1 // Copyright 2014 The BoringSSL Authors
2 //
3 // Licensed under the Apache License, Version 2.0 (the "License");
4 // you may not use this file except in compliance with the License.
5 // You may obtain a copy of the License at
6 //
7 //     https://www.apache.org/licenses/LICENSE-2.0
8 //
9 // Unless required by applicable law or agreed to in writing, software
10 // distributed under the License is distributed on an "AS IS" BASIS,
11 // WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
12 // See the License for the specific language governing permissions and
13 // limitations under the License.
14 
15 #include <openssl/bytestring.h>
16 
17 #include <assert.h>
18 #include <limits.h>
19 #include <string.h>
20 
21 #include <openssl/err.h>
22 #include <openssl/mem.h>
23 
24 #include "../internal.h"
25 
26 
CBB_zero(CBB * cbb)27 void CBB_zero(CBB *cbb) { OPENSSL_memset(cbb, 0, sizeof(CBB)); }
28 
cbb_init(CBB * cbb,uint8_t * buf,size_t cap,int can_resize)29 static void cbb_init(CBB *cbb, uint8_t *buf, size_t cap, int can_resize) {
30   cbb->is_child = 0;
31   cbb->child = NULL;
32   cbb->u.base.buf = buf;
33   cbb->u.base.len = 0;
34   cbb->u.base.cap = cap;
35   cbb->u.base.can_resize = can_resize;
36   cbb->u.base.error = 0;
37 }
38 
CBB_init(CBB * cbb,size_t initial_capacity)39 int CBB_init(CBB *cbb, size_t initial_capacity) {
40   CBB_zero(cbb);
41 
42   uint8_t *buf = reinterpret_cast<uint8_t *>(OPENSSL_malloc(initial_capacity));
43   if (initial_capacity > 0 && buf == NULL) {
44     return 0;
45   }
46 
47   cbb_init(cbb, buf, initial_capacity, /*can_resize=*/1);
48   return 1;
49 }
50 
CBB_init_fixed(CBB * cbb,uint8_t * buf,size_t len)51 int CBB_init_fixed(CBB *cbb, uint8_t *buf, size_t len) {
52   CBB_zero(cbb);
53   cbb_init(cbb, buf, len, /*can_resize=*/0);
54   return 1;
55 }
56 
CBB_cleanup(CBB * cbb)57 void CBB_cleanup(CBB *cbb) {
58   // Child |CBB|s are non-owning. They are implicitly discarded and should not
59   // be used with |CBB_cleanup| or |ScopedCBB|.
60   assert(!cbb->is_child);
61   if (cbb->is_child) {
62     return;
63   }
64 
65   if (cbb->u.base.can_resize) {
66     OPENSSL_free(cbb->u.base.buf);
67   }
68 }
69 
cbb_buffer_reserve(struct cbb_buffer_st * base,uint8_t ** out,size_t len)70 static int cbb_buffer_reserve(struct cbb_buffer_st *base, uint8_t **out,
71                               size_t len) {
72   if (base == NULL) {
73     return 0;
74   }
75 
76   size_t newlen = base->len + len;
77   if (newlen < base->len) {
78     // Overflow
79     OPENSSL_PUT_ERROR(CRYPTO, ERR_R_OVERFLOW);
80     goto err;
81   }
82 
83   if (newlen > base->cap) {
84     if (!base->can_resize) {
85       OPENSSL_PUT_ERROR(CRYPTO, ERR_R_OVERFLOW);
86       goto err;
87     }
88 
89     size_t newcap = base->cap * 2;
90     if (newcap < base->cap || newcap < newlen) {
91       newcap = newlen;
92     }
93     uint8_t *newbuf =
94         reinterpret_cast<uint8_t *>(OPENSSL_realloc(base->buf, newcap));
95     if (newbuf == NULL) {
96       goto err;
97     }
98 
99     base->buf = newbuf;
100     base->cap = newcap;
101   }
102 
103   if (out) {
104     *out = base->buf + base->len;
105   }
106 
107   return 1;
108 
109 err:
110   base->error = 1;
111   return 0;
112 }
113 
cbb_buffer_add(struct cbb_buffer_st * base,uint8_t ** out,size_t len)114 static int cbb_buffer_add(struct cbb_buffer_st *base, uint8_t **out,
115                           size_t len) {
116   if (!cbb_buffer_reserve(base, out, len)) {
117     return 0;
118   }
119   // This will not overflow or |cbb_buffer_reserve| would have failed.
120   base->len += len;
121   return 1;
122 }
123 
CBB_finish(CBB * cbb,uint8_t ** out_data,size_t * out_len)124 int CBB_finish(CBB *cbb, uint8_t **out_data, size_t *out_len) {
125   if (cbb->is_child) {
126     OPENSSL_PUT_ERROR(CRYPTO, ERR_R_SHOULD_NOT_HAVE_BEEN_CALLED);
127     return 0;
128   }
129 
130   if (!CBB_flush(cbb)) {
131     return 0;
132   }
133 
134   if (cbb->u.base.can_resize && (out_data == NULL || out_len == NULL)) {
135     // |out_data| and |out_len| can only be NULL if the CBB is fixed.
136     return 0;
137   }
138 
139   if (out_data != NULL) {
140     *out_data = cbb->u.base.buf;
141   }
142   if (out_len != NULL) {
143     *out_len = cbb->u.base.len;
144   }
145   cbb->u.base.buf = NULL;
146   CBB_cleanup(cbb);
147   return 1;
148 }
149 
cbb_get_base(CBB * cbb)150 static struct cbb_buffer_st *cbb_get_base(CBB *cbb) {
151   if (cbb->is_child) {
152     return cbb->u.child.base;
153   }
154   return &cbb->u.base;
155 }
156 
cbb_on_error(CBB * cbb)157 static void cbb_on_error(CBB *cbb) {
158   // Due to C's lack of destructors and |CBB|'s auto-flushing API, a failing
159   // |CBB|-taking function may leave a dangling pointer to a child |CBB|. As a
160   // result, the convention is callers may not write to |CBB|s that have failed.
161   // But, as a safety measure, we lock the |CBB| into an error state. Once the
162   // error bit is set, |cbb->child| will not be read.
163   //
164   // TODO(davidben): This still isn't quite ideal. A |CBB| function *outside*
165   // this file may originate an error while the |CBB| points to a local child.
166   // In that case we don't set the error bit and are reliant on the error
167   // convention. Perhaps we allow |CBB_cleanup| on child |CBB|s and make every
168   // child's |CBB_cleanup| set the error bit if unflushed. That will be
169   // convenient for C++ callers, but very tedious for C callers. So C callers
170   // perhaps should get a |CBB_on_error| function that can be, less tediously,
171   // stuck in a |goto err| block.
172   cbb_get_base(cbb)->error = 1;
173 
174   // Clearing the pointer is not strictly necessary, but GCC's dangling pointer
175   // warning does not know |cbb->child| will not be read once |error| is set
176   // above.
177   cbb->child = NULL;
178 }
179 
180 // CBB_flush recurses and then writes out any pending length prefix. The
181 // current length of the underlying base is taken to be the length of the
182 // length-prefixed data.
CBB_flush(CBB * cbb)183 int CBB_flush(CBB *cbb) {
184   // If |base| has hit an error, the buffer is in an undefined state, so
185   // fail all following calls. In particular, |cbb->child| may point to invalid
186   // memory.
187   struct cbb_buffer_st *base = cbb_get_base(cbb);
188   if (base == NULL || base->error) {
189     return 0;
190   }
191 
192   if (cbb->child == NULL) {
193     // Nothing to flush.
194     return 1;
195   }
196 
197   assert(cbb->child->is_child);
198   struct cbb_child_st *child = &cbb->child->u.child;
199   assert(child->base == base);
200   size_t child_start = child->offset + child->pending_len_len;
201 
202   size_t len;
203   if (!CBB_flush(cbb->child) || child_start < child->offset ||
204       base->len < child_start) {
205     goto err;
206   }
207 
208   len = base->len - child_start;
209 
210   if (child->pending_is_asn1) {
211     // For ASN.1 we assume that we'll only need a single byte for the length.
212     // If that turned out to be incorrect, we have to move the contents along
213     // in order to make space.
214     uint8_t len_len;
215     uint8_t initial_length_byte;
216 
217     assert(child->pending_len_len == 1);
218 
219     if (len > 0xfffffffe) {
220       OPENSSL_PUT_ERROR(CRYPTO, ERR_R_OVERFLOW);
221       // Too large.
222       goto err;
223     } else if (len > 0xffffff) {
224       len_len = 5;
225       initial_length_byte = 0x80 | 4;
226     } else if (len > 0xffff) {
227       len_len = 4;
228       initial_length_byte = 0x80 | 3;
229     } else if (len > 0xff) {
230       len_len = 3;
231       initial_length_byte = 0x80 | 2;
232     } else if (len > 0x7f) {
233       len_len = 2;
234       initial_length_byte = 0x80 | 1;
235     } else {
236       len_len = 1;
237       initial_length_byte = (uint8_t)len;
238       len = 0;
239     }
240 
241     if (len_len != 1) {
242       // We need to move the contents along in order to make space.
243       size_t extra_bytes = len_len - 1;
244       if (!cbb_buffer_add(base, NULL, extra_bytes)) {
245         goto err;
246       }
247       OPENSSL_memmove(base->buf + child_start + extra_bytes,
248                       base->buf + child_start, len);
249     }
250     base->buf[child->offset++] = initial_length_byte;
251     child->pending_len_len = len_len - 1;
252   }
253 
254   for (size_t i = child->pending_len_len - 1; i < child->pending_len_len; i--) {
255     base->buf[child->offset + i] = (uint8_t)len;
256     len >>= 8;
257   }
258   if (len != 0) {
259     OPENSSL_PUT_ERROR(CRYPTO, ERR_R_OVERFLOW);
260     goto err;
261   }
262 
263   child->base = NULL;
264   cbb->child = NULL;
265 
266   return 1;
267 
268 err:
269   cbb_on_error(cbb);
270   return 0;
271 }
272 
CBB_data(const CBB * cbb)273 const uint8_t *CBB_data(const CBB *cbb) {
274   assert(cbb->child == NULL);
275   if (cbb->is_child) {
276     return cbb->u.child.base->buf + cbb->u.child.offset +
277            cbb->u.child.pending_len_len;
278   }
279   return cbb->u.base.buf;
280 }
281 
CBB_len(const CBB * cbb)282 size_t CBB_len(const CBB *cbb) {
283   assert(cbb->child == NULL);
284   if (cbb->is_child) {
285     assert(cbb->u.child.offset + cbb->u.child.pending_len_len <=
286            cbb->u.child.base->len);
287     return cbb->u.child.base->len - cbb->u.child.offset -
288            cbb->u.child.pending_len_len;
289   }
290   return cbb->u.base.len;
291 }
292 
cbb_add_child(CBB * cbb,CBB * out_child,uint8_t len_len,int is_asn1)293 static int cbb_add_child(CBB *cbb, CBB *out_child, uint8_t len_len,
294                          int is_asn1) {
295   assert(cbb->child == NULL);
296   assert(!is_asn1 || len_len == 1);
297   struct cbb_buffer_st *base = cbb_get_base(cbb);
298   size_t offset = base->len;
299 
300   // Reserve space for the length prefix.
301   uint8_t *prefix_bytes;
302   if (!cbb_buffer_add(base, &prefix_bytes, len_len)) {
303     return 0;
304   }
305   OPENSSL_memset(prefix_bytes, 0, len_len);
306 
307   CBB_zero(out_child);
308   out_child->is_child = 1;
309   out_child->u.child.base = base;
310   out_child->u.child.offset = offset;
311   out_child->u.child.pending_len_len = len_len;
312   out_child->u.child.pending_is_asn1 = is_asn1;
313   cbb->child = out_child;
314   return 1;
315 }
316 
cbb_add_length_prefixed(CBB * cbb,CBB * out_contents,uint8_t len_len)317 static int cbb_add_length_prefixed(CBB *cbb, CBB *out_contents,
318                                    uint8_t len_len) {
319   if (!CBB_flush(cbb)) {
320     return 0;
321   }
322 
323   return cbb_add_child(cbb, out_contents, len_len, /*is_asn1=*/0);
324 }
325 
CBB_add_u8_length_prefixed(CBB * cbb,CBB * out_contents)326 int CBB_add_u8_length_prefixed(CBB *cbb, CBB *out_contents) {
327   return cbb_add_length_prefixed(cbb, out_contents, 1);
328 }
329 
CBB_add_u16_length_prefixed(CBB * cbb,CBB * out_contents)330 int CBB_add_u16_length_prefixed(CBB *cbb, CBB *out_contents) {
331   return cbb_add_length_prefixed(cbb, out_contents, 2);
332 }
333 
CBB_add_u24_length_prefixed(CBB * cbb,CBB * out_contents)334 int CBB_add_u24_length_prefixed(CBB *cbb, CBB *out_contents) {
335   return cbb_add_length_prefixed(cbb, out_contents, 3);
336 }
337 
338 // add_base128_integer encodes |v| as a big-endian base-128 integer where the
339 // high bit of each byte indicates where there is more data. This is the
340 // encoding used in DER for both high tag number form and OID components.
add_base128_integer(CBB * cbb,uint64_t v)341 static int add_base128_integer(CBB *cbb, uint64_t v) {
342   unsigned len_len = 0;
343   uint64_t copy = v;
344   while (copy > 0) {
345     len_len++;
346     copy >>= 7;
347   }
348   if (len_len == 0) {
349     len_len = 1;  // Zero is encoded with one byte.
350   }
351   for (unsigned i = len_len - 1; i < len_len; i--) {
352     uint8_t byte = (v >> (7 * i)) & 0x7f;
353     if (i != 0) {
354       // The high bit denotes whether there is more data.
355       byte |= 0x80;
356     }
357     if (!CBB_add_u8(cbb, byte)) {
358       return 0;
359     }
360   }
361   return 1;
362 }
363 
CBB_add_asn1(CBB * cbb,CBB * out_contents,CBS_ASN1_TAG tag)364 int CBB_add_asn1(CBB *cbb, CBB *out_contents, CBS_ASN1_TAG tag) {
365   if (!CBB_flush(cbb)) {
366     return 0;
367   }
368 
369   // Split the tag into leading bits and tag number.
370   uint8_t tag_bits = (tag >> CBS_ASN1_TAG_SHIFT) & 0xe0;
371   CBS_ASN1_TAG tag_number = tag & CBS_ASN1_TAG_NUMBER_MASK;
372   if (tag_number >= 0x1f) {
373     // Set all the bits in the tag number to signal high tag number form.
374     if (!CBB_add_u8(cbb, tag_bits | 0x1f) ||
375         !add_base128_integer(cbb, tag_number)) {
376       return 0;
377     }
378   } else if (!CBB_add_u8(cbb, tag_bits | tag_number)) {
379     return 0;
380   }
381 
382   // Reserve one byte of length prefix. |CBB_flush| will finish it later.
383   return cbb_add_child(cbb, out_contents, /*len_len=*/1, /*is_asn1=*/1);
384 }
385 
CBB_add_bytes(CBB * cbb,const uint8_t * data,size_t len)386 int CBB_add_bytes(CBB *cbb, const uint8_t *data, size_t len) {
387   uint8_t *out;
388   if (!CBB_add_space(cbb, &out, len)) {
389     return 0;
390   }
391   OPENSSL_memcpy(out, data, len);
392   return 1;
393 }
394 
CBB_add_zeros(CBB * cbb,size_t len)395 int CBB_add_zeros(CBB *cbb, size_t len) {
396   uint8_t *out;
397   if (!CBB_add_space(cbb, &out, len)) {
398     return 0;
399   }
400   OPENSSL_memset(out, 0, len);
401   return 1;
402 }
403 
CBB_add_space(CBB * cbb,uint8_t ** out_data,size_t len)404 int CBB_add_space(CBB *cbb, uint8_t **out_data, size_t len) {
405   if (!CBB_flush(cbb) || !cbb_buffer_add(cbb_get_base(cbb), out_data, len)) {
406     return 0;
407   }
408   return 1;
409 }
410 
CBB_reserve(CBB * cbb,uint8_t ** out_data,size_t len)411 int CBB_reserve(CBB *cbb, uint8_t **out_data, size_t len) {
412   if (!CBB_flush(cbb) ||
413       !cbb_buffer_reserve(cbb_get_base(cbb), out_data, len)) {
414     return 0;
415   }
416   return 1;
417 }
418 
CBB_did_write(CBB * cbb,size_t len)419 int CBB_did_write(CBB *cbb, size_t len) {
420   struct cbb_buffer_st *base = cbb_get_base(cbb);
421   size_t newlen = base->len + len;
422   if (cbb->child != NULL || newlen < base->len || newlen > base->cap) {
423     return 0;
424   }
425   base->len = newlen;
426   return 1;
427 }
428 
cbb_add_u(CBB * cbb,uint64_t v,size_t len_len)429 static int cbb_add_u(CBB *cbb, uint64_t v, size_t len_len) {
430   uint8_t *buf;
431   if (!CBB_add_space(cbb, &buf, len_len)) {
432     return 0;
433   }
434 
435   for (size_t i = len_len - 1; i < len_len; i--) {
436     buf[i] = v;
437     v >>= 8;
438   }
439 
440   // |v| must fit in |len_len| bytes.
441   if (v != 0) {
442     cbb_on_error(cbb);
443     return 0;
444   }
445 
446   return 1;
447 }
448 
CBB_add_u8(CBB * cbb,uint8_t value)449 int CBB_add_u8(CBB *cbb, uint8_t value) { return cbb_add_u(cbb, value, 1); }
450 
CBB_add_u16(CBB * cbb,uint16_t value)451 int CBB_add_u16(CBB *cbb, uint16_t value) { return cbb_add_u(cbb, value, 2); }
452 
CBB_add_u16le(CBB * cbb,uint16_t value)453 int CBB_add_u16le(CBB *cbb, uint16_t value) {
454   return CBB_add_u16(cbb, CRYPTO_bswap2(value));
455 }
456 
CBB_add_u24(CBB * cbb,uint32_t value)457 int CBB_add_u24(CBB *cbb, uint32_t value) { return cbb_add_u(cbb, value, 3); }
458 
CBB_add_u32(CBB * cbb,uint32_t value)459 int CBB_add_u32(CBB *cbb, uint32_t value) { return cbb_add_u(cbb, value, 4); }
460 
CBB_add_u32le(CBB * cbb,uint32_t value)461 int CBB_add_u32le(CBB *cbb, uint32_t value) {
462   return CBB_add_u32(cbb, CRYPTO_bswap4(value));
463 }
464 
CBB_add_u64(CBB * cbb,uint64_t value)465 int CBB_add_u64(CBB *cbb, uint64_t value) { return cbb_add_u(cbb, value, 8); }
466 
CBB_add_u64le(CBB * cbb,uint64_t value)467 int CBB_add_u64le(CBB *cbb, uint64_t value) {
468   return CBB_add_u64(cbb, CRYPTO_bswap8(value));
469 }
470 
CBB_discard(CBB * cbb,size_t len)471 void CBB_discard(CBB *cbb, size_t len) {
472   BSSL_CHECK(cbb->child == nullptr);
473   BSSL_CHECK(len <= CBB_len(cbb));
474   struct cbb_buffer_st *base = cbb_get_base(cbb);
475   base->len -= len;
476 }
477 
CBB_discard_child(CBB * cbb)478 void CBB_discard_child(CBB *cbb) {
479   if (cbb->child == NULL) {
480     return;
481   }
482 
483   struct cbb_buffer_st *base = cbb_get_base(cbb);
484   assert(cbb->child->is_child);
485   base->len = cbb->child->u.child.offset;
486 
487   cbb->child->u.child.base = NULL;
488   cbb->child = NULL;
489 }
490 
CBB_add_asn1_element(CBB * cbb,CBS_ASN1_TAG tag,const uint8_t * data,size_t data_len)491 int CBB_add_asn1_element(CBB *cbb, CBS_ASN1_TAG tag, const uint8_t *data,
492                          size_t data_len) {
493   CBB child;
494   if (!CBB_add_asn1(cbb, &child, tag) ||
495       !CBB_add_bytes(&child, data, data_len) ||  //
496       !CBB_flush(cbb)) {
497     cbb_on_error(cbb);
498     return 0;
499   }
500 
501   return 1;
502 }
503 
CBB_add_asn1_uint64(CBB * cbb,uint64_t value)504 int CBB_add_asn1_uint64(CBB *cbb, uint64_t value) {
505   return CBB_add_asn1_uint64_with_tag(cbb, value, CBS_ASN1_INTEGER);
506 }
507 
CBB_add_asn1_uint64_with_tag(CBB * cbb,uint64_t value,CBS_ASN1_TAG tag)508 int CBB_add_asn1_uint64_with_tag(CBB *cbb, uint64_t value, CBS_ASN1_TAG tag) {
509   CBB child;
510   int started = 0;
511   if (!CBB_add_asn1(cbb, &child, tag)) {
512     goto err;
513   }
514 
515   for (size_t i = 0; i < 8; i++) {
516     uint8_t byte = (value >> 8 * (7 - i)) & 0xff;
517     if (!started) {
518       if (byte == 0) {
519         // Don't encode leading zeros.
520         continue;
521       }
522       // If the high bit is set, add a padding byte to make it
523       // unsigned.
524       if ((byte & 0x80) && !CBB_add_u8(&child, 0)) {
525         goto err;
526       }
527       started = 1;
528     }
529     if (!CBB_add_u8(&child, byte)) {
530       goto err;
531     }
532   }
533 
534   // 0 is encoded as a single 0, not the empty string.
535   if (!started && !CBB_add_u8(&child, 0)) {
536     goto err;
537   }
538 
539   return CBB_flush(cbb);
540 
541 err:
542   cbb_on_error(cbb);
543   return 0;
544 }
545 
CBB_add_asn1_int64(CBB * cbb,int64_t value)546 int CBB_add_asn1_int64(CBB *cbb, int64_t value) {
547   return CBB_add_asn1_int64_with_tag(cbb, value, CBS_ASN1_INTEGER);
548 }
549 
CBB_add_asn1_int64_with_tag(CBB * cbb,int64_t value,CBS_ASN1_TAG tag)550 int CBB_add_asn1_int64_with_tag(CBB *cbb, int64_t value, CBS_ASN1_TAG tag) {
551   if (value >= 0) {
552     return CBB_add_asn1_uint64_with_tag(cbb, (uint64_t)value, tag);
553   }
554 
555   uint8_t bytes[sizeof(int64_t)];
556   memcpy(bytes, &value, sizeof(value));
557   int start = 7;
558   // Skip leading sign-extension bytes unless they are necessary.
559   while (start > 0 && (bytes[start] == 0xff && (bytes[start - 1] & 0x80))) {
560     start--;
561   }
562 
563   CBB child;
564   if (!CBB_add_asn1(cbb, &child, tag)) {
565     goto err;
566   }
567   for (int i = start; i >= 0; i--) {
568     if (!CBB_add_u8(&child, bytes[i])) {
569       goto err;
570     }
571   }
572   return CBB_flush(cbb);
573 
574 err:
575   cbb_on_error(cbb);
576   return 0;
577 }
578 
CBB_add_asn1_octet_string(CBB * cbb,const uint8_t * data,size_t data_len)579 int CBB_add_asn1_octet_string(CBB *cbb, const uint8_t *data, size_t data_len) {
580   return CBB_add_asn1_element(cbb, CBS_ASN1_OCTETSTRING, data, data_len);
581 }
582 
CBB_add_asn1_bool(CBB * cbb,int value)583 int CBB_add_asn1_bool(CBB *cbb, int value) {
584   CBB child;
585   if (!CBB_add_asn1(cbb, &child, CBS_ASN1_BOOLEAN) ||
586       !CBB_add_u8(&child, value != 0 ? 0xff : 0) || !CBB_flush(cbb)) {
587     cbb_on_error(cbb);
588     return 0;
589   }
590 
591   return 1;
592 }
593 
594 // parse_dotted_decimal parses one decimal component from |cbs|, where |cbs| is
595 // an OID literal, e.g., "1.2.840.113554.4.1.72585". It consumes both the
596 // component and the dot, so |cbs| may be passed into the function again for the
597 // next value.
parse_dotted_decimal(CBS * cbs,uint64_t * out)598 static int parse_dotted_decimal(CBS *cbs, uint64_t *out) {
599   if (!CBS_get_u64_decimal(cbs, out)) {
600     return 0;
601   }
602 
603   // The integer must have either ended at the end of the string, or a
604   // non-terminal dot, which should be consumed. If the string ends with a dot,
605   // this is not a valid OID string.
606   uint8_t dot;
607   return !CBS_get_u8(cbs, &dot) || (dot == '.' && CBS_len(cbs) > 0);
608 }
609 
CBB_add_asn1_oid_from_text(CBB * cbb,const char * text,size_t len)610 int CBB_add_asn1_oid_from_text(CBB *cbb, const char *text, size_t len) {
611   if (!CBB_flush(cbb)) {
612     return 0;
613   }
614 
615   CBS cbs;
616   CBS_init(&cbs, (const uint8_t *)text, len);
617 
618   // OIDs must have at least two components.
619   uint64_t a, b;
620   if (!parse_dotted_decimal(&cbs, &a) || !parse_dotted_decimal(&cbs, &b)) {
621     return 0;
622   }
623 
624   // The first component is encoded as 40 * |a| + |b|. This assumes that |a| is
625   // 0, 1, or 2 and that, when it is 0 or 1, |b| is at most 39.
626   if (a > 2 || (a < 2 && b > 39) || b > UINT64_MAX - 80 ||
627       !add_base128_integer(cbb, 40u * a + b)) {
628     return 0;
629   }
630 
631   // The remaining components are encoded unmodified.
632   while (CBS_len(&cbs) > 0) {
633     if (!parse_dotted_decimal(&cbs, &a) || !add_base128_integer(cbb, a)) {
634       return 0;
635     }
636   }
637 
638   return 1;
639 }
640 
compare_set_of_element(const void * a_ptr,const void * b_ptr)641 static int compare_set_of_element(const void *a_ptr, const void *b_ptr) {
642   // See X.690, section 11.6 for the ordering. They are sorted in ascending
643   // order by their DER encoding.
644   const CBS *a = reinterpret_cast<const CBS *>(a_ptr),
645             *b = reinterpret_cast<const CBS *>(b_ptr);
646   size_t a_len = CBS_len(a), b_len = CBS_len(b);
647   size_t min_len = a_len < b_len ? a_len : b_len;
648   int ret = OPENSSL_memcmp(CBS_data(a), CBS_data(b), min_len);
649   if (ret != 0) {
650     return ret;
651   }
652   if (a_len == b_len) {
653     return 0;
654   }
655   // If one is a prefix of the other, the shorter one sorts first. (This is not
656   // actually reachable. No DER encoding is a prefix of another DER encoding.)
657   return a_len < b_len ? -1 : 1;
658 }
659 
CBB_flush_asn1_set_of(CBB * cbb)660 int CBB_flush_asn1_set_of(CBB *cbb) {
661   if (!CBB_flush(cbb)) {
662     return 0;
663   }
664 
665   CBS cbs;
666   size_t num_children = 0;
667   CBS_init(&cbs, CBB_data(cbb), CBB_len(cbb));
668   while (CBS_len(&cbs) != 0) {
669     if (!CBS_get_any_asn1_element(&cbs, NULL, NULL, NULL)) {
670       OPENSSL_PUT_ERROR(CRYPTO, ERR_R_SHOULD_NOT_HAVE_BEEN_CALLED);
671       return 0;
672     }
673     num_children++;
674   }
675 
676   if (num_children < 2) {
677     return 1;  // Nothing to do. This is the common case for X.509.
678   }
679 
680   // Parse out the children and sort. We alias them into a copy of so they
681   // remain valid as we rewrite |cbb|.
682   int ret = 0;
683   size_t buf_len = CBB_len(cbb);
684   uint8_t *buf =
685       reinterpret_cast<uint8_t *>(OPENSSL_memdup(CBB_data(cbb), buf_len));
686   CBS *children =
687       reinterpret_cast<CBS *>(OPENSSL_calloc(num_children, sizeof(CBS)));
688   uint8_t *out;
689   size_t offset = 0;
690   if (buf == NULL || children == NULL) {
691     goto err;
692   }
693   CBS_init(&cbs, buf, buf_len);
694   for (size_t i = 0; i < num_children; i++) {
695     if (!CBS_get_any_asn1_element(&cbs, &children[i], NULL, NULL)) {
696       goto err;
697     }
698   }
699   qsort(children, num_children, sizeof(CBS), compare_set_of_element);
700 
701   // Write the contents back in the new order.
702   out = (uint8_t *)CBB_data(cbb);
703   for (size_t i = 0; i < num_children; i++) {
704     OPENSSL_memcpy(out + offset, CBS_data(&children[i]), CBS_len(&children[i]));
705     offset += CBS_len(&children[i]);
706   }
707   assert(offset == buf_len);
708 
709   ret = 1;
710 
711 err:
712   OPENSSL_free(buf);
713   OPENSSL_free(children);
714   return ret;
715 }
716