1 // Copyright 2015 The BoringSSL Authors
2 //
3 // Licensed under the Apache License, Version 2.0 (the "License");
4 // you may not use this file except in compliance with the License.
5 // You may obtain a copy of the License at
6 //
7 //     https://www.apache.org/licenses/LICENSE-2.0
8 //
9 // Unless required by applicable law or agreed to in writing, software
10 // distributed under the License is distributed on an "AS IS" BASIS,
11 // WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
12 // See the License for the specific language governing permissions and
13 // limitations under the License.
14 
15 #include <openssl/ssl.h>
16 
17 #include <assert.h>
18 #include <string.h>
19 
20 #include <openssl/aead.h>
21 #include <openssl/err.h>
22 #include <openssl/rand.h>
23 
24 #include "../crypto/internal.h"
25 #include "internal.h"
26 
27 
28 BSSL_NAMESPACE_BEGIN
29 
SSLAEADContext(const SSL_CIPHER * cipher_arg)30 SSLAEADContext::SSLAEADContext(const SSL_CIPHER *cipher_arg)
31     : cipher_(cipher_arg),
32       variable_nonce_included_in_record_(false),
33       random_variable_nonce_(false),
34       xor_fixed_nonce_(false),
35       omit_length_in_ad_(false),
36       ad_is_header_(false) {}
37 
~SSLAEADContext()38 SSLAEADContext::~SSLAEADContext() {}
39 
CreateNullCipher()40 UniquePtr<SSLAEADContext> SSLAEADContext::CreateNullCipher() {
41   return MakeUnique<SSLAEADContext>(/*cipher=*/nullptr);
42 }
43 
Create(enum evp_aead_direction_t direction,uint16_t version,const SSL_CIPHER * cipher,Span<const uint8_t> enc_key,Span<const uint8_t> mac_key,Span<const uint8_t> fixed_iv)44 UniquePtr<SSLAEADContext> SSLAEADContext::Create(
45     enum evp_aead_direction_t direction, uint16_t version,
46     const SSL_CIPHER *cipher, Span<const uint8_t> enc_key,
47     Span<const uint8_t> mac_key, Span<const uint8_t> fixed_iv) {
48   const EVP_AEAD *aead;
49   uint16_t protocol_version;
50   size_t expected_mac_key_len, expected_fixed_iv_len;
51   if (!ssl_protocol_version_from_wire(&protocol_version, version) ||
52       !ssl_cipher_get_evp_aead(&aead, &expected_mac_key_len,
53                                &expected_fixed_iv_len, cipher,
54                                protocol_version) ||
55       // Ensure the caller returned correct key sizes.
56       expected_fixed_iv_len != fixed_iv.size() ||
57       expected_mac_key_len != mac_key.size()) {
58     OPENSSL_PUT_ERROR(SSL, ERR_R_INTERNAL_ERROR);
59     return nullptr;
60   }
61 
62   UniquePtr<SSLAEADContext> aead_ctx = MakeUnique<SSLAEADContext>(cipher);
63   if (!aead_ctx) {
64     return nullptr;
65   }
66 
67   uint8_t merged_key[EVP_AEAD_MAX_KEY_LENGTH];
68   assert(EVP_AEAD_nonce_length(aead) <= EVP_AEAD_MAX_NONCE_LENGTH);
69   static_assert(EVP_AEAD_MAX_NONCE_LENGTH < 256,
70                 "variable_nonce_len doesn't fit in uint8_t");
71   aead_ctx->variable_nonce_len_ = (uint8_t)EVP_AEAD_nonce_length(aead);
72   if (mac_key.empty()) {
73     // This is an actual AEAD.
74     aead_ctx->fixed_nonce_.CopyFrom(fixed_iv);
75 
76     if (protocol_version >= TLS1_3_VERSION ||
77         cipher->algorithm_enc & SSL_CHACHA20POLY1305) {
78       // TLS 1.3, and TLS 1.2 ChaCha20-Poly1305, XOR the fixed IV with the
79       // sequence number to form the nonce.
80       aead_ctx->xor_fixed_nonce_ = true;
81       aead_ctx->variable_nonce_len_ = 8;
82       assert(fixed_iv.size() >= aead_ctx->variable_nonce_len_);
83     } else {
84       // TLS 1.2 AES-GCM prepends the fixed IV to an explicit nonce.
85       assert(fixed_iv.size() <= aead_ctx->variable_nonce_len_);
86       assert(cipher->algorithm_enc & (SSL_AES128GCM | SSL_AES256GCM));
87       aead_ctx->variable_nonce_len_ -= fixed_iv.size();
88       aead_ctx->variable_nonce_included_in_record_ = true;
89     }
90 
91     // Starting TLS 1.3, the AAD is the whole record header.
92     if (protocol_version >= TLS1_3_VERSION) {
93       aead_ctx->ad_is_header_ = true;
94     }
95   } else {
96     // This is a CBC cipher suite that implements the |EVP_AEAD| interface. The
97     // |EVP_AEAD| takes the MAC key, encryption key, and fixed IV concatenated
98     // as its input key.
99     assert(protocol_version < TLS1_3_VERSION);
100     BSSL_CHECK(mac_key.size() + enc_key.size() + fixed_iv.size() <=
101                sizeof(merged_key));
102     OPENSSL_memcpy(merged_key, mac_key.data(), mac_key.size());
103     OPENSSL_memcpy(merged_key + mac_key.size(), enc_key.data(), enc_key.size());
104     OPENSSL_memcpy(merged_key + mac_key.size() + enc_key.size(),
105                    fixed_iv.data(), fixed_iv.size());
106     enc_key =
107         Span(merged_key, enc_key.size() + mac_key.size() + fixed_iv.size());
108 
109     // The |EVP_AEAD|'s per-encryption nonce, if any, is actually the CBC IV. It
110     // must be generated randomly and prepended to the record.
111     aead_ctx->variable_nonce_included_in_record_ = true;
112     aead_ctx->random_variable_nonce_ = true;
113     aead_ctx->omit_length_in_ad_ = true;
114   }
115 
116   if (!EVP_AEAD_CTX_init_with_direction(
117           aead_ctx->ctx_.get(), aead, enc_key.data(), enc_key.size(),
118           EVP_AEAD_DEFAULT_TAG_LENGTH, direction)) {
119     return nullptr;
120   }
121 
122   return aead_ctx;
123 }
124 
CreatePlaceholderForQUIC(const SSL_CIPHER * cipher)125 UniquePtr<SSLAEADContext> SSLAEADContext::CreatePlaceholderForQUIC(
126     const SSL_CIPHER *cipher) {
127   return MakeUnique<SSLAEADContext>(cipher);
128 }
129 
ExplicitNonceLen() const130 size_t SSLAEADContext::ExplicitNonceLen() const {
131   if (!CRYPTO_fuzzer_mode_enabled() && variable_nonce_included_in_record_) {
132     return variable_nonce_len_;
133   }
134   return 0;
135 }
136 
SuffixLen(size_t * out_suffix_len,const size_t in_len,const size_t extra_in_len) const137 bool SSLAEADContext::SuffixLen(size_t *out_suffix_len, const size_t in_len,
138                                const size_t extra_in_len) const {
139   if (is_null_cipher() || CRYPTO_fuzzer_mode_enabled()) {
140     *out_suffix_len = extra_in_len;
141     return true;
142   }
143   return !!EVP_AEAD_CTX_tag_len(ctx_.get(), out_suffix_len, in_len,
144                                 extra_in_len);
145 }
146 
CiphertextLen(size_t * out_len,const size_t in_len,const size_t extra_in_len) const147 bool SSLAEADContext::CiphertextLen(size_t *out_len, const size_t in_len,
148                                    const size_t extra_in_len) const {
149   size_t len;
150   if (!SuffixLen(&len, in_len, extra_in_len)) {
151     return false;
152   }
153   len += ExplicitNonceLen();
154   len += in_len;
155   if (len < in_len || len >= 0xffff) {
156     OPENSSL_PUT_ERROR(SSL, ERR_R_OVERFLOW);
157     return false;
158   }
159   *out_len = len;
160   return true;
161 }
162 
MaxOverhead() const163 size_t SSLAEADContext::MaxOverhead() const {
164   return ExplicitNonceLen() +
165          (is_null_cipher() || CRYPTO_fuzzer_mode_enabled()
166               ? 0
167               : EVP_AEAD_max_overhead(EVP_AEAD_CTX_aead(ctx_.get())));
168 }
169 
MaxSealInputLen(size_t max_out) const170 size_t SSLAEADContext::MaxSealInputLen(size_t max_out) const {
171   size_t explicit_nonce_len = ExplicitNonceLen();
172   if (max_out <= explicit_nonce_len) {
173     return 0;
174   }
175   max_out -= explicit_nonce_len;
176   if (is_null_cipher() || CRYPTO_fuzzer_mode_enabled()) {
177     return max_out;
178   }
179   // TODO(crbug.com/42290602): This should be part of |EVP_AEAD_CTX|.
180   size_t overhead = EVP_AEAD_max_overhead(EVP_AEAD_CTX_aead(ctx_.get()));
181   if (SSL_CIPHER_is_block_cipher(cipher())) {
182     size_t block_size;
183     switch (cipher()->algorithm_enc) {
184       case SSL_AES128:
185       case SSL_AES256:
186         block_size = 16;
187         break;
188       case SSL_3DES:
189         block_size = 8;
190         break;
191       default:
192         abort();
193     }
194 
195     // The output for a CBC cipher is always a whole number of blocks. Round the
196     // remaining capacity down.
197     max_out &= ~(block_size - 1);
198     // The maximum overhead is a full block of padding and the MAC, but the
199     // minimum overhead is one byte of padding, once we know the output is
200     // rounded down.
201     assert(overhead > block_size);
202     overhead -= block_size - 1;
203   }
204   return max_out <= overhead ? 0 : max_out - overhead;
205 }
206 
GetAdditionalData(uint8_t storage[13],uint8_t type,uint16_t record_version,uint64_t seqnum,size_t plaintext_len,Span<const uint8_t> header)207 Span<const uint8_t> SSLAEADContext::GetAdditionalData(
208     uint8_t storage[13], uint8_t type, uint16_t record_version, uint64_t seqnum,
209     size_t plaintext_len, Span<const uint8_t> header) {
210   if (ad_is_header_) {
211     return header;
212   }
213 
214   CRYPTO_store_u64_be(storage, seqnum);
215   size_t len = 8;
216   storage[len++] = type;
217   storage[len++] = static_cast<uint8_t>((record_version >> 8));
218   storage[len++] = static_cast<uint8_t>(record_version);
219   if (!omit_length_in_ad_) {
220     storage[len++] = static_cast<uint8_t>((plaintext_len >> 8));
221     storage[len++] = static_cast<uint8_t>(plaintext_len);
222   }
223   return Span(storage, len);
224 }
225 
Open(Span<uint8_t> * out,uint8_t type,uint16_t record_version,uint64_t seqnum,Span<const uint8_t> header,Span<uint8_t> in)226 bool SSLAEADContext::Open(Span<uint8_t> *out, uint8_t type,
227                           uint16_t record_version, uint64_t seqnum,
228                           Span<const uint8_t> header, Span<uint8_t> in) {
229   if (is_null_cipher() || CRYPTO_fuzzer_mode_enabled()) {
230     // Handle the initial NULL cipher.
231     *out = in;
232     return true;
233   }
234 
235   // TLS 1.2 AEADs include the length in the AD and are assumed to have fixed
236   // overhead. Otherwise the parameter is unused.
237   size_t plaintext_len = 0;
238   if (!omit_length_in_ad_) {
239     size_t overhead = MaxOverhead();
240     if (in.size() < overhead) {
241       // Publicly invalid.
242       OPENSSL_PUT_ERROR(SSL, SSL_R_BAD_PACKET_LENGTH);
243       return false;
244     }
245     plaintext_len = in.size() - overhead;
246   }
247 
248   uint8_t ad_storage[13];
249   Span<const uint8_t> ad = GetAdditionalData(ad_storage, type, record_version,
250                                              seqnum, plaintext_len, header);
251 
252   // Assemble the nonce.
253   uint8_t nonce[EVP_AEAD_MAX_NONCE_LENGTH];
254   size_t nonce_len = 0;
255 
256   // Prepend the fixed nonce, or left-pad with zeros if XORing.
257   if (xor_fixed_nonce_) {
258     nonce_len = fixed_nonce_.size() - variable_nonce_len_;
259     OPENSSL_memset(nonce, 0, nonce_len);
260   } else {
261     OPENSSL_memcpy(nonce, fixed_nonce_.data(), fixed_nonce_.size());
262     nonce_len += fixed_nonce_.size();
263   }
264 
265   // Add the variable nonce.
266   if (variable_nonce_included_in_record_) {
267     if (in.size() < variable_nonce_len_) {
268       // Publicly invalid.
269       OPENSSL_PUT_ERROR(SSL, SSL_R_BAD_PACKET_LENGTH);
270       return false;
271     }
272     OPENSSL_memcpy(nonce + nonce_len, in.data(), variable_nonce_len_);
273     in = in.subspan(variable_nonce_len_);
274   } else {
275     assert(variable_nonce_len_ == 8);
276     CRYPTO_store_u64_be(nonce + nonce_len, seqnum);
277   }
278   nonce_len += variable_nonce_len_;
279 
280   // XOR the fixed nonce, if necessary.
281   if (xor_fixed_nonce_) {
282     assert(nonce_len == fixed_nonce_.size());
283     for (size_t i = 0; i < fixed_nonce_.size(); i++) {
284       nonce[i] ^= fixed_nonce_[i];
285     }
286   }
287 
288   // Decrypt in-place.
289   size_t len;
290   if (!EVP_AEAD_CTX_open(ctx_.get(), in.data(), &len, in.size(), nonce,
291                          nonce_len, in.data(), in.size(), ad.data(),
292                          ad.size())) {
293     return false;
294   }
295   *out = in.subspan(0, len);
296   return true;
297 }
298 
SealScatter(uint8_t * out_prefix,uint8_t * out,uint8_t * out_suffix,uint8_t type,uint16_t record_version,uint64_t seqnum,Span<const uint8_t> header,const uint8_t * in,size_t in_len,const uint8_t * extra_in,size_t extra_in_len)299 bool SSLAEADContext::SealScatter(uint8_t *out_prefix, uint8_t *out,
300                                  uint8_t *out_suffix, uint8_t type,
301                                  uint16_t record_version, uint64_t seqnum,
302                                  Span<const uint8_t> header, const uint8_t *in,
303                                  size_t in_len, const uint8_t *extra_in,
304                                  size_t extra_in_len) {
305   const size_t prefix_len = ExplicitNonceLen();
306   size_t suffix_len;
307   if (!SuffixLen(&suffix_len, in_len, extra_in_len)) {
308     OPENSSL_PUT_ERROR(SSL, SSL_R_RECORD_TOO_LARGE);
309     return false;
310   }
311   if ((in != out && buffers_alias(in, in_len, out, in_len)) ||
312       buffers_alias(in, in_len, out_prefix, prefix_len) ||
313       buffers_alias(in, in_len, out_suffix, suffix_len)) {
314     OPENSSL_PUT_ERROR(SSL, SSL_R_OUTPUT_ALIASES_INPUT);
315     return false;
316   }
317 
318   if (is_null_cipher() || CRYPTO_fuzzer_mode_enabled()) {
319     // Handle the initial NULL cipher.
320     OPENSSL_memmove(out, in, in_len);
321     OPENSSL_memmove(out_suffix, extra_in, extra_in_len);
322     return true;
323   }
324 
325   uint8_t ad_storage[13];
326   Span<const uint8_t> ad = GetAdditionalData(ad_storage, type, record_version,
327                                              seqnum, in_len, header);
328 
329   // Assemble the nonce.
330   uint8_t nonce[EVP_AEAD_MAX_NONCE_LENGTH];
331   size_t nonce_len = 0;
332 
333   // Prepend the fixed nonce, or left-pad with zeros if XORing.
334   if (xor_fixed_nonce_) {
335     nonce_len = fixed_nonce_.size() - variable_nonce_len_;
336     OPENSSL_memset(nonce, 0, nonce_len);
337   } else {
338     OPENSSL_memcpy(nonce, fixed_nonce_.data(), fixed_nonce_.size());
339     nonce_len += fixed_nonce_.size();
340   }
341 
342   // Select the variable nonce.
343   if (random_variable_nonce_) {
344     assert(variable_nonce_included_in_record_);
345     if (!RAND_bytes(nonce + nonce_len, variable_nonce_len_)) {
346       return false;
347     }
348   } else {
349     // When sending we use the sequence number as the variable part of the
350     // nonce.
351     assert(variable_nonce_len_ == 8);
352     CRYPTO_store_u64_be(nonce + nonce_len, seqnum);
353   }
354   nonce_len += variable_nonce_len_;
355 
356   // Emit the variable nonce if included in the record.
357   if (variable_nonce_included_in_record_) {
358     assert(!xor_fixed_nonce_);
359     if (buffers_alias(in, in_len, out_prefix, variable_nonce_len_)) {
360       OPENSSL_PUT_ERROR(SSL, SSL_R_OUTPUT_ALIASES_INPUT);
361       return false;
362     }
363     OPENSSL_memcpy(out_prefix, nonce + fixed_nonce_.size(),
364                    variable_nonce_len_);
365   }
366 
367   // XOR the fixed nonce, if necessary.
368   if (xor_fixed_nonce_) {
369     assert(nonce_len == fixed_nonce_.size());
370     for (size_t i = 0; i < fixed_nonce_.size(); i++) {
371       nonce[i] ^= fixed_nonce_[i];
372     }
373   }
374 
375   size_t written_suffix_len;
376   bool result = !!EVP_AEAD_CTX_seal_scatter(
377       ctx_.get(), out, out_suffix, &written_suffix_len, suffix_len, nonce,
378       nonce_len, in, in_len, extra_in, extra_in_len, ad.data(), ad.size());
379   assert(!result || written_suffix_len == suffix_len);
380   return result;
381 }
382 
Seal(uint8_t * out,size_t * out_len,size_t max_out_len,uint8_t type,uint16_t record_version,uint64_t seqnum,Span<const uint8_t> header,const uint8_t * in,size_t in_len)383 bool SSLAEADContext::Seal(uint8_t *out, size_t *out_len, size_t max_out_len,
384                           uint8_t type, uint16_t record_version,
385                           uint64_t seqnum, Span<const uint8_t> header,
386                           const uint8_t *in, size_t in_len) {
387   const size_t prefix_len = ExplicitNonceLen();
388   size_t suffix_len;
389   if (!SuffixLen(&suffix_len, in_len, 0)) {
390     OPENSSL_PUT_ERROR(SSL, SSL_R_RECORD_TOO_LARGE);
391     return false;
392   }
393   if (in_len + prefix_len < in_len ||
394       in_len + prefix_len + suffix_len < in_len + prefix_len) {
395     OPENSSL_PUT_ERROR(CIPHER, SSL_R_RECORD_TOO_LARGE);
396     return false;
397   }
398   if (in_len + prefix_len + suffix_len > max_out_len) {
399     OPENSSL_PUT_ERROR(SSL, SSL_R_BUFFER_TOO_SMALL);
400     return false;
401   }
402 
403   if (!SealScatter(out, out + prefix_len, out + prefix_len + in_len, type,
404                    record_version, seqnum, header, in, in_len, 0, 0)) {
405     return false;
406   }
407   *out_len = prefix_len + in_len + suffix_len;
408   return true;
409 }
410 
GetIV(const uint8_t ** out_iv,size_t * out_iv_len) const411 bool SSLAEADContext::GetIV(const uint8_t **out_iv, size_t *out_iv_len) const {
412   return !is_null_cipher() &&
413          EVP_AEAD_CTX_get_iv(ctx_.get(), out_iv, out_iv_len);
414 }
415 
416 BSSL_NAMESPACE_END
417