1 // Copyright 1995-2016 The OpenSSL Project Authors. All Rights Reserved.
2 //
3 // Licensed under the Apache License, Version 2.0 (the "License");
4 // you may not use this file except in compliance with the License.
5 // You may obtain a copy of the License at
6 //
7 //     https://www.apache.org/licenses/LICENSE-2.0
8 //
9 // Unless required by applicable law or agreed to in writing, software
10 // distributed under the License is distributed on an "AS IS" BASIS,
11 // WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
12 // See the License for the specific language governing permissions and
13 // limitations under the License.
14 
15 #include <openssl/mem.h>
16 
17 #include <assert.h>
18 #include <errno.h>
19 #include <limits.h>
20 #include <stdarg.h>
21 #include <stdio.h>
22 #include <stdlib.h>
23 
24 #include <openssl/err.h>
25 
26 #if defined(OPENSSL_WINDOWS)
27 #include <windows.h>
28 #endif
29 
30 #if defined(BORINGSSL_MALLOC_FAILURE_TESTING)
31 #include <errno.h>
32 #include <signal.h>
33 #include <unistd.h>
34 #endif
35 
36 #include "internal.h"
37 
38 
39 #define OPENSSL_MALLOC_PREFIX 8
40 static_assert(OPENSSL_MALLOC_PREFIX >= sizeof(size_t), "size_t too large");
41 
42 #if defined(OPENSSL_ASAN)
43 extern "C" {
44 void __asan_poison_memory_region(const volatile void *addr, size_t size);
45 void __asan_unpoison_memory_region(const volatile void *addr, size_t size);
46 }
47 #else
__asan_poison_memory_region(const void * addr,size_t size)48 static void __asan_poison_memory_region(const void *addr, size_t size) {}
__asan_unpoison_memory_region(const void * addr,size_t size)49 static void __asan_unpoison_memory_region(const void *addr, size_t size) {}
50 #endif
51 
52 // Windows doesn't really support weak symbols as of May 2019, and Clang on
53 // Windows will emit strong symbols instead. See
54 // https://bugs.llvm.org/show_bug.cgi?id=37598
55 //
56 // EDK2 targets UEFI but builds as ELF and then translates the binary to
57 // COFF(!). Thus it builds with __ELF__ defined but cannot actually cope with
58 // weak symbols.
59 #if !defined(__EDK2_BORINGSSL__) && defined(__ELF__) && defined(__GNUC__)
60 #define WEAK_SYMBOL_FUNC(rettype, name, args) \
61   extern "C" {                                \
62   rettype name args __attribute__((weak));    \
63   }
64 #else
65 #define WEAK_SYMBOL_FUNC(rettype, name, args) \
66   static rettype(*const name) args = NULL;
67 #endif
68 
69 #if defined(BORINGSSL_DETECT_SDALLOCX)
70 // sdallocx is a sized |free| function. By passing the size (which we happen to
71 // always know in BoringSSL), the malloc implementation can save work. We cannot
72 // depend on |sdallocx| being available, however, so it's a weak symbol.
73 //
74 // This mechanism is kept opt-in because it assumes that, when |sdallocx| is
75 // defined, it is part of the same allocator as |malloc|. This is usually true
76 // but may break if |malloc| does not implement |sdallocx|, but some other
77 // allocator with |sdallocx| is imported which does.
78 WEAK_SYMBOL_FUNC(void, sdallocx, (void *ptr, size_t size, int flags))
79 #else
80 static void (*const sdallocx)(void *ptr, size_t size, int flags) = NULL;
81 #endif
82 
83 // The following three functions can be defined to override default heap
84 // allocation and freeing. If defined, it is the responsibility of
85 // |OPENSSL_memory_free| to zero out the memory before returning it to the
86 // system. |OPENSSL_memory_free| will not be passed NULL pointers.
87 //
88 // WARNING: These functions are called on every allocation and free in
89 // BoringSSL across the entire process. They may be called by any code in the
90 // process which calls BoringSSL, including in process initializers and thread
91 // destructors. When called, BoringSSL may hold pthreads locks. Any other code
92 // in the process which, directly or indirectly, calls BoringSSL may be on the
93 // call stack and may itself be using arbitrary synchronization primitives.
94 //
95 // As a result, these functions may not have the usual programming environment
96 // available to most C or C++ code. In particular, they may not call into
97 // BoringSSL, or any library which depends on BoringSSL. Any synchronization
98 // primitives used must tolerate every other synchronization primitive linked
99 // into the process, including pthreads locks. Failing to meet these constraints
100 // may result in deadlocks, crashes, or memory corruption.
101 WEAK_SYMBOL_FUNC(void *, OPENSSL_memory_alloc, (size_t size))
102 WEAK_SYMBOL_FUNC(void, OPENSSL_memory_free, (void *ptr))
103 WEAK_SYMBOL_FUNC(size_t, OPENSSL_memory_get_size, (void *ptr))
104 
105 #if defined(BORINGSSL_MALLOC_FAILURE_TESTING)
106 static CRYPTO_MUTEX malloc_failure_lock = CRYPTO_MUTEX_INIT;
107 static uint64_t current_malloc_count = 0;
108 static uint64_t malloc_number_to_fail = 0;
109 static int malloc_failure_enabled = 0, break_on_malloc_fail = 0,
110            any_malloc_failed = 0, disable_malloc_failures = 0;
111 
malloc_exit_handler(void)112 static void malloc_exit_handler(void) {
113   CRYPTO_MUTEX_lock_read(&malloc_failure_lock);
114   if (any_malloc_failed) {
115     // Signal to the test driver that some allocation failed, so it knows to
116     // increment the counter and continue.
117     _exit(88);
118   }
119   CRYPTO_MUTEX_unlock_read(&malloc_failure_lock);
120 }
121 
init_malloc_failure(void)122 static void init_malloc_failure(void) {
123   const char *env = getenv("MALLOC_NUMBER_TO_FAIL");
124   if (env != NULL && env[0] != 0) {
125     char *endptr;
126     malloc_number_to_fail = strtoull(env, &endptr, 10);
127     if (*endptr == 0) {
128       malloc_failure_enabled = 1;
129       atexit(malloc_exit_handler);
130     }
131   }
132   break_on_malloc_fail = getenv("MALLOC_BREAK_ON_FAIL") != NULL;
133 }
134 
135 // should_fail_allocation returns one if the current allocation should fail and
136 // zero otherwise.
should_fail_allocation()137 static int should_fail_allocation() {
138   static CRYPTO_once_t once = CRYPTO_ONCE_INIT;
139   CRYPTO_once(&once, init_malloc_failure);
140   if (!malloc_failure_enabled || disable_malloc_failures) {
141     return 0;
142   }
143 
144   // We lock just so multi-threaded tests are still correct, but we won't test
145   // every malloc exhaustively.
146   CRYPTO_MUTEX_lock_write(&malloc_failure_lock);
147   int should_fail = current_malloc_count == malloc_number_to_fail;
148   current_malloc_count++;
149   any_malloc_failed = any_malloc_failed || should_fail;
150   CRYPTO_MUTEX_unlock_write(&malloc_failure_lock);
151 
152   if (should_fail && break_on_malloc_fail) {
153     raise(SIGTRAP);
154   }
155   if (should_fail) {
156     errno = ENOMEM;
157   }
158   return should_fail;
159 }
160 
OPENSSL_reset_malloc_counter_for_testing(void)161 void OPENSSL_reset_malloc_counter_for_testing(void) {
162   CRYPTO_MUTEX_lock_write(&malloc_failure_lock);
163   current_malloc_count = 0;
164   CRYPTO_MUTEX_unlock_write(&malloc_failure_lock);
165 }
166 
OPENSSL_disable_malloc_failures_for_testing(void)167 void OPENSSL_disable_malloc_failures_for_testing(void) {
168   CRYPTO_MUTEX_lock_write(&malloc_failure_lock);
169   BSSL_CHECK(!disable_malloc_failures);
170   disable_malloc_failures = 1;
171   CRYPTO_MUTEX_unlock_write(&malloc_failure_lock);
172 }
173 
OPENSSL_enable_malloc_failures_for_testing(void)174 void OPENSSL_enable_malloc_failures_for_testing(void) {
175   CRYPTO_MUTEX_lock_write(&malloc_failure_lock);
176   BSSL_CHECK(disable_malloc_failures);
177   disable_malloc_failures = 0;
178   CRYPTO_MUTEX_unlock_write(&malloc_failure_lock);
179 }
180 
181 #else
182 static int should_fail_allocation(void) { return 0; }
183 #endif
184 
OPENSSL_malloc(size_t size)185 void *OPENSSL_malloc(size_t size) {
186   void *ptr = nullptr;
187   if (should_fail_allocation()) {
188     goto err;
189   }
190 
191   if (OPENSSL_memory_alloc != NULL) {
192     assert(OPENSSL_memory_free != NULL);
193     assert(OPENSSL_memory_get_size != NULL);
194     void *ptr2 = OPENSSL_memory_alloc(size);
195     if (ptr2 == NULL && size != 0) {
196       goto err;
197     }
198     return ptr2;
199   }
200 
201   if (size + OPENSSL_MALLOC_PREFIX < size) {
202     goto err;
203   }
204 
205   ptr = malloc(size + OPENSSL_MALLOC_PREFIX);
206   if (ptr == NULL) {
207     goto err;
208   }
209 
210   *(size_t *)ptr = size;
211 
212   __asan_poison_memory_region(ptr, OPENSSL_MALLOC_PREFIX);
213   return ((uint8_t *)ptr) + OPENSSL_MALLOC_PREFIX;
214 
215 err:
216   // This only works because ERR does not call OPENSSL_malloc.
217   OPENSSL_PUT_ERROR(CRYPTO, ERR_R_MALLOC_FAILURE);
218   return NULL;
219 }
220 
OPENSSL_zalloc(size_t size)221 void *OPENSSL_zalloc(size_t size) {
222   void *ret = OPENSSL_malloc(size);
223   if (ret != NULL) {
224     OPENSSL_memset(ret, 0, size);
225   }
226   return ret;
227 }
228 
OPENSSL_calloc(size_t num,size_t size)229 void *OPENSSL_calloc(size_t num, size_t size) {
230   if (size != 0 && num > SIZE_MAX / size) {
231     OPENSSL_PUT_ERROR(CRYPTO, ERR_R_OVERFLOW);
232     return NULL;
233   }
234 
235   return OPENSSL_zalloc(num * size);
236 }
237 
OPENSSL_free(void * orig_ptr)238 void OPENSSL_free(void *orig_ptr) {
239   if (orig_ptr == NULL) {
240     return;
241   }
242 
243   if (OPENSSL_memory_free != NULL) {
244     OPENSSL_memory_free(orig_ptr);
245     return;
246   }
247 
248   void *ptr = ((uint8_t *)orig_ptr) - OPENSSL_MALLOC_PREFIX;
249   __asan_unpoison_memory_region(ptr, OPENSSL_MALLOC_PREFIX);
250 
251   size_t size = *(size_t *)ptr;
252   OPENSSL_cleanse(ptr, size + OPENSSL_MALLOC_PREFIX);
253 
254 // ASan knows to intercept malloc and free, but not sdallocx.
255 #if defined(OPENSSL_ASAN)
256   (void)sdallocx;
257   free(ptr);
258 #else
259   if (sdallocx) {
260     sdallocx(ptr, size + OPENSSL_MALLOC_PREFIX, 0 /* flags */);
261   } else {
262     free(ptr);
263   }
264 #endif
265 }
266 
OPENSSL_realloc(void * orig_ptr,size_t new_size)267 void *OPENSSL_realloc(void *orig_ptr, size_t new_size) {
268   if (orig_ptr == NULL) {
269     return OPENSSL_malloc(new_size);
270   }
271 
272   size_t old_size;
273   if (OPENSSL_memory_get_size != NULL) {
274     old_size = OPENSSL_memory_get_size(orig_ptr);
275   } else {
276     void *ptr = ((uint8_t *)orig_ptr) - OPENSSL_MALLOC_PREFIX;
277     __asan_unpoison_memory_region(ptr, OPENSSL_MALLOC_PREFIX);
278     old_size = *(size_t *)ptr;
279     __asan_poison_memory_region(ptr, OPENSSL_MALLOC_PREFIX);
280   }
281 
282   void *ret = OPENSSL_malloc(new_size);
283   if (ret == NULL) {
284     return NULL;
285   }
286 
287   size_t to_copy = new_size;
288   if (old_size < to_copy) {
289     to_copy = old_size;
290   }
291 
292   memcpy(ret, orig_ptr, to_copy);
293   OPENSSL_free(orig_ptr);
294 
295   return ret;
296 }
297 
OPENSSL_cleanse(void * ptr,size_t len)298 void OPENSSL_cleanse(void *ptr, size_t len) {
299 #if defined(OPENSSL_WINDOWS)
300   SecureZeroMemory(ptr, len);
301 #else
302   OPENSSL_memset(ptr, 0, len);
303 
304 #if !defined(OPENSSL_NO_ASM)
305   /* As best as we can tell, this is sufficient to break any optimisations that
306      might try to eliminate "superfluous" memsets. If there's an easy way to
307      detect memset_s, it would be better to use that. */
308   __asm__ __volatile__("" : : "r"(ptr) : "memory");
309 #endif
310 #endif  // !OPENSSL_NO_ASM
311 }
312 
OPENSSL_clear_free(void * ptr,size_t unused)313 void OPENSSL_clear_free(void *ptr, size_t unused) { OPENSSL_free(ptr); }
314 
CRYPTO_secure_malloc_init(size_t size,size_t min_size)315 int CRYPTO_secure_malloc_init(size_t size, size_t min_size) { return 0; }
316 
CRYPTO_secure_malloc_initialized(void)317 int CRYPTO_secure_malloc_initialized(void) { return 0; }
318 
CRYPTO_secure_used(void)319 size_t CRYPTO_secure_used(void) { return 0; }
320 
OPENSSL_secure_malloc(size_t size)321 void *OPENSSL_secure_malloc(size_t size) { return OPENSSL_malloc(size); }
322 
OPENSSL_secure_clear_free(void * ptr,size_t len)323 void OPENSSL_secure_clear_free(void *ptr, size_t len) {
324   OPENSSL_clear_free(ptr, len);
325 }
326 
CRYPTO_memcmp(const void * in_a,const void * in_b,size_t len)327 int CRYPTO_memcmp(const void *in_a, const void *in_b, size_t len) {
328   const uint8_t *a = reinterpret_cast<const uint8_t *>(in_a);
329   const uint8_t *b = reinterpret_cast<const uint8_t *>(in_b);
330   uint8_t x = 0;
331 
332   for (size_t i = 0; i < len; i++) {
333     x |= a[i] ^ b[i];
334   }
335 
336   return x;
337 }
338 
OPENSSL_hash32(const void * ptr,size_t len)339 uint32_t OPENSSL_hash32(const void *ptr, size_t len) {
340   // These are the FNV-1a parameters for 32 bits.
341   static const uint32_t kPrime = 16777619u;
342   static const uint32_t kOffsetBasis = 2166136261u;
343 
344   const uint8_t *in = reinterpret_cast<const uint8_t *>(ptr);
345   uint32_t h = kOffsetBasis;
346 
347   for (size_t i = 0; i < len; i++) {
348     h ^= in[i];
349     h *= kPrime;
350   }
351 
352   return h;
353 }
354 
OPENSSL_strhash(const char * s)355 uint32_t OPENSSL_strhash(const char *s) { return OPENSSL_hash32(s, strlen(s)); }
356 
OPENSSL_strnlen(const char * s,size_t len)357 size_t OPENSSL_strnlen(const char *s, size_t len) {
358   for (size_t i = 0; i < len; i++) {
359     if (s[i] == 0) {
360       return i;
361     }
362   }
363 
364   return len;
365 }
366 
OPENSSL_strdup(const char * s)367 char *OPENSSL_strdup(const char *s) {
368   if (s == NULL) {
369     return NULL;
370   }
371   // Copy the NUL terminator.
372   return reinterpret_cast<char *>(OPENSSL_memdup(s, strlen(s) + 1));
373 }
374 
OPENSSL_isalpha(int c)375 int OPENSSL_isalpha(int c) {
376   return (c >= 'a' && c <= 'z') || (c >= 'A' && c <= 'Z');
377 }
378 
OPENSSL_isdigit(int c)379 int OPENSSL_isdigit(int c) { return c >= '0' && c <= '9'; }
380 
OPENSSL_isxdigit(int c)381 int OPENSSL_isxdigit(int c) {
382   return OPENSSL_isdigit(c) || (c >= 'a' && c <= 'f') || (c >= 'A' && c <= 'F');
383 }
384 
OPENSSL_fromxdigit(uint8_t * out,int c)385 int OPENSSL_fromxdigit(uint8_t *out, int c) {
386   if (OPENSSL_isdigit(c)) {
387     *out = c - '0';
388     return 1;
389   }
390   if ('a' <= c && c <= 'f') {
391     *out = c - 'a' + 10;
392     return 1;
393   }
394   if ('A' <= c && c <= 'F') {
395     *out = c - 'A' + 10;
396     return 1;
397   }
398   return 0;
399 }
400 
OPENSSL_isalnum(int c)401 int OPENSSL_isalnum(int c) { return OPENSSL_isalpha(c) || OPENSSL_isdigit(c); }
402 
OPENSSL_tolower(int c)403 int OPENSSL_tolower(int c) {
404   if (c >= 'A' && c <= 'Z') {
405     return c + ('a' - 'A');
406   }
407   return c;
408 }
409 
OPENSSL_isspace(int c)410 int OPENSSL_isspace(int c) {
411   return c == '\t' || c == '\n' || c == '\v' || c == '\f' || c == '\r' ||
412          c == ' ';
413 }
414 
OPENSSL_strcasecmp(const char * a,const char * b)415 int OPENSSL_strcasecmp(const char *a, const char *b) {
416   for (size_t i = 0;; i++) {
417     const int aa = OPENSSL_tolower(a[i]);
418     const int bb = OPENSSL_tolower(b[i]);
419 
420     if (aa < bb) {
421       return -1;
422     } else if (aa > bb) {
423       return 1;
424     } else if (aa == 0) {
425       return 0;
426     }
427   }
428 }
429 
OPENSSL_strncasecmp(const char * a,const char * b,size_t n)430 int OPENSSL_strncasecmp(const char *a, const char *b, size_t n) {
431   for (size_t i = 0; i < n; i++) {
432     const int aa = OPENSSL_tolower(a[i]);
433     const int bb = OPENSSL_tolower(b[i]);
434 
435     if (aa < bb) {
436       return -1;
437     } else if (aa > bb) {
438       return 1;
439     } else if (aa == 0) {
440       return 0;
441     }
442   }
443 
444   return 0;
445 }
446 
BIO_snprintf(char * buf,size_t n,const char * format,...)447 int BIO_snprintf(char *buf, size_t n, const char *format, ...) {
448   va_list args;
449   va_start(args, format);
450   int ret = BIO_vsnprintf(buf, n, format, args);
451   va_end(args);
452   return ret;
453 }
454 
BIO_vsnprintf(char * buf,size_t n,const char * format,va_list args)455 int BIO_vsnprintf(char *buf, size_t n, const char *format, va_list args) {
456   return vsnprintf(buf, n, format, args);
457 }
458 
OPENSSL_vasprintf_internal(char ** str,const char * format,va_list args,int system_malloc)459 int OPENSSL_vasprintf_internal(char **str, const char *format, va_list args,
460                                int system_malloc) {
461   void *(*allocate)(size_t) = system_malloc ? malloc : OPENSSL_malloc;
462   void (*deallocate)(void *) = system_malloc ? free : OPENSSL_free;
463   void *(*reallocate)(void *, size_t) =
464       system_malloc ? realloc : OPENSSL_realloc;
465   char *candidate = NULL;
466   size_t candidate_len = 64;  // TODO(bbe) what's the best initial size?
467   int ret;
468 
469   if ((candidate = reinterpret_cast<char *>(allocate(candidate_len))) == NULL) {
470     goto err;
471   }
472   va_list args_copy;
473   va_copy(args_copy, args);
474   ret = vsnprintf(candidate, candidate_len, format, args_copy);
475   va_end(args_copy);
476   if (ret < 0) {
477     goto err;
478   }
479   if ((size_t)ret >= candidate_len) {
480     // Too big to fit in allocation.
481     char *tmp;
482 
483     candidate_len = (size_t)ret + 1;
484     if ((tmp = reinterpret_cast<char *>(
485              reallocate(candidate, candidate_len))) == NULL) {
486       goto err;
487     }
488     candidate = tmp;
489     ret = vsnprintf(candidate, candidate_len, format, args);
490   }
491   // At this point this should not happen unless vsnprintf is insane.
492   if (ret < 0 || (size_t)ret >= candidate_len) {
493     goto err;
494   }
495   *str = candidate;
496   return ret;
497 
498 err:
499   deallocate(candidate);
500   *str = NULL;
501   errno = ENOMEM;
502   return -1;
503 }
504 
OPENSSL_vasprintf(char ** str,const char * format,va_list args)505 int OPENSSL_vasprintf(char **str, const char *format, va_list args) {
506   return OPENSSL_vasprintf_internal(str, format, args, /*system_malloc=*/0);
507 }
508 
OPENSSL_asprintf(char ** str,const char * format,...)509 int OPENSSL_asprintf(char **str, const char *format, ...) {
510   va_list args;
511   va_start(args, format);
512   int ret = OPENSSL_vasprintf(str, format, args);
513   va_end(args);
514   return ret;
515 }
516 
OPENSSL_strndup(const char * str,size_t size)517 char *OPENSSL_strndup(const char *str, size_t size) {
518   size = OPENSSL_strnlen(str, size);
519 
520   size_t alloc_size = size + 1;
521   if (alloc_size < size) {
522     // overflow
523     OPENSSL_PUT_ERROR(CRYPTO, ERR_R_MALLOC_FAILURE);
524     return NULL;
525   }
526   char *ret = reinterpret_cast<char *>(OPENSSL_malloc(alloc_size));
527   if (ret == NULL) {
528     return NULL;
529   }
530 
531   OPENSSL_memcpy(ret, str, size);
532   ret[size] = '\0';
533   return ret;
534 }
535 
OPENSSL_strlcpy(char * dst,const char * src,size_t dst_size)536 size_t OPENSSL_strlcpy(char *dst, const char *src, size_t dst_size) {
537   size_t l = 0;
538 
539   for (; dst_size > 1 && *src; dst_size--) {
540     *dst++ = *src++;
541     l++;
542   }
543 
544   if (dst_size) {
545     *dst = 0;
546   }
547 
548   return l + strlen(src);
549 }
550 
OPENSSL_strlcat(char * dst,const char * src,size_t dst_size)551 size_t OPENSSL_strlcat(char *dst, const char *src, size_t dst_size) {
552   size_t l = 0;
553   for (; dst_size > 0 && *dst; dst_size--, dst++) {
554     l++;
555   }
556   return l + OPENSSL_strlcpy(dst, src, dst_size);
557 }
558 
OPENSSL_memdup(const void * data,size_t size)559 void *OPENSSL_memdup(const void *data, size_t size) {
560   if (size == 0) {
561     return NULL;
562   }
563 
564   void *ret = OPENSSL_malloc(size);
565   if (ret == NULL) {
566     return NULL;
567   }
568 
569   OPENSSL_memcpy(ret, data, size);
570   return ret;
571 }
572 
CRYPTO_malloc(size_t size,const char * file,int line)573 void *CRYPTO_malloc(size_t size, const char *file, int line) {
574   return OPENSSL_malloc(size);
575 }
576 
CRYPTO_realloc(void * ptr,size_t new_size,const char * file,int line)577 void *CRYPTO_realloc(void *ptr, size_t new_size, const char *file, int line) {
578   return OPENSSL_realloc(ptr, new_size);
579 }
580 
CRYPTO_free(void * ptr,const char * file,int line)581 void CRYPTO_free(void *ptr, const char *file, int line) { OPENSSL_free(ptr); }
582