack in thread mode. */
704             __asm volatile ( "msr psp, %0" : : "r" ( pulTaskStack ) );
705 
706             /* Drop the privilege before returning to the thread mode. */
707             __asm volatile (
708                 " mrs r1, control     \n" /* Obtain current control value. */
709                 " orr r1, #1          \n" /* Set nPRIV bit. */
710                 " msr control, r1     \n" /* Write back new control value. */
711                 ::: "r1", "memory"
712                 );
713 
714             /* Return to the caller of the System Call entry point (i.e. the
715              * caller of the MPU_<API>). */
716             pulTaskStack[ portOFFSET_TO_PC ] = pxMpuSettings->xSystemCallStackInfo.ulLinkRegisterAtSystemCallEntry;
717             /* Ensure that LR has a valid value.*/
718             pulTaskStack[ portOFFSET_TO_LR ] = pxMpuSettings->xSystemCallStackInfo.ulLinkRegisterAtSystemCallEntry;
719 
720             /* If the hardware used padding to force the stack pointer
721              * to be double word aligned, set the stacked xPSR bit[9],
722              * otherwise clear it. */
723             if( ( pxMpuSettings->ulTaskFlags & portSTACK_FRAME_HAS_PADDING_FLAG ) == portSTACK_FRAME_HAS_PADDING_FLAG )
724             {
725                 pulTaskStack[ portOFFSET_TO_PSR ] |= portPSR_STACK_PADDING_MASK;
726             }
727             else
728             {
729                 pulTaskStack[ portOFFSET_TO_PSR ] &= ( ~portPSR_STACK_PADDING_MASK );
730             }
731 
732             /* This is not NULL only for the duration of the system call. */
733             pxMpuSettings->xSystemCallStackInfo.pulTaskStack = NULL;
734         }
735     }
736 
737 #endif /* #if ( configUSE_MPU_WRAPPERS_V1 == 0 ) */
738 /*-----------------------------------------------------------*/
739 
xPortIsTaskPrivileged(void)740 BaseType_t xPortIsTaskPrivileged( void ) /* PRIVILEGED_FUNCTION */
741 {
742     BaseType_t xTaskIsPrivileged = pdFALSE;
743     const xMPU_SETTINGS * xTaskMpuSettings = xTaskGetMPUSettings( NULL ); /* Calling task's MPU settings. */
744 
745     if( ( xTaskMpuSettings->ulTaskFlags & portTASK_IS_PRIVILEGED_FLAG ) == portTASK_IS_PRIVILEGED_FLAG )
746     {
747         xTaskIsPrivileged = pdTRUE;
748     }
749 
750     return xTaskIsPrivileged;
751 }
752 /*-----------------------------------------------------------*/
753 
prvRestoreContextOfFirstTask(void)754 static void prvRestoreContextOfFirstTask( void )
755 {
756     __asm volatile
757     (
758         " ldr r0, =0xE000ED08                   \n" /* Use the NVIC offset register to locate the stack. */
759         " ldr r0, [r0]                          \n"
760         " ldr r0, [r0]                          \n"
761         " msr msp, r0                           \n" /* Set the msp back to the start of the stack. */
762         "                                       \n"
763         /*------------ Program MPU. ------------ */
764         " ldr r3, =pxCurrentTCB                 \n" /* r3 = =pxCurrentTCB. */
765         " ldr r2, [r3]                          \n" /* r2 = pxCurrentTCB. */
766         " add r2, r2, #4                        \n" /* r2 = Second item in the TCB which is xMPUSettings. */
767         "                                       \n"
768         " dmb                                   \n" /* Complete outstanding transfers before disabling MPU. */
769         " ldr r0, =0xe000ed94                   \n" /* MPU_CTRL register. */
770         " ldr r3, [r0]                          \n" /* Read the value of MPU_CTRL. */
771         " bic r3, #1                            \n" /* r3 = r3 & ~1 i.e. Clear the bit 0 in r3. */
772         " str r3, [r0]                          \n" /* Disable MPU. */
773         "                                       \n"
774         " ldr r0, =0xe000ed9c                   \n" /* Region Base Address register. */
775         " ldmia r2!, {r4-r11}                   \n" /* Read 4 sets of MPU registers [MPU Region # 0 - 3]. */
776         " stmia r0, {r4-r11}                    \n" /* Write 4 sets of MPU registers [MPU Region # 0 - 3]. */
777         "                                       \n"
778         #if ( configTOTAL_MPU_REGIONS == 16 )
779             " ldmia r2!, {r4-r11}                   \n" /* Read 4 sets of MPU registers [MPU Region # 4 - 8]. */
780             " stmia r0, {r4-r11}                    \n" /* Write 4 sets of MPU registers. [MPU Region # 4 - 8]. */
781             " ldmia r2!, {r4-r11}                   \n" /* Read 4 sets of MPU registers [MPU Region # 9 - 12]. */
782             " stmia r0, {r4-r11}                    \n" /* Write 4 sets of MPU registers. [MPU Region # 9 - 12]. */
783         #endif /* configTOTAL_MPU_REGIONS == 16. */
784         "                                       \n"
785         " ldr r0, =0xe000ed94                   \n" /* MPU_CTRL register. */
786         " ldr r3, [r0]                          \n" /* Read the value of MPU_CTRL. */
787         " orr r3, #1                            \n" /* r3 = r3 | 1 i.e. Set the bit 0 in r3. */
788         " str r3, [r0]                          \n" /* Enable MPU. */
789         " dsb                                   \n" /* Force memory writes before continuing. */
790         "                                       \n"
791         /*---------- Restore Context. ---------- */
792         " ldr r3, =pxCurrentTCB                 \n" /* r3 = =pxCurrentTCB. */
793         " ldr r2, [r3]                          \n" /* r2 = pxCurrentTCB. */
794         " ldr r1, [r2]                          \n" /* r1 = Location of saved context in TCB. */
795         "                                       \n"
796         " ldmdb r1!, {r0, r4-r11}               \n" /* r0 contains PSP after the hardware had saved context. r4-r11 contain hardware saved context. */
797         " msr psp, r0                           \n"
798         " stmia r0, {r4-r11}                    \n" /* Copy the hardware saved context on the task stack. */
799         " ldmdb r1!, {r3-r11, lr}               \n" /* r3 contains CONTROL register. r4-r11 and LR restored. */
800         " msr control, r3                       \n"
801         " str r1, [r2]                          \n" /* Save the location where the context should be saved next as the first member of TCB. */
802         "                                       \n"
803         " mov r0, #0                            \n"
804         " msr basepri, r0                       \n"
805         " bx lr                                 \n"
806         "                                       \n"
807         " .ltorg                                \n" /* Assemble current literal pool to avoid offset-out-of-bound errors with lto. */
808     );
809 }
810 /*-----------------------------------------------------------*/
811 
812 /*
813  * See header file for description.
814  */
xPortStartScheduler(void)815 BaseType_t xPortStartScheduler( void )
816 {
817     /* Errata 837070 workaround must only be enabled on Cortex-M7 r0p0
818      * and r0p1 cores. */
819     #if ( configENABLE_ERRATA_837070_WORKAROUND == 1 )
820         configASSERT( ( portCPUID == portCORTEX_M7_r0p1_ID ) || ( portCPUID == portCORTEX_M7_r0p0_ID ) );
821     #else
822 
823         /* When using this port on a Cortex-M7 r0p0 or r0p1 core, define
824          * configENABLE_ERRATA_837070_WORKAROUND to 1 in your
825          * FreeRTOSConfig.h. */
826         configASSERT( portCPUID != portCORTEX_M7_r0p1_ID );
827         configASSERT( portCPUID != portCORTEX_M7_r0p0_ID );
828     #endif
829 
830     /* An application can install FreeRTOS interrupt handlers in one of the
831      * following ways:
832      * 1. Direct Routing - Install the functions vPortSVCHandler and
833      *    xPortPendSVHandler for SVCall and PendSV interrupts respectively.
834      * 2. Indirect Routing - Install separate handlers for SVCall and PendSV
835      *    interrupts and route program control from those handlers to
836      *    vPortSVCHandler and xPortPendSVHandler functions.
837      *
838      * Applications that use Indirect Routing must set
839      * configCHECK_HANDLER_INSTALLATION to 0 in their FreeRTOSConfig.h. Direct
840      * routing, which is validated here when configCHECK_HANDLER_INSTALLATION
841      * is 1, should be preferred when possible. */
842     #if ( configCHECK_HANDLER_INSTALLATION == 1 )
843     {
844         const portISR_t * const pxVectorTable = portSCB_VTOR_REG;
845 
846         /* Validate that the application has correctly installed the FreeRTOS
847          * handlers for SVCall and PendSV interrupts. We do not check the
848          * installation of the SysTick handler because the application may
849          * choose to drive the RTOS tick using a timer other than the SysTick
850          * timer by overriding the weak function vPortSetupTimerInterrupt().
851          *
852          * Assertion failures here indicate incorrect installation of the
853          * FreeRTOS handlers. For help installing the FreeRTOS handlers, see
854          * https://www.freertos.org/Why-FreeRTOS/FAQs.
855          *
856          * Systems with a configurable address for the interrupt vector table
857          * can also encounter assertion failures or even system faults here if
858          * VTOR is not set correctly to point to the application's vector table. */
859         configASSERT( pxVectorTable[ portVECTOR_INDEX_SVC ] == vPortSVCHandler );
860         configASSERT( pxVectorTable[ portVECTOR_INDEX_PENDSV ] == xPortPendSVHandler );
861     }
862     #endif /* configCHECK_HANDLER_INSTALLATION */
863 
864     #if ( configASSERT_DEFINED == 1 )
865     {
866         volatile uint8_t ucOriginalPriority;
867         volatile uint32_t ulImplementedPrioBits = 0;
868         volatile uint8_t * const pucFirstUserPriorityRegister = ( volatile uint8_t * const ) ( portNVIC_IP_REGISTERS_OFFSET_16 + portFIRST_USER_INTERRUPT_NUMBER );
869         volatile uint8_t ucMaxPriorityValue;
870 
871         /* Determine the maximum priority from which ISR safe FreeRTOS API
872          * functions can be called.  ISR safe functions are those that end in
873          * "FromISR".  FreeRTOS maintains separate thread and ISR API functions to
874          * ensure interrupt entry is as fast and simple as possible.
875          *
876          * Save the interrupt priority value that is about to be clobbered. */
877         ucOriginalPriority = *pucFirstUserPriorityRegister;
878 
879         /* Determine the number of priority bits available.  First write to all
880          * possible bits. */
881         *pucFirstUserPriorityRegister = portMAX_8_BIT_VALUE;
882 
883         /* Read the value back to see how many bits stuck. */
884         ucMaxPriorityValue = *pucFirstUserPriorityRegister;
885 
886         /* Use the same mask on the maximum system call priority. */
887         ucMaxSysCallPriority = configMAX_SYSCALL_INTERRUPT_PRIORITY & ucMaxPriorityValue;
888 
889         /* Check that the maximum system call priority is nonzero after
890          * accounting for the number of priority bits supported by the
891          * hardware. A priority of 0 is invalid because setting the BASEPRI
892          * register to 0 unmasks all interrupts, and interrupts with priority 0
893          * cannot be masked using BASEPRI.
894          * See https://www.FreeRTOS.org/RTOS-Cortex-M3-M4.html */
895         configASSERT( ucMaxSysCallPriority );
896 
897         /* Check that the bits not implemented in hardware are zero in
898          * configMAX_SYSCALL_INTERRUPT_PRIORITY. */
899         configASSERT( ( configMAX_SYSCALL_INTERRUPT_PRIORITY & ( ~ucMaxPriorityValue ) ) == 0U );
900 
901         /* Calculate the maximum acceptable priority group value for the number
902          * of bits read back. */
903 
904         while( ( ucMaxPriorityValue & portTOP_BIT_OF_BYTE ) == portTOP_BIT_OF_BYTE )
905         {
906             ulImplementedPrioBits++;
907             ucMaxPriorityValue <<= ( uint8_t ) 0x01;
908         }
909 
910         if( ulImplementedPrioBits == 8 )
911         {
912             /* When the hardware implements 8 priority bits, there is no way for
913              * the software to configure PRIGROUP to not have sub-priorities. As
914              * a result, the least significant bit is always used for sub-priority
915              * and there are 128 preemption priorities and 2 sub-priorities.
916              *
917              * This may cause some confusion in some cases - for example, if
918              * configMAX_SYSCALL_INTERRUPT_PRIORITY is set to 5, both 5 and 4
919              * priority interrupts will be masked in Critical Sections as those
920              * are at the same preemption priority. This may appear confusing as
921              * 4 is higher (numerically lower) priority than
922              * configMAX_SYSCALL_INTERRUPT_PRIORITY and therefore, should not
923              * have been masked. Instead, if we set configMAX_SYSCALL_INTERRUPT_PRIORITY
924              * to 4, this confusion does not happen and the behaviour remains the same.
925              *
926              * The following assert ensures that the sub-priority bit in the
927              * configMAX_SYSCALL_INTERRUPT_PRIORITY is clear to avoid the above mentioned
928              * confusion. */
929             configASSERT( ( configMAX_SYSCALL_INTERRUPT_PRIORITY & 0x1U ) == 0U );
930             ulMaxPRIGROUPValue = 0;
931         }
932         else
933         {
934             ulMaxPRIGROUPValue = portMAX_PRIGROUP_BITS - ulImplementedPrioBits;
935         }
936 
937         /* Shift the priority group value back to its position within the AIRCR
938          * register. */
939         ulMaxPRIGROUPValue <<= portPRIGROUP_SHIFT;
940         ulMaxPRIGROUPValue &= portPRIORITY_GROUP_MASK;
941 
942         /* Restore the clobbered interrupt priority register to its original
943          * value. */
944         *pucFirstUserPriorityRegister = ucOriginalPriority;
945     }
946     #endif /* configASSERT_DEFINED */
947 
948     /* Make PendSV and SysTick the lowest priority interrupts, and make SVCall
949      * the highest priority. */
950     portNVIC_SHPR3_REG |= portNVIC_PENDSV_PRI;
951     portNVIC_SHPR3_REG |= portNVIC_SYSTICK_PRI;
952     portNVIC_SHPR2_REG = 0;
953 
954     /* Configure the regions in the MPU that are common to all tasks. */
955     prvSetupMPU();
956 
957     /* Start the timer that generates the tick ISR.  Interrupts are disabled
958      * here already. */
959     vPortSetupTimerInterrupt();
960 
961     /* Initialise the critical nesting count ready for the first task. */
962     uxCriticalNesting = 0;
963 
964     #if ( configUSE_MPU_WRAPPERS_V1 == 0 )
965     {
966         xSchedulerRunning = pdTRUE;
967     }
968     #endif /* #if ( configUSE_MPU_WRAPPERS_V1 == 0 ) */
969 
970     /* Ensure the VFP is enabled - it should be anyway. */
971     vPortEnableVFP();
972 
973     /* Lazy save always. */
974     *( portFPCCR ) |= portASPEN_AND_LSPEN_BITS;
975 
976     /* Start the first task.  This also clears the bit that indicates the FPU is
977      * in use in case the FPU was used before the scheduler was started - which
978      * would otherwise result in the unnecessary leaving of space in the SVC stack
979      * for lazy saving of FPU registers. */
980     __asm volatile (
981         " ldr r0, =0xE000ED08   \n" /* Use the NVIC offset register to locate the stack. */
982         " ldr r0, [r0]          \n"
983         " ldr r0, [r0]          \n"
984         " msr msp, r0           \n" /* Set the msp back to the start of the stack. */
985         " mov r0, #0            \n" /* Clear the bit that indicates the FPU is in use, see comment above. */
986         " msr control, r0       \n"
987         " cpsie i               \n" /* Globally enable interrupts. */
988         " cpsie f               \n"
989         " dsb                   \n"
990         " isb                   \n"
991         " svc %0                \n" /* System call to start first task. */
992         " nop                   \n"
993         " .ltorg                \n"
994         ::"i" ( portSVC_START_SCHEDULER ) : "memory" );
995 
996     /* Should not get here! */
997     return 0;
998 }
999 /*-----------------------------------------------------------*/
1000 
vPortEndScheduler(void)1001 void vPortEndScheduler( void )
1002 {
1003     /* Not implemented in ports where there is nothing to return to.
1004      * Artificially force an assert. */
1005     configASSERT( uxCriticalNesting == 1000UL );
1006 }
1007 /*-----------------------------------------------------------*/
1008 
vPortEnterCritical(void)1009 void vPortEnterCritical( void )
1010 {
1011     #if ( configALLOW_UNPRIVILEGED_CRITICAL_SECTIONS == 1 )
1012         if( portIS_PRIVILEGED() == pdFALSE )
1013         {
1014             portRAISE_PRIVILEGE();
1015             portMEMORY_BARRIER();
1016 
1017             portDISABLE_INTERRUPTS();
1018             uxCriticalNesting++;
1019             portMEMORY_BARRIER();
1020 
1021             portRESET_PRIVILEGE();
1022             portMEMORY_BARRIER();
1023         }
1024         else
1025         {
1026             portDISABLE_INTERRUPTS();
1027             uxCriticalNesting++;
1028         }
1029     #else /* if ( configALLOW_UNPRIVILEGED_CRITICAL_SECTIONS == 1 ) */
1030         portDISABLE_INTERRUPTS();
1031         uxCriticalNesting++;
1032     #endif /* if ( configALLOW_UNPRIVILEGED_CRITICAL_SECTIONS == 1 ) */
1033 }
1034 /*-----------------------------------------------------------*/
1035 
vPortExitCritical(void)1036 void vPortExitCritical( void )
1037 {
1038     #if ( configALLOW_UNPRIVILEGED_CRITICAL_SECTIONS == 1 )
1039         if( portIS_PRIVILEGED() == pdFALSE )
1040         {
1041             portRAISE_PRIVILEGE();
1042             portMEMORY_BARRIER();
1043 
1044             configASSERT( uxCriticalNesting );
1045             uxCriticalNesting--;
1046 
1047             if( uxCriticalNesting == 0 )
1048             {
1049                 portENABLE_INTERRUPTS();
1050             }
1051 
1052             portMEMORY_BARRIER();
1053 
1054             portRESET_PRIVILEGE();
1055             portMEMORY_BARRIER();
1056         }
1057         else
1058         {
1059             configASSERT( uxCriticalNesting );
1060             uxCriticalNesting--;
1061 
1062             if( uxCriticalNesting == 0 )
1063             {
1064                 portENABLE_INTERRUPTS();
1065             }
1066         }
1067     #else /* if ( configALLOW_UNPRIVILEGED_CRITICAL_SECTIONS == 1 ) */
1068         configASSERT( uxCriticalNesting );
1069         uxCriticalNesting--;
1070 
1071         if( uxCriticalNesting == 0 )
1072         {
1073             portENABLE_INTERRUPTS();
1074         }
1075     #endif /* if ( configALLOW_UNPRIVILEGED_CRITICAL_SECTIONS == 1 ) */
1076 }
1077 /*-----------------------------------------------------------*/
1078 
xPortPendSVHandler(void)1079 void xPortPendSVHandler( void )
1080 {
1081     /* This is a naked function. */
1082 
1083     __asm volatile
1084     (
1085         " ldr r3, =pxCurrentTCB                 \n" /* r3 = =pxCurrentTCB. */
1086         " ldr r2, [r3]                          \n" /* r2 = pxCurrentTCB. */
1087         " ldr r1, [r2]                          \n" /* r1 = Location where the context should be saved. */
1088         "                                       \n"
1089         /*------------ Save Context. ----------- */
1090         " mrs r3, control                       \n"
1091         " mrs r0, psp                           \n"
1092         " isb                                   \n"
1093         "                                       \n"
1094         " add r0, r0, #0x20                     \n" /* Move r0 to location where s0 is saved. */
1095         " tst lr, #0x10                         \n"
1096         " ittt eq                               \n"
1097         " vstmiaeq r1!, {s16-s31}               \n" /* Store s16-s31. */
1098         " vldmiaeq r0, {s0-s16}                 \n" /* Copy hardware saved FP context into s0-s16. */
1099         " vstmiaeq r1!, {s0-s16}                \n" /* Store hardware saved FP context. */
1100         " sub r0, r0, #0x20                     \n" /* Set r0 back to the location of hardware saved context. */
1101         "                                       \n"
1102         " stmia r1!, {r3-r11, lr}               \n" /* Store CONTROL register, r4-r11 and LR. */
1103         " ldmia r0, {r4-r11}                    \n" /* Copy hardware saved context into r4-r11. */
1104         " stmia r1!, {r0, r4-r11}               \n" /* Store original PSP (after hardware has saved context) and the hardware saved context. */
1105         " str r1, [r2]                          \n" /* Save the location from where the context should be restored as the first member of TCB. */
1106         "                                       \n"
1107         /*---------- Select next task. --------- */
1108         " mov r0, %0                            \n"
1109         #if ( configENABLE_ERRATA_837070_WORKAROUND == 1 )
1110             " cpsid i                               \n" /* ARM Cortex-M7 r0p1 Errata 837070 workaround. */
1111         #endif
1112         " msr basepri, r0                       \n"
1113         " dsb                                   \n"
1114         " isb                                   \n"
1115         #if ( configENABLE_ERRATA_837070_WORKAROUND == 1 )
1116             " cpsie i                               \n" /* ARM Cortex-M7 r0p1 Errata 837070 workaround. */
1117         #endif
1118         " bl vTaskSwitchContext                 \n"
1119         " mov r0, #0                            \n"
1120         " msr basepri, r0                       \n"
1121         "                                       \n"
1122         /*------------ Program MPU. ------------ */
1123         " ldr r3, =pxCurrentTCB                 \n" /* r3 = =pxCurrentTCB. */
1124         " ldr r2, [r3]                          \n" /* r2 = pxCurrentTCB. */
1125         " add r2, r2, #4                        \n" /* r2 = Second item in the TCB which is xMPUSettings. */
1126         "                                       \n"
1127         " dmb                                   \n" /* Complete outstanding transfers before disabling MPU. */
1128         " ldr r0, =0xe000ed94                   \n" /* MPU_CTRL register. */
1129         " ldr r3, [r0]                          \n" /* Read the value of MPU_CTRL. */
1130         " bic r3, #1                            \n" /* r3 = r3 & ~1 i.e. Clear the bit 0 in r3. */
1131         " str r3, [r0]                          \n" /* Disable MPU. */
1132         "                                       \n"
1133         " ldr r0, =0xe000ed9c                   \n" /* Region Base Address register. */
1134         " ldmia r2!, {r4-r11}                   \n" /* Read 4 sets of MPU registers [MPU Region # 0 - 3]. */
1135         " stmia r0, {r4-r11}                    \n" /* Write 4 sets of MPU registers [MPU Region # 0 - 3]. */
1136         "                                       \n"
1137         #if ( configTOTAL_MPU_REGIONS == 16 )
1138             " ldmia r2!, {r4-r11}                   \n" /* Read 4 sets of MPU registers [MPU Region # 4 - 7]. */
1139             " stmia r0, {r4-r11}                    \n" /* Write 4 sets of MPU registers. [MPU Region # 4 - 7]. */
1140             " ldmia r2!, {r4-r11}                   \n" /* Read 4 sets of MPU registers [MPU Region # 8 - 11]. */
1141             " stmia r0, {r4-r11}                    \n" /* Write 4 sets of MPU registers. [MPU Region # 8 - 11]. */
1142         #endif /* configTOTAL_MPU_REGIONS == 16. */
1143         "                                       \n"
1144         " ldr r0, =0xe000ed94                   \n" /* MPU_CTRL register. */
1145         " ldr r3, [r0]                          \n" /* Read the value of MPU_CTRL. */
1146         " orr r3, #1                            \n" /* r3 = r3 | 1 i.e. Set the bit 0 in r3. */
1147         " str r3, [r0]                          \n" /* Enable MPU. */
1148         " dsb                                   \n" /* Force memory writes before continuing. */
1149         "                                       \n"
1150         /*---------- Restore Context. ---------- */
1151         " ldr r3, =pxCurrentTCB                 \n" /* r3 = =pxCurrentTCB. */
1152         " ldr r2, [r3]                          \n" /* r2 = pxCurrentTCB. */
1153         " ldr r1, [r2]                          \n" /* r1 = Location of saved context in TCB. */
1154         "                                       \n"
1155         " ldmdb r1!, {r0, r4-r11}               \n" /* r0 contains PSP after the hardware had saved context. r4-r11 contain hardware saved context. */
1156         " msr psp, r0                           \n"
1157         " stmia r0!, {r4-r11}                   \n" /* Copy the hardware saved context on the task stack. */
1158         " ldmdb r1!, {r3-r11, lr}               \n" /* r3 contains CONTROL register. r4-r11 and LR restored. */
1159         " msr control, r3                       \n"
1160 
1161         " tst lr, #0x10                         \n"
1162         " ittt eq                               \n"
1163         " vldmdbeq r1!, {s0-s16}                \n" /* s0-s16 contain hardware saved FP context. */
1164         " vstmiaeq r0!, {s0-s16}                \n" /* Copy hardware saved FP context on the task stack. */
1165         " vldmdbeq r1!, {s16-s31}               \n" /* Restore s16-s31. */
1166 
1167         " str r1, [r2]                          \n" /* Save the location where the context should be saved next as the first member of TCB. */
1168         " bx lr                                 \n"
1169         "                                       \n"
1170         " .ltorg                                \n" /* Assemble the current literal pool to avoid offset-out-of-bound errors with lto. */
1171         ::"i" ( configMAX_SYSCALL_INTERRUPT_PRIORITY )
1172     );
1173 }
1174 /*-----------------------------------------------------------*/
1175 
xPortSysTickHandler(void)1176 void xPortSysTickHandler( void )
1177 {
1178     uint32_t ulDummy;
1179 
1180     ulDummy = portSET_INTERRUPT_MASK_FROM_ISR();
1181     traceISR_ENTER();
1182     {
1183         /* Increment the RTOS tick. */
1184         if( xTaskIncrementTick() != pdFALSE )
1185         {
1186             traceISR_EXIT_TO_SCHEDULER();
1187             /* Pend a context switch. */
1188             portNVIC_INT_CTRL_REG = portNVIC_PENDSVSET_BIT;
1189         }
1190         else
1191         {
1192             traceISR_EXIT();
1193         }
1194     }
1195     portCLEAR_INTERRUPT_MASK_FROM_ISR( ulDummy );
1196 }
1197 /*-----------------------------------------------------------*/
1198 
1199 /*
1200  * Setup the systick timer to generate the tick interrupts at the required
1201  * frequency.
1202  */
vPortSetupTimerInterrupt(void)1203 __attribute__( ( weak ) ) void vPortSetupTimerInterrupt( void )
1204 {
1205     /* Stop and clear the SysTick. */
1206     portNVIC_SYSTICK_CTRL_REG = 0UL;
1207     portNVIC_SYSTICK_CURRENT_VALUE_REG = 0UL;
1208 
1209     /* Configure SysTick to interrupt at the requested rate. */
1210     portNVIC_SYSTICK_LOAD_REG = ( configSYSTICK_CLOCK_HZ / configTICK_RATE_HZ ) - 1UL;
1211     portNVIC_SYSTICK_CTRL_REG = ( portNVIC_SYSTICK_CLK | portNVIC_SYSTICK_INT | portNVIC_SYSTICK_ENABLE );
1212 }
1213 /*-----------------------------------------------------------*/
1214 
1215 /* This is a naked function. */
vPortEnableVFP(void)1216 static void vPortEnableVFP( void )
1217 {
1218     __asm volatile
1219     (
1220         "   ldr.w r0, =0xE000ED88       \n" /* The FPU enable bits are in the CPACR. */
1221         "   ldr r1, [r0]                \n"
1222         "                               \n"
1223         "   orr r1, r1, #( 0xf << 20 )  \n" /* Enable CP10 and CP11 coprocessors, then save back. */
1224         "   str r1, [r0]                \n"
1225         "   bx r14                      \n"
1226         "   .ltorg                      \n"
1227     );
1228 }
1229 /*-----------------------------------------------------------*/
1230 
prvSetupMPU(void)1231 static void prvSetupMPU( void )
1232 {
1233     #if defined( __ARMCC_VERSION )
1234 
1235         /* Declaration when these variable are defined in code instead of being
1236          * exported from linker scripts. */
1237         extern uint32_t * __privileged_functions_start__;
1238         extern uint32_t * __privileged_functions_end__;
1239         extern uint32_t * __FLASH_segment_start__;
1240         extern uint32_t * __FLASH_segment_end__;
1241         extern uint32_t * __privileged_data_start__;
1242         extern uint32_t * __privileged_data_end__;
1243     #else
1244         /* Declaration when these variable are exported from linker scripts. */
1245         extern uint32_t __privileged_functions_start__[];
1246         extern uint32_t __privileged_functions_end__[];
1247         extern uint32_t __FLASH_segment_start__[];
1248         extern uint32_t __FLASH_segment_end__[];
1249         extern uint32_t __privileged_data_start__[];
1250         extern uint32_t __privileged_data_end__[];
1251     #endif /* if defined( __ARMCC_VERSION ) */
1252 
1253     /* The only permitted number of regions are 8 or 16. */
1254     configASSERT( ( configTOTAL_MPU_REGIONS == 8 ) || ( configTOTAL_MPU_REGIONS == 16 ) );
1255 
1256     /* Ensure that the configTOTAL_MPU_REGIONS is configured correctly. */
1257     configASSERT( portMPU_TYPE_REG == portEXPECTED_MPU_TYPE_VALUE );
1258 
1259     /* Check the expected MPU is present. */
1260     if( portMPU_TYPE_REG == portEXPECTED_MPU_TYPE_VALUE )
1261     {
1262         /* First setup the unprivileged flash for unprivileged read only access. */
1263         portMPU_REGION_BASE_ADDRESS_REG = ( ( uint32_t ) __FLASH_segment_start__ ) | /* Base address. */
1264                                           ( portMPU_REGION_VALID ) |
1265                                           ( portUNPRIVILEGED_FLASH_REGION );
1266 
1267         portMPU_REGION_ATTRIBUTE_REG = ( portMPU_REGION_READ_ONLY ) |
1268                                        ( ( configTEX_S_C_B_FLASH & portMPU_RASR_TEX_S_C_B_MASK ) << portMPU_RASR_TEX_S_C_B_LOCATION ) |
1269                                        ( prvGetMPURegionSizeSetting( ( uint32_t ) __FLASH_segment_end__ - ( uint32_t ) __FLASH_segment_start__ ) ) |
1270                                        ( portMPU_REGION_ENABLE );
1271 
1272         /* Setup the privileged flash for privileged only access.  This is where
1273          * the kernel code is placed. */
1274         portMPU_REGION_BASE_ADDRESS_REG = ( ( uint32_t ) __privileged_functions_start__ ) | /* Base address. */
1275                                           ( portMPU_REGION_VALID ) |
1276                                           ( portPRIVILEGED_FLASH_REGION );
1277 
1278         portMPU_REGION_ATTRIBUTE_REG = ( portMPU_REGION_PRIVILEGED_READ_ONLY ) |
1279                                        ( ( configTEX_S_C_B_FLASH & portMPU_RASR_TEX_S_C_B_MASK ) << portMPU_RASR_TEX_S_C_B_LOCATION ) |
1280                                        ( prvGetMPURegionSizeSetting( ( uint32_t ) __privileged_functions_end__ - ( uint32_t ) __privileged_functions_start__ ) ) |
1281                                        ( portMPU_REGION_ENABLE );
1282 
1283         /* Setup the privileged data RAM region.  This is where the kernel data
1284          * is placed. */
1285         portMPU_REGION_BASE_ADDRESS_REG = ( ( uint32_t ) __privileged_data_start__ ) | /* Base address. */
1286                                           ( portMPU_REGION_VALID ) |
1287                                           ( portPRIVILEGED_RAM_REGION );
1288 
1289         portMPU_REGION_ATTRIBUTE_REG = ( portMPU_REGION_PRIVILEGED_READ_WRITE ) |
1290                                        ( portMPU_REGION_EXECUTE_NEVER ) |
1291                                        ( ( configTEX_S_C_B_SRAM & portMPU_RASR_TEX_S_C_B_MASK ) << portMPU_RASR_TEX_S_C_B_LOCATION ) |
1292                                        prvGetMPURegionSizeSetting( ( uint32_t ) __privileged_data_end__ - ( uint32_t ) __privileged_data_start__ ) |
1293                                        ( portMPU_REGION_ENABLE );
1294 
1295         /* By default allow everything to access the general peripherals.  The
1296          * system peripherals and registers are protected. */
1297         portMPU_REGION_BASE_ADDRESS_REG = ( portPERIPHERALS_START_ADDRESS ) |
1298                                           ( portMPU_REGION_VALID ) |
1299                                           ( portGENERAL_PERIPHERALS_REGION );
1300 
1301         portMPU_REGION_ATTRIBUTE_REG = ( portMPU_REGION_READ_WRITE | portMPU_REGION_EXECUTE_NEVER ) |
1302                                        ( prvGetMPURegionSizeSetting( portPERIPHERALS_END_ADDRESS - portPERIPHERALS_START_ADDRESS ) ) |
1303                                        ( portMPU_REGION_ENABLE );
1304 
1305         /* Enable the memory fault exception. */
1306         portNVIC_SYS_CTRL_STATE_REG |= portNVIC_MEM_FAULT_ENABLE;
1307 
1308         /* Enable the MPU with the background region configured. */
1309         portMPU_CTRL_REG |= ( portMPU_ENABLE | portMPU_BACKGROUND_ENABLE );
1310     }
1311 }
1312 /*-----------------------------------------------------------*/
1313 
prvGetMPURegionSizeSetting(uint32_t ulActualSizeInBytes)1314 static uint32_t prvGetMPURegionSizeSetting( uint32_t ulActualSizeInBytes )
1315 {
1316     uint32_t ulRegionSize, ulReturnValue = 4;
1317 
1318     /* 32 is the smallest region size, 31 is the largest valid value for
1319      * ulReturnValue. */
1320     for( ulRegionSize = 32UL; ulReturnValue < 31UL; ( ulRegionSize <<= 1UL ) )
1321     {
1322         if( ulActualSizeInBytes <= ulRegionSize )
1323         {
1324             break;
1325         }
1326         else
1327         {
1328             ulReturnValue++;
1329         }
1330     }
1331 
1332     /* Shift the code by one before returning so it can be written directly
1333      * into the the correct bit position of the attribute register. */
1334     return( ulReturnValue << 1UL );
1335 }
1336 /*-----------------------------------------------------------*/
1337 
xIsPrivileged(void)1338 BaseType_t xIsPrivileged( void ) /* __attribute__ (( naked )) */
1339 {
1340     __asm volatile
1341     (
1342         "   mrs r0, control                         \n" /* r0 = CONTROL. */
1343         "   tst r0, #1                              \n" /* Perform r0 & 1 (bitwise AND) and update the conditions flag. */
1344         "   ite ne                                  \n"
1345         "   movne r0, #0                            \n" /* CONTROL[0]!=0. Return false to indicate that the processor is not privileged. */
1346         "   moveq r0, #1                            \n" /* CONTROL[0]==0. Return true to indicate that the processor is privileged. */
1347         "   bx lr                                   \n" /* Return. */
1348         ::: "r0", "memory"
1349     );
1350 }
1351 /*-----------------------------------------------------------*/
1352 
vResetPrivilege(void)1353 void vResetPrivilege( void ) /* __attribute__ (( naked )) */
1354 {
1355     __asm volatile
1356     (
1357         "   mrs r0, control                         \n" /* r0 = CONTROL. */
1358         "   orr r0, #1                              \n" /* r0 = r0 | 1. */
1359         "   msr control, r0                         \n" /* CONTROL = r0. */
1360         "   bx lr                                   \n" /* Return to the caller. */
1361         ::: "r0", "memory"
1362     );
1363 }
1364 /*-----------------------------------------------------------*/
1365 
vPortSwitchToUserMode(void)1366 void vPortSwitchToUserMode( void )
1367 {
1368     /* Load the current task's MPU settings from its TCB. */
1369     xMPU_SETTINGS * xTaskMpuSettings = xTaskGetMPUSettings( NULL );
1370 
1371     /* Mark the task as unprivileged. */
1372     xTaskMpuSettings->ulTaskFlags &= ( ~( portTASK_IS_PRIVILEGED_FLAG ) );
1373 
1374     /* Lower the processor's privilege level. */
1375     vResetPrivilege();
1376 }
1377 /*-----------------------------------------------------------*/
1378 
vPortStoreTaskMPUSettings(xMPU_SETTINGS * xMPUSettings,const struct xMEMORY_REGION * const xRegions,StackType_t * pxBottomOfStack,configSTACK_DEPTH_TYPE uxStackDepth)1379 void vPortStoreTaskMPUSettings( xMPU_SETTINGS * xMPUSettings,
1380                                 const struct xMEMORY_REGION * const xRegions,
1381                                 StackType_t * pxBottomOfStack,
1382                                 configSTACK_DEPTH_TYPE uxStackDepth )
1383 {
1384     #if defined( __ARMCC_VERSION )
1385 
1386         /* Declaration when these variable are defined in code instead of being
1387          * exported from linker scripts. */
1388         extern uint32_t * __SRAM_segment_start__;
1389         extern uint32_t * __SRAM_segment_end__;
1390         extern uint32_t * __privileged_data_start__;
1391         extern uint32_t * __privileged_data_end__;
1392     #else
1393         /* Declaration when these variable are exported from linker scripts. */
1394         extern uint32_t __SRAM_segment_start__[];
1395         extern uint32_t __SRAM_segment_end__[];
1396         extern uint32_t __privileged_data_start__[];
1397         extern uint32_t __privileged_data_end__[];
1398     #endif /* if defined( __ARMCC_VERSION ) */
1399 
1400     int32_t lIndex;
1401     uint32_t ul;
1402 
1403     if( xRegions == NULL )
1404     {
1405         /* No MPU regions are specified so allow access to all RAM. */
1406         xMPUSettings->xRegion[ 0 ].ulRegionBaseAddress =
1407             ( ( uint32_t ) __SRAM_segment_start__ ) | /* Base address. */
1408             ( portMPU_REGION_VALID ) |
1409             ( portSTACK_REGION );                     /* Region number. */
1410 
1411         xMPUSettings->xRegion[ 0 ].ulRegionAttribute =
1412             ( portMPU_REGION_READ_WRITE ) |
1413             ( portMPU_REGION_EXECUTE_NEVER ) |
1414             ( ( configTEX_S_C_B_SRAM & portMPU_RASR_TEX_S_C_B_MASK ) << portMPU_RASR_TEX_S_C_B_LOCATION ) |
1415             ( prvGetMPURegionSizeSetting( ( uint32_t ) __SRAM_segment_end__ - ( uint32_t ) __SRAM_segment_start__ ) ) |
1416             ( portMPU_REGION_ENABLE );
1417 
1418         xMPUSettings->xRegionSettings[ 0 ].ulRegionStartAddress = ( uint32_t ) __SRAM_segment_start__;
1419         xMPUSettings->xRegionSettings[ 0 ].ulRegionEndAddress = ( uint32_t ) __SRAM_segment_end__;
1420         xMPUSettings->xRegionSettings[ 0 ].ulRegionPermissions = ( tskMPU_READ_PERMISSION |
1421                                                                    tskMPU_WRITE_PERMISSION );
1422 
1423         /* Invalidate user configurable regions. */
1424         for( ul = 1UL; ul <= portNUM_CONFIGURABLE_REGIONS; ul++ )
1425         {
1426             xMPUSettings->xRegion[ ul ].ulRegionBaseAddress = ( ( ul - 1UL ) | portMPU_REGION_VALID );
1427             xMPUSettings->xRegion[ ul ].ulRegionAttribute = 0UL;
1428             xMPUSettings->xRegionSettings[ ul ].ulRegionStartAddress = 0UL;
1429             xMPUSettings->xRegionSettings[ ul ].ulRegionEndAddress = 0UL;
1430             xMPUSettings->xRegionSettings[ ul ].ulRegionPermissions = 0UL;
1431         }
1432     }
1433     else
1434     {
1435         /* This function is called automatically when the task is created - in
1436          * which case the stack region parameters will be valid.  At all other
1437          * times the stack parameters will not be valid and it is assumed that the
1438          * stack region has already been configured. */
1439         if( uxStackDepth > 0 )
1440         {
1441             /* Define the region that allows access to the stack. */
1442             xMPUSettings->xRegion[ 0 ].ulRegionBaseAddress =
1443                 ( ( uint32_t ) pxBottomOfStack ) |
1444                 ( portMPU_REGION_VALID ) |
1445                 ( portSTACK_REGION ); /* Region number. */
1446 
1447             xMPUSettings->xRegion[ 0 ].ulRegionAttribute =
1448                 ( portMPU_REGION_READ_WRITE ) |
1449                 ( portMPU_REGION_EXECUTE_NEVER ) |
1450                 ( prvGetMPURegionSizeSetting( uxStackDepth * ( configSTACK_DEPTH_TYPE ) sizeof( StackType_t ) ) ) |
1451                 ( ( configTEX_S_C_B_SRAM & portMPU_RASR_TEX_S_C_B_MASK ) << portMPU_RASR_TEX_S_C_B_LOCATION ) |
1452                 ( portMPU_REGION_ENABLE );
1453 
1454             xMPUSettings->xRegionSettings[ 0 ].ulRegionStartAddress = ( uint32_t ) pxBottomOfStack;
1455             xMPUSettings->xRegionSettings[ 0 ].ulRegionEndAddress = ( uint32_t ) ( ( uint32_t ) ( pxBottomOfStack ) +
1456                                                                                    ( uxStackDepth * ( configSTACK_DEPTH_TYPE ) sizeof( StackType_t ) ) - 1UL );
1457             xMPUSettings->xRegionSettings[ 0 ].ulRegionPermissions = ( tskMPU_READ_PERMISSION |
1458                                                                        tskMPU_WRITE_PERMISSION );
1459         }
1460 
1461         lIndex = 0;
1462 
1463         for( ul = 1UL; ul <= portNUM_CONFIGURABLE_REGIONS; ul++ )
1464         {
1465             if( ( xRegions[ lIndex ] ).ulLengthInBytes > 0UL )
1466             {
1467                 /* Translate the generic region definition contained in
1468                  * xRegions into the CM4 specific MPU settings that are then
1469                  * stored in xMPUSettings. */
1470                 xMPUSettings->xRegion[ ul ].ulRegionBaseAddress =
1471                     ( ( uint32_t ) xRegions[ lIndex ].pvBaseAddress ) |
1472                     ( portMPU_REGION_VALID ) |
1473                     ( ul - 1UL ); /* Region number. */
1474 
1475                 xMPUSettings->xRegion[ ul ].ulRegionAttribute =
1476                     ( prvGetMPURegionSizeSetting( xRegions[ lIndex ].ulLengthInBytes ) ) |
1477                     ( xRegions[ lIndex ].ulParameters ) |
1478                     ( portMPU_REGION_ENABLE );
1479 
1480                 xMPUSettings->xRegionSettings[ ul ].ulRegionStartAddress = ( uint32_t ) xRegions[ lIndex ].pvBaseAddress;
1481                 xMPUSettings->xRegionSettings[ ul ].ulRegionEndAddress = ( uint32_t ) ( ( uint32_t ) xRegions[ lIndex ].pvBaseAddress + xRegions[ lIndex ].ulLengthInBytes - 1UL );
1482                 xMPUSettings->xRegionSettings[ ul ].ulRegionPermissions = 0UL;
1483 
1484                 if( ( ( xRegions[ lIndex ].ulParameters & portMPU_REGION_READ_ONLY ) == portMPU_REGION_READ_ONLY ) ||
1485                     ( ( xRegions[ lIndex ].ulParameters & portMPU_REGION_PRIVILEGED_READ_WRITE_UNPRIV_READ_ONLY ) == portMPU_REGION_PRIVILEGED_READ_WRITE_UNPRIV_READ_ONLY ) )
1486                 {
1487                     xMPUSettings->xRegionSettings[ ul ].ulRegionPermissions = tskMPU_READ_PERMISSION;
1488                 }
1489 
1490                 if( ( xRegions[ lIndex ].ulParameters & portMPU_REGION_READ_WRITE ) == portMPU_REGION_READ_WRITE )
1491                 {
1492                     xMPUSettings->xRegionSettings[ ul ].ulRegionPermissions = ( tskMPU_READ_PERMISSION | tskMPU_WRITE_PERMISSION );
1493                 }
1494             }
1495             else
1496             {
1497                 /* Invalidate the region. */
1498                 xMPUSettings->xRegion[ ul ].ulRegionBaseAddress = ( ( ul - 1UL ) | portMPU_REGION_VALID );
1499                 xMPUSettings->xRegion[ ul ].ulRegionAttribute = 0UL;
1500                 xMPUSettings->xRegionSettings[ ul ].ulRegionStartAddress = 0UL;
1501                 xMPUSettings->xRegionSettings[ ul ].ulRegionEndAddress = 0UL;
1502                 xMPUSettings->xRegionSettings[ ul ].ulRegionPermissions = 0UL;
1503             }
1504 
1505             lIndex++;
1506         }
1507     }
1508 }
1509 /*-----------------------------------------------------------*/
1510 
1511 #if ( configUSE_MPU_WRAPPERS_V1 == 0 )
1512 
xPortIsAuthorizedToAccessBuffer(const void * pvBuffer,uint32_t ulBufferLength,uint32_t ulAccessRequested)1513     BaseType_t xPortIsAuthorizedToAccessBuffer( const void * pvBuffer,
1514                                                 uint32_t ulBufferLength,
1515                                                 uint32_t ulAccessRequested ) /* PRIVILEGED_FUNCTION */
1516 
1517     {
1518         uint32_t i, ulBufferStartAddress, ulBufferEndAddress;
1519         BaseType_t xAccessGranted = pdFALSE;
1520         const xMPU_SETTINGS * xTaskMpuSettings = xTaskGetMPUSettings( NULL ); /* Calling task's MPU settings. */
1521 
1522         if( xSchedulerRunning == pdFALSE )
1523         {
1524             /* Grant access to all the kernel objects before the scheduler
1525              * is started. It is necessary because there is no task running
1526              * yet and therefore, we cannot use the permissions of any
1527              * task. */
1528             xAccessGranted = pdTRUE;
1529         }
1530         else if( ( xTaskMpuSettings->ulTaskFlags & portTASK_IS_PRIVILEGED_FLAG ) == portTASK_IS_PRIVILEGED_FLAG )
1531         {
1532             xAccessGranted = pdTRUE;
1533         }
1534         else
1535         {
1536             if( portADD_UINT32_WILL_OVERFLOW( ( ( uint32_t ) pvBuffer ), ( ulBufferLength - 1UL ) ) == pdFALSE )
1537             {
1538                 ulBufferStartAddress = ( uint32_t ) pvBuffer;
1539                 ulBufferEndAddress = ( ( ( uint32_t ) pvBuffer ) + ulBufferLength - 1UL );
1540 
1541                 for( i = 0; i < portTOTAL_NUM_REGIONS_IN_TCB; i++ )
1542                 {
1543                     if( portIS_ADDRESS_WITHIN_RANGE( ulBufferStartAddress,
1544                                                      xTaskMpuSettings->xRegionSettings[ i ].ulRegionStartAddress,
1545                                                      xTaskMpuSettings->xRegionSettings[ i ].ulRegionEndAddress ) &&
1546                         portIS_ADDRESS_WITHIN_RANGE( ulBufferEndAddress,
1547                                                      xTaskMpuSettings->xRegionSettings[ i ].ulRegionStartAddress,
1548                                                      xTaskMpuSettings->xRegionSettings[ i ].ulRegionEndAddress ) &&
1549                         portIS_AUTHORIZED( ulAccessRequested, xTaskMpuSettings->xRegionSettings[ i ].ulRegionPermissions ) )
1550                     {
1551                         xAccessGranted = pdTRUE;
1552                         break;
1553                     }
1554                 }
1555             }
1556         }
1557 
1558         return xAccessGranted;
1559     }
1560 
1561 #endif /* #if ( configUSE_MPU_WRAPPERS_V1 == 0 ) */
1562 /*-----------------------------------------------------------*/
1563 
1564 #if ( configASSERT_DEFINED == 1 )
1565 
vPortValidateInterruptPriority(void)1566     void vPortValidateInterruptPriority( void )
1567     {
1568         uint32_t ulCurrentInterrupt;
1569         uint8_t ucCurrentPriority;
1570 
1571         /* Obtain the number of the currently executing interrupt. */
1572         __asm volatile ( "mrs %0, ipsr" : "=r" ( ulCurrentInterrupt )::"memory" );
1573 
1574         /* Is the interrupt number a user defined interrupt? */
1575         if( ulCurrentInterrupt >= portFIRST_USER_INTERRUPT_NUMBER )
1576         {
1577             /* Look up the interrupt's priority. */
1578             ucCurrentPriority = pcInterruptPriorityRegisters[ ulCurrentInterrupt ];
1579 
1580             /* The following assertion will fail if a service routine (ISR) for
1581              * an interrupt that has been assigned a priority above
1582              * configMAX_SYSCALL_INTERRUPT_PRIORITY calls an ISR safe FreeRTOS API
1583              * function.  ISR safe FreeRTOS API functions must *only* be called
1584              * from interrupts that have been assigned a priority at or below
1585              * configMAX_SYSCALL_INTERRUPT_PRIORITY.
1586              *
1587              * Numerically low interrupt priority numbers represent logically high
1588              * interrupt priorities, therefore the priority of the interrupt must
1589              * be set to a value equal to or numerically *higher* than
1590              * configMAX_SYSCALL_INTERRUPT_PRIORITY.
1591              *
1592              * Interrupts that use the FreeRTOS API must not be left at their
1593              * default priority of zero as that is the highest possible priority,
1594              * which is guaranteed to be above configMAX_SYSCALL_INTERRUPT_PRIORITY,
1595              * and therefore also guaranteed to be invalid.
1596              *
1597              * FreeRTOS maintains separate thread and ISR API functions to ensure
1598              * interrupt entry is as fast and simple as possible.
1599              *
1600              * The following links provide detailed information:
1601              * https://www.FreeRTOS.org/RTOS-Cortex-M3-M4.html
1602              * https://www.freertos.org/Why-FreeRTOS/FAQs */
1603             configASSERT( ucCurrentPriority >= ucMaxSysCallPriority );
1604         }
1605 
1606         /* Priority grouping:  The interrupt controller (NVIC) allows the bits
1607          * that define each interrupt's priority to be split between bits that
1608          * define the interrupt's pre-emption priority bits and bits that define
1609          * the interrupt's sub-priority.  For simplicity all bits must be defined
1610          * to be pre-emption priority bits.  The following assertion will fail if
1611          * this is not the case (if some bits represent a sub-priority).
1612          *
1613          * If the application only uses CMSIS libraries for interrupt
1614          * configuration then the correct setting can be achieved on all Cortex-M
1615          * devices by calling NVIC_SetPriorityGrouping( 0 ); before starting the
1616          * scheduler.  Note however that some vendor specific peripheral libraries
1617          * assume a non-zero priority group setting, in which cases using a value
1618          * of zero will result in unpredictable behaviour. */
1619         configASSERT( ( portAIRCR_REG & portPRIORITY_GROUP_MASK ) <= ulMaxPRIGROUPValue );
1620     }
1621 
1622 #endif /* configASSERT_DEFINED */
1623 /*-----------------------------------------------------------*/
1624 
1625 #if ( ( configUSE_MPU_WRAPPERS_V1 == 0 ) && ( configENABLE_ACCESS_CONTROL_LIST == 1 ) )
1626 
vPortGrantAccessToKernelObject(TaskHandle_t xInternalTaskHandle,int32_t lInternalIndexOfKernelObject)1627     void vPortGrantAccessToKernelObject( TaskHandle_t xInternalTaskHandle,
1628                                          int32_t lInternalIndexOfKernelObject ) /* PRIVILEGED_FUNCTION */
1629     {
1630         uint32_t ulAccessControlListEntryIndex, ulAccessControlListEntryBit;
1631         xMPU_SETTINGS * xTaskMpuSettings;
1632 
1633         ulAccessControlListEntryIndex = ( ( uint32_t ) lInternalIndexOfKernelObject / portACL_ENTRY_SIZE_BITS );
1634         ulAccessControlListEntryBit = ( ( uint32_t ) lInternalIndexOfKernelObject % portACL_ENTRY_SIZE_BITS );
1635 
1636         xTaskMpuSettings = xTaskGetMPUSettings( xInternalTaskHandle );
1637 
1638         xTaskMpuSettings->ulAccessControlList[ ulAccessControlListEntryIndex ] |= ( 1U << ulAccessControlListEntryBit );
1639     }
1640 
1641 #endif /* #if ( ( configUSE_MPU_WRAPPERS_V1 == 0 ) && ( configENABLE_ACCESS_CONTROL_LIST == 1 ) ) */
1642 /*-----------------------------------------------------------*/
1643 
1644 #if ( ( configUSE_MPU_WRAPPERS_V1 == 0 ) && ( configENABLE_ACCESS_CONTROL_LIST == 1 ) )
1645 
vPortRevokeAccessToKernelObject(TaskHandle_t xInternalTaskHandle,int32_t lInternalIndexOfKernelObject)1646     void vPortRevokeAccessToKernelObject( TaskHandle_t xInternalTaskHandle,
1647                                           int32_t lInternalIndexOfKernelObject ) /* PRIVILEGED_FUNCTION */
1648     {
1649         uint32_t ulAccessControlListEntryIndex, ulAccessControlListEntryBit;
1650         xMPU_SETTINGS * xTaskMpuSettings;
1651 
1652         ulAccessControlListEntryIndex = ( ( uint32_t ) lInternalIndexOfKernelObject / portACL_ENTRY_SIZE_BITS );
1653         ulAccessControlListEntryBit = ( ( uint32_t ) lInternalIndexOfKernelObject % portACL_ENTRY_SIZE_BITS );
1654 
1655         xTaskMpuSettings = xTaskGetMPUSettings( xInternalTaskHandle );
1656 
1657         xTaskMpuSettings->ulAccessControlList[ ulAccessControlListEntryIndex ] &= ~( 1U << ulAccessControlListEntryBit );
1658     }
1659 
1660 #endif /* #if ( ( configUSE_MPU_WRAPPERS_V1 == 0 ) && ( configENABLE_ACCESS_CONTROL_LIST == 1 ) ) */
1661 /*-----------------------------------------------------------*/
1662 
1663 #if ( configUSE_MPU_WRAPPERS_V1 == 0 )
1664 
1665     #if ( configENABLE_ACCESS_CONTROL_LIST == 1 )
1666 
xPortIsAuthorizedToAccessKernelObject(int32_t lInternalIndexOfKernelObject)1667         BaseType_t xPortIsAuthorizedToAccessKernelObject( int32_t lInternalIndexOfKernelObject ) /* PRIVILEGED_FUNCTION */
1668         {
1669             uint32_t ulAccessControlListEntryIndex, ulAccessControlListEntryBit;
1670             BaseType_t xAccessGranted = pdFALSE;
1671             const xMPU_SETTINGS * xTaskMpuSettings;
1672 
1673             if( xSchedulerRunning == pdFALSE )
1674             {
1675                 /* Grant access to all the kernel objects before the scheduler
1676                  * is started. It is necessary because there is no task running
1677                  * yet and therefore, we cannot use the permissions of any
1678                  * task. */
1679                 xAccessGranted = pdTRUE;
1680             }
1681             else
1682             {
1683                 xTaskMpuSettings = xTaskGetMPUSettings( NULL ); /* Calling task's MPU settings. */
1684 
1685                 ulAccessControlListEntryIndex = ( ( uint32_t ) lInternalIndexOfKernelObject / portACL_ENTRY_SIZE_BITS );
1686                 ulAccessControlListEntryBit = ( ( uint32_t ) lInternalIndexOfKernelObject % portACL_ENTRY_SIZE_BITS );
1687 
1688                 if( ( xTaskMpuSettings->ulTaskFlags & portTASK_IS_PRIVILEGED_FLAG ) == portTASK_IS_PRIVILEGED_FLAG )
1689                 {
1690                     xAccessGranted = pdTRUE;
1691                 }
1692                 else
1693                 {
1694                     if( ( xTaskMpuSettings->ulAccessControlList[ ulAccessControlListEntryIndex ] & ( 1U << ulAccessControlListEntryBit ) ) != 0 )
1695                     {
1696                         xAccessGranted = pdTRUE;
1697                     }
1698                 }
1699             }
1700 
1701             return xAccessGranted;
1702         }
1703 
1704     #else /* #if ( configENABLE_ACCESS_CONTROL_LIST == 1 ) */
1705 
xPortIsAuthorizedToAccessKernelObject(int32_t lInternalIndexOfKernelObject)1706         BaseType_t xPortIsAuthorizedToAccessKernelObject( int32_t lInternalIndexOfKernelObject ) /* PRIVILEGED_FUNCTION */
1707         {
1708             ( void ) lInternalIndexOfKernelObject;
1709 
1710             /* If Access Control List feature is not used, all the tasks have
1711              * access to all the kernel objects. */
1712             return pdTRUE;
1713         }
1714 
1715     #endif /* #if ( configENABLE_ACCESS_CONTROL_LIST == 1 ) */
1716 
1717 #endif /* #if ( configUSE_MPU_WRAPPERS_V1 == 0 ) */
1718 /*-----------------------------------------------------------*/
1719