1 /*
2  * Copyright (C) 2018-2022 Intel Corporation.
3  * SPDX-License-Identifier: BSD-3-Clause
4  */
5 
6 #include <acrn_common.h>
7 #include <asm/default_acpi_info.h>
8 #include <platform_acpi_info.h>
9 #include <asm/per_cpu.h>
10 #include <asm/io.h>
11 #include <asm/msr.h>
12 #include <asm/pgtable.h>
13 #include <asm/host_pm.h>
14 #include <asm/trampoline.h>
15 #include <asm/vmx.h>
16 #include <console.h>
17 #include <asm/ioapic.h>
18 #include <asm/vtd.h>
19 #include <asm/lapic.h>
20 #include <asm/tsc.h>
21 #include <delay.h>
22 #include <asm/board.h>
23 #include <asm/cpuid.h>
24 
25 struct cpu_context cpu_ctx;
26 
27 /* The values in this structure should come from host ACPI table */
28 static struct pm_s_state_data host_pm_s_state = {
29 	.pm1a_evt = {
30 		.space_id = PM1A_EVT_SPACE_ID,
31 		.bit_width = PM1A_EVT_BIT_WIDTH,
32 		.bit_offset = PM1A_EVT_BIT_OFFSET,
33 		.access_size = PM1A_EVT_ACCESS_SIZE,
34 		.address = PM1A_EVT_ADDRESS
35 	},
36 	.pm1b_evt = {
37 		.space_id = PM1B_EVT_SPACE_ID,
38 		.bit_width = PM1B_EVT_BIT_WIDTH,
39 		.bit_offset = PM1B_EVT_BIT_OFFSET,
40 		.access_size = PM1B_EVT_ACCESS_SIZE,
41 		.address = PM1B_EVT_ADDRESS
42 	},
43 	.pm1a_cnt = {
44 		.space_id = PM1A_CNT_SPACE_ID,
45 		.bit_width = PM1A_CNT_BIT_WIDTH,
46 		.bit_offset = PM1A_CNT_BIT_OFFSET,
47 		.access_size = PM1A_CNT_ACCESS_SIZE,
48 		.address = PM1A_CNT_ADDRESS
49 	},
50 	.pm1b_cnt = {
51 		.space_id = PM1B_CNT_SPACE_ID,
52 		.bit_width = PM1B_CNT_BIT_WIDTH,
53 		.bit_offset = PM1B_CNT_BIT_OFFSET,
54 		.access_size = PM1B_CNT_ACCESS_SIZE,
55 		.address = PM1B_CNT_ADDRESS
56 	},
57 	.s3_pkg = {
58 		.val_pm1a = S3_PKG_VAL_PM1A,
59 		.val_pm1b = S3_PKG_VAL_PM1B,
60 		.reserved = S3_PKG_RESERVED
61 	},
62 	.s5_pkg = {
63 		.val_pm1a = S5_PKG_VAL_PM1A,
64 		.val_pm1b = S5_PKG_VAL_PM1B,
65 		.reserved = S5_PKG_RESERVED
66 	},
67 	.wake_vector_32 = (uint32_t *)WAKE_VECTOR_32,
68 	.wake_vector_64 = (uint64_t *)WAKE_VECTOR_64
69 };
70 
71 /* host reset register defined in ACPI */
72 static struct acpi_reset_reg host_reset_reg = {
73 	.reg = {
74 		.space_id = RESET_REGISTER_SPACE_ID,
75 		.bit_width = RESET_REGISTER_BIT_WIDTH,
76 		.bit_offset = RESET_REGISTER_BIT_OFFSET,
77 		.access_size = RESET_REGISTER_ACCESS_SIZE,
78 		.address = RESET_REGISTER_ADDRESS,
79 	},
80 	.val = RESET_REGISTER_VALUE
81 };
82 
get_host_sstate_data(void)83 struct pm_s_state_data *get_host_sstate_data(void)
84 {
85 	return &host_pm_s_state;
86 }
87 
get_host_reset_reg_data(void)88 struct acpi_reset_reg *get_host_reset_reg_data(void)
89 {
90 	return &host_reset_reg;
91 }
92 
restore_msrs(void)93 void restore_msrs(void)
94 {
95 #ifdef STACK_PROTECTOR
96 	struct stack_canary *psc = &get_cpu_var(stk_canary);
97 
98 	msr_write(MSR_IA32_FS_BASE, (uint64_t)psc);
99 #endif
100 }
101 
acpi_gas_write(const struct acrn_acpi_generic_address * gas,uint32_t val)102 static void acpi_gas_write(const struct acrn_acpi_generic_address *gas, uint32_t val)
103 {
104 	uint16_t val16 = (uint16_t)val;
105 
106 	if (gas->space_id == SPACE_SYSTEM_MEMORY) {
107 		mmio_write16(val16, hpa2hva(gas->address));
108 	} else {
109 		pio_write16(val16, (uint16_t)gas->address);
110 	}
111 }
112 
acpi_gas_read(const struct acrn_acpi_generic_address * gas)113 static uint32_t acpi_gas_read(const struct acrn_acpi_generic_address *gas)
114 {
115 	uint32_t ret = 0U;
116 
117 	if (gas->space_id == SPACE_SYSTEM_MEMORY) {
118 		ret = mmio_read16(hpa2hva(gas->address));
119 	} else {
120 		ret = pio_read16((uint16_t)gas->address);
121 	}
122 
123 	return ret;
124 }
125 
126 /* This function supports enter S3 or S5 according to the value given to pm1a_cnt_val and pm1b_cnt_val */
do_acpi_sx(const struct pm_s_state_data * sstate_data,uint32_t pm1a_cnt_val,uint32_t pm1b_cnt_val)127 void do_acpi_sx(const struct pm_s_state_data *sstate_data, uint32_t pm1a_cnt_val, uint32_t pm1b_cnt_val)
128 {
129 	uint32_t s1, s2;
130 
131 	acpi_gas_write(&(sstate_data->pm1a_cnt), pm1a_cnt_val);
132 
133 	if (sstate_data->pm1b_cnt.address != 0U) {
134 		acpi_gas_write(&(sstate_data->pm1b_cnt), pm1b_cnt_val);
135 	}
136 
137 	do {
138 		/* polling PM1 state register to detect wether
139 		 * the Sx state enter is interrupted by wakeup event.
140 		 */
141 		s1 = acpi_gas_read(&(sstate_data->pm1a_evt));
142 
143 		if (sstate_data->pm1b_evt.address != 0U) {
144 			s2 = acpi_gas_read(&(sstate_data->pm1b_evt));
145 			s1 |= s2;
146 		}
147 
148 		/* According to ACPI spec 4.8.3.1.1 PM1 state register, the bit
149 		 * WAK_STS(bit 15) is set if system will transition to working
150 		 * state.
151 		 */
152 	} while ((s1 & (1U << BIT_WAK_STS)) == 0U);
153 }
154 
155 static uint32_t system_pm1a_cnt_val, system_pm1b_cnt_val;
save_s5_reg_val(uint32_t pm1a_cnt_val,uint32_t pm1b_cnt_val)156 void save_s5_reg_val(uint32_t pm1a_cnt_val, uint32_t pm1b_cnt_val)
157 {
158 	system_pm1a_cnt_val = pm1a_cnt_val;
159 	system_pm1b_cnt_val = pm1b_cnt_val;
160 }
161 
shutdown_system(void)162 void shutdown_system(void)
163 {
164 	struct pm_s_state_data *sx_data = get_host_sstate_data();
165 	do_acpi_sx(sx_data, system_pm1a_cnt_val, system_pm1b_cnt_val);
166 }
167 
suspend_tsc(__unused void * data)168 static void suspend_tsc(__unused void *data)
169 {
170 	per_cpu(tsc_suspend, get_pcpu_id()) = rdtsc();
171 }
172 
resume_tsc(__unused void * data)173 static void resume_tsc(__unused void *data)
174 {
175 	msr_write(MSR_IA32_TIME_STAMP_COUNTER, per_cpu(tsc_suspend, get_pcpu_id()));
176 }
177 
host_enter_s3(const struct pm_s_state_data * sstate_data,uint32_t pm1a_cnt_val,uint32_t pm1b_cnt_val)178 void host_enter_s3(const struct pm_s_state_data *sstate_data, uint32_t pm1a_cnt_val, uint32_t pm1b_cnt_val)
179 {
180 	uint64_t pmain_entry_saved;
181 
182 	stac();
183 
184 	/* set ACRN wakeup vec instead */
185 	*(sstate_data->wake_vector_32) = (uint32_t)get_trampoline_start16_paddr();
186 
187 	clac();
188 
189 	/* Save TSC on all PCPU */
190 	smp_call_function(get_active_pcpu_bitmap(), suspend_tsc, NULL);
191 
192 	/* offline all APs */
193 	stop_pcpus();
194 
195 	stac();
196 	/* Save default main entry and we will restore it after
197 	 * back from S3. So the AP online could jmp to correct
198 	 * main entry.
199 	 */
200 	pmain_entry_saved = read_trampoline_sym(main_entry);
201 
202 	/* Set the main entry for resume from S3 state */
203 	write_trampoline_sym(main_entry, (uint64_t)restore_s3_context);
204 	clac();
205 
206 	CPU_IRQ_DISABLE_ON_CONFIG();
207 	vmx_off();
208 
209 	suspend_console();
210 	suspend_vrtc();
211 	suspend_sched();
212 	suspend_ioapic();
213 	suspend_iommu();
214 	suspend_lapic();
215 
216 	asm_enter_s3(sstate_data, pm1a_cnt_val, pm1b_cnt_val);
217 
218 	resume_lapic();
219 	resume_iommu();
220 	resume_ioapic();
221 	init_frequency_policy();
222 
223 	vmx_on();
224 	CPU_IRQ_ENABLE_ON_CONFIG();
225 
226 	/* restore the default main entry */
227 	stac();
228 	write_trampoline_sym(main_entry, pmain_entry_saved);
229 	clac();
230 
231 	/* online all APs again */
232 	if (!start_pcpus(AP_MASK)) {
233 		panic("Failed to start all APs!");
234 	}
235 
236 	/* Restore TSC on all PCPU
237 	 * Caution: There should no timer setup before TSC resumed.
238 	 */
239 	smp_call_function(get_active_pcpu_bitmap(), resume_tsc, NULL);
240 
241 	/* console must be resumed after TSC restored since it will setup timer base on TSC */
242 	resume_sched();
243 	resume_vrtc();
244 	resume_console();
245 }
246 
reset_host(bool warm)247 void reset_host(bool warm)
248 {
249 	struct acrn_acpi_generic_address *gas = &(host_reset_reg.reg);
250 	uint8_t reboot_code = warm ? CF9_RESET_WARM : CF9_RESET_COLD;
251 
252 	/* TODO: gracefully shut down all guests before doing host reset. */
253 
254 	/*
255 	 * Assumption:
256 	 * The platform we are running must support at least one of reset method:
257 	 *   - ACPI reset
258 	 *   - 0xcf9 reset
259 	 */
260 	if ((gas->space_id == SPACE_SYSTEM_IO) &&
261 		(gas->bit_width == 8U) && (gas->bit_offset == 0U) &&
262 		(gas->address != 0U) && (gas->address != 0xcf9U)) {
263 		pio_write8(host_reset_reg.val, (uint16_t)host_reset_reg.reg.address);
264 	} else {
265 		/* making sure bit 2 (RST_CPU) is '0', when the reset command is issued. */
266 		pio_write8(0x2U, 0xcf9U);
267 		udelay(50U);
268 		pio_write8(reboot_code, 0xcf9U);
269 		udelay(50U);
270 	}
271 
272 	pr_fatal("%s(): can't reset host.", __func__);
273 	while (1) {
274 		asm_pause();
275 	}
276 }
277 
278 static enum acrn_cpufreq_policy_type cpufreq_policy = CPUFREQ_POLICY_PERFORMANCE;
279 
init_frequency_policy(void)280 void init_frequency_policy(void)
281 {
282 	uint32_t cpuid_06_eax, unused;
283 	struct acrn_boot_info *abi = get_acrn_boot_info();
284 	const char *cmd_src = abi->cmdline;
285 
286 	/*
287 	 * Parse cmdline, decide which policy type to use.
288 	 * User can either specify cpu_perf_policy=Nominal or cpu_perf_policy=Performance
289 	 * The default type is 'Performance'
290 	 */
291 	if(strstr_s(cmd_src, MAX_BOOTARGS_SIZE, "cpu_perf_policy=Nominal", 24U) != NULL) {
292 		cpufreq_policy = CPUFREQ_POLICY_NOMINAL;
293 	}
294 
295 	cpuid_subleaf(0x6U, 0U, &cpuid_06_eax, &unused, &unused, &unused);
296 	if ((cpuid_06_eax & CPUID_EAX_HWP) != 0U) {
297 		/* If HWP is available, enable HWP early. This will unlock other HWP MSRs. */
298 		msr_write(MSR_IA32_PM_ENABLE, 1U);
299 	}
300 }
301 
302 /*
303  * This Function is to be called by each pcpu after init_cpufreq().
304  * It applies the frequency policy, which can be specified from boot parameters.
305  *   - cpu_perf_policy=Performance: HWP autonomous selection, between highest HWP level and
306  *     lowest HWP level. If HWP is not available, the frequency is fixed to highest p-state.
307  *   - cpu_perf_policy=Nominal: frequency is fixed to guaranteed HWP level or nominal p-state.
308  * The default policy is 'Performance'.
309  *
310  * ACRN will not be governing pcpu's frequency after this.
311  */
apply_frequency_policy(void)312 void apply_frequency_policy(void)
313 {
314 	struct acrn_cpufreq_limits *limits = &cpufreq_limits[get_pcpu_id()];
315 	uint64_t highest_lvl_req = limits->highest_hwp_lvl, lowest_lvl_req = limits->lowest_hwp_lvl, reg;
316 	uint8_t pstate_req = limits->performance_pstate;
317 	uint32_t cpuid_06_eax, cpuid_01_ecx, unused;
318 
319 	cpuid_subleaf(0x6U, 0U, &cpuid_06_eax, &unused, &unused, &unused);
320 	cpuid_subleaf(0x1U, 0U, &unused, &unused, &cpuid_01_ecx, &unused);
321 	/* Both HWP and ACPI p-state are supported. HWP is the first choice. */
322 	if ((cpuid_06_eax & CPUID_EAX_HWP) != 0U) {
323 		/*
324 		 * For Performance policy(default): CPU frequency will be autonomously selected between highest and lowest
325 		 * For Nominal policy: set to fixed frequency by letting highest=lowest=guaranteed
326 		 */
327 		if (cpufreq_policy == CPUFREQ_POLICY_NOMINAL) {
328 			highest_lvl_req = limits->guaranteed_hwp_lvl;
329 			lowest_lvl_req = limits->guaranteed_hwp_lvl;
330 		}
331 		/* EPP(0x80: default) | Desired_Performance(0: HWP auto) | Maximum_Performance | Minimum_Performance */
332 		reg = (0x80UL << 24U) | (0x00UL << 16U) | (highest_lvl_req << 8U) | lowest_lvl_req;
333 	    msr_write(MSR_IA32_HWP_REQUEST, reg);
334 	} else if ((cpuid_01_ecx & CPUID_ECX_EST) != 0U) {
335 		struct cpu_state_info *pm_s_state_data = get_cpu_pm_state_info();
336 
337 		/*
338 		 * Set to fixed frequency in ACPI p-state mode.
339 		 * Performance policy: performance_pstate
340 		 * Nominal policy: nominal_pstate
341 		 */
342 		if (cpufreq_policy == CPUFREQ_POLICY_NOMINAL) {
343 			pstate_req = limits->nominal_pstate;
344 		}
345 
346 		/* PX info might be missing on some platforms (px_cnt equals 0). Do nothing if so. */
347 		if (pm_s_state_data->px_cnt != 0) {
348 			if (pstate_req < pm_s_state_data->px_cnt) {
349 				msr_write(MSR_IA32_PERF_CTL, pm_s_state_data->px_data[pstate_req].control);
350 			} else {
351 				ASSERT(false, "invalid p-state index");
352 			}
353 		}
354 	} else {
355 		/* If no frequency interface is presented, just let CPU run by itself. Do nothing here.*/
356 	}
357 }
358