// Copyright 1995-2016 The OpenSSL Project Authors. All Rights Reserved. // Copyright 2005 Nokia. All rights reserved. // // Licensed under the Apache License, Version 2.0 (the "License"); // you may not use this file except in compliance with the License. // You may obtain a copy of the License at // // https://www.apache.org/licenses/LICENSE-2.0 // // Unless required by applicable law or agreed to in writing, software // distributed under the License is distributed on an "AS IS" BASIS, // WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. // See the License for the specific language governing permissions and // limitations under the License. #include #include #include #include #include #include #include #include #include #include #include #include #include "../crypto/fipsmodule/tls/internal.h" #include "../crypto/internal.h" #include "internal.h" BSSL_NAMESPACE_BEGIN bool tls1_prf(const EVP_MD *digest, Span out, Span secret, std::string_view label, Span seed1, Span seed2) { return 1 == CRYPTO_tls1_prf(digest, out.data(), out.size(), secret.data(), secret.size(), label.data(), label.size(), seed1.data(), seed1.size(), seed2.data(), seed2.size()); } static bool get_key_block_lengths(const SSL *ssl, size_t *out_mac_secret_len, size_t *out_key_len, size_t *out_iv_len, const SSL_CIPHER *cipher) { const EVP_AEAD *aead = NULL; if (!ssl_cipher_get_evp_aead(&aead, out_mac_secret_len, out_iv_len, cipher, ssl_protocol_version(ssl))) { OPENSSL_PUT_ERROR(SSL, SSL_R_CIPHER_OR_HASH_UNAVAILABLE); return false; } *out_key_len = EVP_AEAD_key_length(aead); if (*out_mac_secret_len > 0) { // For "stateful" AEADs (i.e. compatibility with pre-AEAD cipher suites) the // key length reported by |EVP_AEAD_key_length| will include the MAC key // bytes and initial implicit IV. if (*out_key_len < *out_mac_secret_len + *out_iv_len) { OPENSSL_PUT_ERROR(SSL, ERR_R_INTERNAL_ERROR); return false; } *out_key_len -= *out_mac_secret_len + *out_iv_len; } return true; } static bool generate_key_block(const SSL *ssl, Span out, const SSL_SESSION *session) { const EVP_MD *digest = ssl_session_get_digest(session); // Note this function assumes that |session|'s key material corresponds to // |ssl->s3->client_random| and |ssl->s3->server_random|. return tls1_prf(digest, out, session->secret, "key expansion", ssl->s3->server_random, ssl->s3->client_random); } bool tls1_configure_aead(SSL *ssl, evp_aead_direction_t direction, Array *key_block_cache, const SSL_SESSION *session, Span iv_override) { size_t mac_secret_len, key_len, iv_len; if (!get_key_block_lengths(ssl, &mac_secret_len, &key_len, &iv_len, session->cipher)) { return false; } // Ensure that |key_block_cache| is set up. const size_t key_block_size = 2 * (mac_secret_len + key_len + iv_len); if (key_block_cache->empty()) { if (!key_block_cache->InitForOverwrite(key_block_size) || !generate_key_block(ssl, Span(*key_block_cache), session)) { return false; } } assert(key_block_cache->size() == key_block_size); Span key_block = *key_block_cache; Span mac_secret, key, iv; if (direction == (ssl->server ? evp_aead_open : evp_aead_seal)) { // Use the client write (server read) keys. mac_secret = key_block.subspan(0, mac_secret_len); key = key_block.subspan(2 * mac_secret_len, key_len); iv = key_block.subspan(2 * mac_secret_len + 2 * key_len, iv_len); } else { // Use the server write (client read) keys. mac_secret = key_block.subspan(mac_secret_len, mac_secret_len); key = key_block.subspan(2 * mac_secret_len + key_len, key_len); iv = key_block.subspan(2 * mac_secret_len + 2 * key_len + iv_len, iv_len); } if (!iv_override.empty()) { if (iv_override.size() != iv_len) { return false; } iv = iv_override; } UniquePtr aead_ctx = SSLAEADContext::Create( direction, ssl->s3->version, session->cipher, key, mac_secret, iv); if (!aead_ctx) { return false; } if (direction == evp_aead_open) { return ssl->method->set_read_state(ssl, ssl_encryption_application, std::move(aead_ctx), /*traffic_secret=*/{}); } return ssl->method->set_write_state(ssl, ssl_encryption_application, std::move(aead_ctx), /*traffic_secret=*/{}); } bool tls1_change_cipher_state(SSL_HANDSHAKE *hs, evp_aead_direction_t direction) { return tls1_configure_aead(hs->ssl, direction, &hs->key_block, ssl_handshake_session(hs), {}); } bool tls1_generate_master_secret(SSL_HANDSHAKE *hs, Span out, Span premaster) { BSSL_CHECK(out.size() == SSL3_MASTER_SECRET_SIZE); const SSL *ssl = hs->ssl; if (hs->extended_master_secret) { uint8_t digests[EVP_MAX_MD_SIZE]; size_t digests_len; if (!hs->transcript.GetHash(digests, &digests_len) || !tls1_prf(hs->transcript.Digest(), out, premaster, "extended master secret", Span(digests, digests_len), {})) { return false; } } else { if (!tls1_prf(hs->transcript.Digest(), out, premaster, "master secret", ssl->s3->client_random, ssl->s3->server_random)) { return false; } } return true; } BSSL_NAMESPACE_END using namespace bssl; size_t SSL_get_key_block_len(const SSL *ssl) { // See |SSL_generate_key_block|. if (SSL_in_init(ssl) || ssl_protocol_version(ssl) > TLS1_2_VERSION) { return 0; } size_t mac_secret_len, key_len, fixed_iv_len; if (!get_key_block_lengths(ssl, &mac_secret_len, &key_len, &fixed_iv_len, SSL_get_current_cipher(ssl))) { ERR_clear_error(); return 0; } return 2 * (mac_secret_len + key_len + fixed_iv_len); } int SSL_generate_key_block(const SSL *ssl, uint8_t *out, size_t out_len) { // Which cipher state to use is ambiguous during a handshake. In particular, // there are points where read and write states are from different epochs. // During a handshake, before ChangeCipherSpec, the encryption states may not // match |ssl->s3->client_random| and |ssl->s3->server_random|. if (SSL_in_init(ssl) || ssl_protocol_version(ssl) > TLS1_2_VERSION) { OPENSSL_PUT_ERROR(SSL, ERR_R_SHOULD_NOT_HAVE_BEEN_CALLED); return 0; } return generate_key_block(ssl, Span(out, out_len), SSL_get_session(ssl)); } int SSL_export_keying_material(const SSL *ssl, uint8_t *out, size_t out_len, const char *label, size_t label_len, const uint8_t *context, size_t context_len, int use_context) { auto out_span = Span(out, out_len); std::string_view label_sv(label, label_len); // In TLS 1.3, the exporter may be used whenever the secret has been derived. if (ssl->s3->version != 0 && ssl_protocol_version(ssl) >= TLS1_3_VERSION) { if (ssl->s3->exporter_secret.empty()) { OPENSSL_PUT_ERROR(SSL, SSL_R_HANDSHAKE_NOT_COMPLETE); return 0; } if (!use_context) { context = nullptr; context_len = 0; } return tls13_export_keying_material(ssl, out_span, ssl->s3->exporter_secret, label_sv, Span(context, context_len)); } // Exporters may be used in False Start, where the handshake has progressed // enough. Otherwise, they may not be used during a handshake. if (SSL_in_init(ssl) && !SSL_in_false_start(ssl)) { OPENSSL_PUT_ERROR(SSL, SSL_R_HANDSHAKE_NOT_COMPLETE); return 0; } size_t seed_len = 2 * SSL3_RANDOM_SIZE; if (use_context) { if (context_len >= 1u << 16) { OPENSSL_PUT_ERROR(SSL, ERR_R_OVERFLOW); return 0; } seed_len += 2 + context_len; } Array seed; if (!seed.InitForOverwrite(seed_len)) { return 0; } OPENSSL_memcpy(seed.data(), ssl->s3->client_random, SSL3_RANDOM_SIZE); OPENSSL_memcpy(seed.data() + SSL3_RANDOM_SIZE, ssl->s3->server_random, SSL3_RANDOM_SIZE); if (use_context) { seed[2 * SSL3_RANDOM_SIZE] = static_cast(context_len >> 8); seed[2 * SSL3_RANDOM_SIZE + 1] = static_cast(context_len); OPENSSL_memcpy(seed.data() + 2 * SSL3_RANDOM_SIZE + 2, context, context_len); } const SSL_SESSION *session = SSL_get_session(ssl); const EVP_MD *digest = ssl_session_get_digest(session); return tls1_prf(digest, out_span, session->secret, label_sv, seed, {}); }