1 // Copyright 2005-2016 The OpenSSL Project Authors. All Rights Reserved.
2 //
3 // Licensed under the Apache License, Version 2.0 (the "License");
4 // you may not use this file except in compliance with the License.
5 // You may obtain a copy of the License at
6 //
7 // https://www.apache.org/licenses/LICENSE-2.0
8 //
9 // Unless required by applicable law or agreed to in writing, software
10 // distributed under the License is distributed on an "AS IS" BASIS,
11 // WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
12 // See the License for the specific language governing permissions and
13 // limitations under the License.
14
15 #include <openssl/ssl.h>
16
17 #include <assert.h>
18 #include <string.h>
19
20 #include <openssl/bytestring.h>
21 #include <openssl/err.h>
22
23 #include "../crypto/internal.h"
24 #include "internal.h"
25
26
27 BSSL_NAMESPACE_BEGIN
28
ShouldDiscard(uint64_t seq_num) const29 bool DTLSReplayBitmap::ShouldDiscard(uint64_t seq_num) const {
30 const size_t kWindowSize = map_.size();
31
32 if (seq_num > max_seq_num_) {
33 return false;
34 }
35 uint64_t idx = max_seq_num_ - seq_num;
36 return idx >= kWindowSize || map_[idx];
37 }
38
Record(uint64_t seq_num)39 void DTLSReplayBitmap::Record(uint64_t seq_num) {
40 const size_t kWindowSize = map_.size();
41
42 // Shift the window if necessary.
43 if (seq_num > max_seq_num_) {
44 uint64_t shift = seq_num - max_seq_num_;
45 if (shift >= kWindowSize) {
46 map_.reset();
47 } else {
48 map_ <<= shift;
49 }
50 max_seq_num_ = seq_num;
51 }
52
53 uint64_t idx = max_seq_num_ - seq_num;
54 if (idx < kWindowSize) {
55 map_[idx] = true;
56 }
57 }
58
dtls_record_version(const SSL * ssl)59 static uint16_t dtls_record_version(const SSL *ssl) {
60 if (ssl->s3->version == 0) {
61 // Before the version is determined, outgoing records use dTLS 1.0 for
62 // historical compatibility requirements.
63 return DTLS1_VERSION;
64 }
65 // DTLS 1.3 freezes the record version at DTLS 1.2. Previous ones use the
66 // version itself.
67 return ssl_protocol_version(ssl) >= TLS1_3_VERSION ? DTLS1_2_VERSION
68 : ssl->s3->version;
69 }
70
dtls_aead_sequence(const SSL * ssl,DTLSRecordNumber num)71 static uint64_t dtls_aead_sequence(const SSL *ssl, DTLSRecordNumber num) {
72 // DTLS 1.3 uses the sequence number with the AEAD, while DTLS 1.2 uses the
73 // combined value. If the version is not known, the epoch is unencrypted and
74 // the value is ignored.
75 return (ssl->s3->version != 0 && ssl_protocol_version(ssl) >= TLS1_3_VERSION)
76 ? num.sequence()
77 : num.combined();
78 }
79
80 // reconstruct_epoch finds the largest epoch that ends with the epoch bits from
81 // |wire_epoch| that is less than or equal to |current_epoch|, to match the
82 // epoch reconstruction algorithm described in RFC 9147 section 4.2.2.
reconstruct_epoch(uint8_t wire_epoch,uint16_t current_epoch)83 static uint16_t reconstruct_epoch(uint8_t wire_epoch, uint16_t current_epoch) {
84 uint16_t current_epoch_high = current_epoch & 0xfffc;
85 uint16_t epoch = (wire_epoch & 0x3) | current_epoch_high;
86 if (epoch > current_epoch && current_epoch_high > 0) {
87 epoch -= 0x4;
88 }
89 return epoch;
90 }
91
reconstruct_seqnum(uint16_t wire_seq,uint64_t seq_mask,uint64_t max_valid_seqnum)92 uint64_t reconstruct_seqnum(uint16_t wire_seq, uint64_t seq_mask,
93 uint64_t max_valid_seqnum) {
94 // Although DTLS 1.3 can support sequence numbers up to 2^64-1, we continue to
95 // enforce the DTLS 1.2 2^48-1 limit. With a minimal DTLS 1.3 record header (2
96 // bytes), no payload, and 16 byte AEAD overhead, sending 2^48 records would
97 // require 5 petabytes. This allows us to continue to pack a DTLS record
98 // number into an 8-byte structure.
99 assert(max_valid_seqnum <= DTLSRecordNumber::kMaxSequence);
100 assert(seq_mask == 0xff || seq_mask == 0xffff);
101
102 uint64_t max_seqnum_plus_one = max_valid_seqnum + 1;
103 uint64_t diff = (wire_seq - max_seqnum_plus_one) & seq_mask;
104 uint64_t step = seq_mask + 1;
105 // This addition cannot overflow. It is at most 2^48 + seq_mask. It, however,
106 // may exceed 2^48-1.
107 uint64_t seqnum = max_seqnum_plus_one + diff;
108 bool too_large = seqnum > DTLSRecordNumber::kMaxSequence;
109 // If the diff is larger than half the step size, then the closest seqnum
110 // to max_seqnum_plus_one (in Z_{2^64}) is seqnum minus step instead of
111 // seqnum.
112 bool closer_is_less = diff > step / 2;
113 // Subtracting step from seqnum will cause underflow if seqnum is too small.
114 bool would_underflow = seqnum < step;
115 if (too_large || (closer_is_less && !would_underflow)) {
116 seqnum -= step;
117 }
118 assert(seqnum <= DTLSRecordNumber::kMaxSequence);
119 return seqnum;
120 }
121
dtls_get_read_epoch(const SSL * ssl,uint16_t epoch)122 DTLSReadEpoch *dtls_get_read_epoch(const SSL *ssl, uint16_t epoch) {
123 if (epoch == ssl->d1->read_epoch.epoch) {
124 return &ssl->d1->read_epoch;
125 }
126 if (ssl->d1->next_read_epoch != nullptr &&
127 epoch == ssl->d1->next_read_epoch->epoch) {
128 return ssl->d1->next_read_epoch.get();
129 }
130 if (ssl->d1->prev_read_epoch != nullptr &&
131 epoch == ssl->d1->prev_read_epoch->epoch.epoch) {
132 return &ssl->d1->prev_read_epoch->epoch;
133 }
134 return nullptr;
135 }
136
dtls_get_write_epoch(const SSL * ssl,uint16_t epoch)137 DTLSWriteEpoch *dtls_get_write_epoch(const SSL *ssl, uint16_t epoch) {
138 if (ssl->d1->write_epoch.epoch() == epoch) {
139 return &ssl->d1->write_epoch;
140 }
141 for (const auto &e : ssl->d1->extra_write_epochs) {
142 if (e->epoch() == epoch) {
143 return e.get();
144 }
145 }
146 return nullptr;
147 }
148
cbs_to_writable_bytes(CBS cbs)149 static Span<uint8_t> cbs_to_writable_bytes(CBS cbs) {
150 return Span(const_cast<uint8_t *>(CBS_data(&cbs)), CBS_len(&cbs));
151 }
152
153 struct ParsedDTLSRecord {
154 // read_epoch will be null if the record is for an unrecognized epoch. In that
155 // case, |number| may be unset.
156 DTLSReadEpoch *read_epoch = nullptr;
157 DTLSRecordNumber number;
158 CBS header, body;
159 uint8_t type = 0;
160 uint16_t version = 0;
161 };
162
use_dtls13_record_header(const SSL * ssl,uint16_t epoch)163 static bool use_dtls13_record_header(const SSL *ssl, uint16_t epoch) {
164 // Plaintext records in DTLS 1.3 also use the DTLSPlaintext structure for
165 // backwards compatibility.
166 return ssl->s3->version != 0 && ssl_protocol_version(ssl) > TLS1_2_VERSION &&
167 epoch > 0;
168 }
169
parse_dtls13_record(SSL * ssl,CBS * in,ParsedDTLSRecord * out)170 static bool parse_dtls13_record(SSL *ssl, CBS *in, ParsedDTLSRecord *out) {
171 if (out->type & 0x10) {
172 // Connection ID bit set, which we didn't negotiate.
173 return false;
174 }
175
176 uint16_t max_epoch = ssl->d1->read_epoch.epoch;
177 if (ssl->d1->next_read_epoch != nullptr) {
178 max_epoch = std::max(max_epoch, ssl->d1->next_read_epoch->epoch);
179 }
180 uint16_t epoch = reconstruct_epoch(out->type, max_epoch);
181 size_t seq_len = (out->type & 0x08) ? 2 : 1;
182 CBS seq_bytes;
183 if (!CBS_get_bytes(in, &seq_bytes, seq_len)) {
184 return false;
185 }
186 if (out->type & 0x04) {
187 // 16-bit length present
188 if (!CBS_get_u16_length_prefixed(in, &out->body)) {
189 return false;
190 }
191 } else {
192 // No length present - the remaining contents are the whole packet.
193 // CBS_get_bytes is used here to advance |in| to the end so that future
194 // code that computes the number of consumed bytes functions correctly.
195 BSSL_CHECK(CBS_get_bytes(in, &out->body, CBS_len(in)));
196 }
197
198 // Drop the previous read epoch if expired.
199 if (ssl->d1->prev_read_epoch != nullptr &&
200 ssl_ctx_get_current_time(ssl->ctx.get()).tv_sec >
201 ssl->d1->prev_read_epoch->expire) {
202 ssl->d1->prev_read_epoch = nullptr;
203 }
204
205 // Look up the corresponding epoch. This header form only matches encrypted
206 // DTLS 1.3 epochs.
207 DTLSReadEpoch *read_epoch = dtls_get_read_epoch(ssl, epoch);
208 if (read_epoch != nullptr && use_dtls13_record_header(ssl, epoch)) {
209 out->read_epoch = read_epoch;
210
211 // Decrypt and reconstruct the sequence number:
212 uint8_t mask[2];
213 if (!read_epoch->rn_encrypter->GenerateMask(mask, out->body)) {
214 // GenerateMask most likely failed because the record body was not long
215 // enough.
216 return false;
217 }
218 // Apply the mask to the sequence number in-place. The header (with the
219 // decrypted sequence number bytes) is used as the additional data for the
220 // AEAD function.
221 auto writable_seq = cbs_to_writable_bytes(seq_bytes);
222 uint64_t seq = 0;
223 for (size_t i = 0; i < writable_seq.size(); i++) {
224 writable_seq[i] ^= mask[i];
225 seq = (seq << 8) | writable_seq[i];
226 }
227 uint64_t full_seq = reconstruct_seqnum(seq, (1 << (seq_len * 8)) - 1,
228 read_epoch->bitmap.max_seq_num());
229 out->number = DTLSRecordNumber(epoch, full_seq);
230 }
231
232 return true;
233 }
234
parse_dtls12_record(SSL * ssl,CBS * in,ParsedDTLSRecord * out)235 static bool parse_dtls12_record(SSL *ssl, CBS *in, ParsedDTLSRecord *out) {
236 uint64_t epoch_and_seq;
237 if (!CBS_get_u16(in, &out->version) || //
238 !CBS_get_u64(in, &epoch_and_seq) ||
239 !CBS_get_u16_length_prefixed(in, &out->body)) {
240 return false;
241 }
242 out->number = DTLSRecordNumber::FromCombined(epoch_and_seq);
243
244 uint16_t epoch = out->number.epoch();
245 bool version_ok;
246 if (epoch == 0) {
247 // Only check the first byte. Enforcing beyond that can prevent decoding
248 // version negotiation failure alerts.
249 version_ok = (out->version >> 8) == DTLS1_VERSION_MAJOR;
250 } else {
251 version_ok = out->version == dtls_record_version(ssl);
252 }
253 if (!version_ok) {
254 return false;
255 }
256
257 // Look up the corresponding epoch. In DTLS 1.2, we only need to consider one
258 // epoch.
259 if (epoch == ssl->d1->read_epoch.epoch &&
260 !use_dtls13_record_header(ssl, epoch)) {
261 out->read_epoch = &ssl->d1->read_epoch;
262 }
263
264 return true;
265 }
266
parse_dtls_record(SSL * ssl,CBS * cbs,ParsedDTLSRecord * out)267 static bool parse_dtls_record(SSL *ssl, CBS *cbs, ParsedDTLSRecord *out) {
268 CBS copy = *cbs;
269 if (!CBS_get_u8(cbs, &out->type)) {
270 return false;
271 }
272
273 bool ok;
274 if ((out->type & 0xe0) == 0x20) {
275 ok = parse_dtls13_record(ssl, cbs, out);
276 } else {
277 ok = parse_dtls12_record(ssl, cbs, out);
278 }
279 if (!ok) {
280 return false;
281 }
282
283 if (CBS_len(&out->body) > SSL3_RT_MAX_ENCRYPTED_LENGTH) {
284 return false;
285 }
286
287 size_t header_len = CBS_data(&out->body) - CBS_data(©);
288 BSSL_CHECK(CBS_get_bytes(©, &out->header, header_len));
289 return true;
290 }
291
dtls_open_record(SSL * ssl,uint8_t * out_type,DTLSRecordNumber * out_number,Span<uint8_t> * out,size_t * out_consumed,uint8_t * out_alert,Span<uint8_t> in)292 enum ssl_open_record_t dtls_open_record(SSL *ssl, uint8_t *out_type,
293 DTLSRecordNumber *out_number,
294 Span<uint8_t> *out,
295 size_t *out_consumed,
296 uint8_t *out_alert, Span<uint8_t> in) {
297 *out_consumed = 0;
298 if (ssl->s3->read_shutdown == ssl_shutdown_close_notify) {
299 return ssl_open_record_close_notify;
300 }
301
302 if (in.empty()) {
303 return ssl_open_record_partial;
304 }
305
306 CBS cbs(in);
307 ParsedDTLSRecord record;
308 if (!parse_dtls_record(ssl, &cbs, &record)) {
309 // The record header was incomplete or malformed. Drop the entire packet.
310 *out_consumed = in.size();
311 return ssl_open_record_discard;
312 }
313
314 ssl_do_msg_callback(ssl, 0 /* read */, SSL3_RT_HEADER, record.header);
315
316 if (record.read_epoch == nullptr ||
317 record.read_epoch->bitmap.ShouldDiscard(record.number.sequence())) {
318 // Drop this record. It's from an unknown epoch or is a replay. Note that if
319 // the record is from next epoch, it could be buffered for later. For
320 // simplicity, drop it and expect retransmit to handle it later; DTLS must
321 // handle packet loss anyway.
322 *out_consumed = in.size() - CBS_len(&cbs);
323 return ssl_open_record_discard;
324 }
325
326 // Decrypt the body in-place.
327 if (!record.read_epoch->aead->Open(out, record.type, record.version,
328 dtls_aead_sequence(ssl, record.number),
329 record.header,
330 cbs_to_writable_bytes(record.body))) {
331 // Bad packets are silently dropped in DTLS. See section 4.2.1 of RFC 6347.
332 // Clear the error queue of any errors decryption may have added. Drop the
333 // entire packet as it must not have come from the peer.
334 //
335 // TODO(davidben): This doesn't distinguish malloc failures from encryption
336 // failures.
337 ERR_clear_error();
338 *out_consumed = in.size() - CBS_len(&cbs);
339 return ssl_open_record_discard;
340 }
341 *out_consumed = in.size() - CBS_len(&cbs);
342
343 // DTLS 1.3 hides the record type inside the encrypted data.
344 bool has_padding = !record.read_epoch->aead->is_null_cipher() &&
345 ssl_protocol_version(ssl) >= TLS1_3_VERSION;
346 // Check the plaintext length.
347 size_t plaintext_limit = SSL3_RT_MAX_PLAIN_LENGTH + (has_padding ? 1 : 0);
348 if (out->size() > plaintext_limit) {
349 OPENSSL_PUT_ERROR(SSL, SSL_R_DATA_LENGTH_TOO_LONG);
350 *out_alert = SSL_AD_RECORD_OVERFLOW;
351 return ssl_open_record_error;
352 }
353
354 if (has_padding) {
355 do {
356 if (out->empty()) {
357 OPENSSL_PUT_ERROR(SSL, SSL_R_DECRYPTION_FAILED_OR_BAD_RECORD_MAC);
358 *out_alert = SSL_AD_DECRYPT_ERROR;
359 return ssl_open_record_error;
360 }
361 record.type = out->back();
362 *out = out->subspan(0, out->size() - 1);
363 } while (record.type == 0);
364 }
365
366 record.read_epoch->bitmap.Record(record.number.sequence());
367
368 // Once we receive a record from the next epoch in DTLS 1.3, it becomes the
369 // current epoch. Also save the previous epoch. This allows us to handle
370 // packet reordering on KeyUpdate, as well as ACK retransmissions of the
371 // Finished flight.
372 if (record.read_epoch == ssl->d1->next_read_epoch.get()) {
373 assert(ssl_protocol_version(ssl) >= TLS1_3_VERSION);
374 auto prev = MakeUnique<DTLSPrevReadEpoch>();
375 if (prev == nullptr) {
376 *out_alert = SSL_AD_INTERNAL_ERROR;
377 return ssl_open_record_error;
378 }
379
380 // Release the epoch after a timeout.
381 prev->expire = ssl_ctx_get_current_time(ssl->ctx.get()).tv_sec;
382 if (prev->expire >= UINT64_MAX - DTLS_PREV_READ_EPOCH_EXPIRE_SECONDS) {
383 prev->expire = UINT64_MAX; // Saturate on overflow.
384 } else {
385 prev->expire += DTLS_PREV_READ_EPOCH_EXPIRE_SECONDS;
386 }
387
388 prev->epoch = std::move(ssl->d1->read_epoch);
389 ssl->d1->prev_read_epoch = std::move(prev);
390 ssl->d1->read_epoch = std::move(*ssl->d1->next_read_epoch);
391 ssl->d1->next_read_epoch = nullptr;
392 }
393
394 // TODO(davidben): Limit the number of empty records as in TLS? This is only
395 // useful if we also limit discarded packets.
396
397 if (record.type == SSL3_RT_ALERT) {
398 return ssl_process_alert(ssl, out_alert, *out);
399 }
400
401 // Reject application data in epochs that do not allow it.
402 if (record.type == SSL3_RT_APPLICATION_DATA) {
403 bool app_data_allowed;
404 if (ssl->s3->version != 0 && ssl_protocol_version(ssl) >= TLS1_3_VERSION) {
405 // Application data is allowed in 0-RTT (epoch 1) and after the handshake
406 // (3 and up).
407 app_data_allowed =
408 record.number.epoch() == 1 || record.number.epoch() >= 3;
409 } else {
410 // Application data is allowed starting epoch 1.
411 app_data_allowed = record.number.epoch() >= 1;
412 }
413 if (!app_data_allowed) {
414 OPENSSL_PUT_ERROR(SSL, SSL_R_UNEXPECTED_RECORD);
415 *out_alert = SSL_AD_UNEXPECTED_MESSAGE;
416 return ssl_open_record_error;
417 }
418 }
419
420 ssl->s3->warning_alert_count = 0;
421
422 *out_type = record.type;
423 *out_number = record.number;
424 return ssl_open_record_success;
425 }
426
dtls_record_header_write_len(const SSL * ssl,uint16_t epoch)427 size_t dtls_record_header_write_len(const SSL *ssl, uint16_t epoch) {
428 if (!use_dtls13_record_header(ssl, epoch)) {
429 return DTLS_PLAINTEXT_RECORD_HEADER_LENGTH;
430 }
431 // The DTLS 1.3 has a variable length record header. We never send Connection
432 // ID, we always send 16-bit sequence numbers, and we send a length. (Length
433 // can be omitted, but only for the last record of a packet. Since we send
434 // multiple records in one packet, it's easier to implement always sending the
435 // length.)
436 return DTLS1_3_RECORD_HEADER_WRITE_LENGTH;
437 }
438
dtls_max_seal_overhead(const SSL * ssl,uint16_t epoch)439 size_t dtls_max_seal_overhead(const SSL *ssl, uint16_t epoch) {
440 DTLSWriteEpoch *write_epoch = dtls_get_write_epoch(ssl, epoch);
441 if (write_epoch == nullptr) {
442 return 0;
443 }
444 size_t ret = dtls_record_header_write_len(ssl, epoch) +
445 write_epoch->aead->MaxOverhead();
446 if (use_dtls13_record_header(ssl, epoch)) {
447 // Add 1 byte for the encrypted record type.
448 ret++;
449 }
450 return ret;
451 }
452
dtls_seal_prefix_len(const SSL * ssl,uint16_t epoch)453 size_t dtls_seal_prefix_len(const SSL *ssl, uint16_t epoch) {
454 DTLSWriteEpoch *write_epoch = dtls_get_write_epoch(ssl, epoch);
455 if (write_epoch == nullptr) {
456 return 0;
457 }
458 return dtls_record_header_write_len(ssl, epoch) +
459 write_epoch->aead->ExplicitNonceLen();
460 }
461
dtls_seal_max_input_len(const SSL * ssl,uint16_t epoch,size_t max_out)462 size_t dtls_seal_max_input_len(const SSL *ssl, uint16_t epoch, size_t max_out) {
463 DTLSWriteEpoch *write_epoch = dtls_get_write_epoch(ssl, epoch);
464 if (write_epoch == nullptr) {
465 return 0;
466 }
467 size_t header_len = dtls_record_header_write_len(ssl, epoch);
468 if (max_out <= header_len) {
469 return 0;
470 }
471 max_out -= header_len;
472 max_out = write_epoch->aead->MaxSealInputLen(max_out);
473 if (max_out > 0 && use_dtls13_record_header(ssl, epoch)) {
474 // Remove 1 byte for the encrypted record type.
475 max_out--;
476 }
477 return max_out;
478 }
479
dtls_seal_record(SSL * ssl,DTLSRecordNumber * out_number,uint8_t * out,size_t * out_len,size_t max_out,uint8_t type,const uint8_t * in,size_t in_len,uint16_t epoch)480 bool dtls_seal_record(SSL *ssl, DTLSRecordNumber *out_number, uint8_t *out,
481 size_t *out_len, size_t max_out, uint8_t type,
482 const uint8_t *in, size_t in_len, uint16_t epoch) {
483 const size_t prefix = dtls_seal_prefix_len(ssl, epoch);
484 if (buffers_alias(in, in_len, out, max_out) &&
485 (max_out < prefix || out + prefix != in)) {
486 OPENSSL_PUT_ERROR(SSL, SSL_R_OUTPUT_ALIASES_INPUT);
487 return false;
488 }
489
490 // Determine the parameters for the current epoch.
491 DTLSWriteEpoch *write_epoch = dtls_get_write_epoch(ssl, epoch);
492 if (write_epoch == nullptr) {
493 OPENSSL_PUT_ERROR(SSL, ERR_R_INTERNAL_ERROR);
494 return false;
495 }
496
497 const size_t record_header_len = dtls_record_header_write_len(ssl, epoch);
498
499 // Ensure the sequence number update does not overflow.
500 DTLSRecordNumber record_number = write_epoch->next_record;
501 if (!record_number.HasNext()) {
502 OPENSSL_PUT_ERROR(SSL, ERR_R_OVERFLOW);
503 return false;
504 }
505
506 bool dtls13_header = use_dtls13_record_header(ssl, epoch);
507 uint8_t *extra_in = NULL;
508 size_t extra_in_len = 0;
509 if (dtls13_header) {
510 extra_in = &type;
511 extra_in_len = 1;
512 }
513
514 size_t ciphertext_len;
515 if (!write_epoch->aead->CiphertextLen(&ciphertext_len, in_len,
516 extra_in_len)) {
517 OPENSSL_PUT_ERROR(SSL, SSL_R_RECORD_TOO_LARGE);
518 return false;
519 }
520 if (max_out < record_header_len + ciphertext_len) {
521 OPENSSL_PUT_ERROR(SSL, SSL_R_BUFFER_TOO_SMALL);
522 return false;
523 }
524
525 uint16_t record_version = dtls_record_version(ssl);
526 if (dtls13_header) {
527 // The first byte of the DTLS 1.3 record header has the following format:
528 // 0 1 2 3 4 5 6 7
529 // +-+-+-+-+-+-+-+-+
530 // |0|0|1|C|S|L|E E|
531 // +-+-+-+-+-+-+-+-+
532 //
533 // We set C=0 (no Connection ID), S=1 (16-bit sequence number), L=1 (length
534 // is present), which is a mask of 0x2c. The E E bits are the low-order two
535 // bits of the epoch.
536 //
537 // +-+-+-+-+-+-+-+-+
538 // |0|0|1|0|1|1|E E|
539 // +-+-+-+-+-+-+-+-+
540 out[0] = 0x2c | (epoch & 0x3);
541 // We always use a two-byte sequence number. A one-byte sequence number
542 // would require coordinating with the application on ACK feedback to know
543 // that the peer is not too far behind.
544 CRYPTO_store_u16_be(out + 1, write_epoch->next_record.sequence());
545 // TODO(crbug.com/42290594): When we know the record is last in the packet,
546 // omit the length.
547 CRYPTO_store_u16_be(out + 3, ciphertext_len);
548 } else {
549 out[0] = type;
550 CRYPTO_store_u16_be(out + 1, record_version);
551 CRYPTO_store_u64_be(out + 3, record_number.combined());
552 CRYPTO_store_u16_be(out + 11, ciphertext_len);
553 }
554 Span<const uint8_t> header(out, record_header_len);
555
556 if (!write_epoch->aead->SealScatter(
557 out + record_header_len, out + prefix, out + prefix + in_len, type,
558 record_version, dtls_aead_sequence(ssl, record_number), header, in,
559 in_len, extra_in, extra_in_len)) {
560 return false;
561 }
562
563 // Perform record number encryption (RFC 9147 section 4.2.3).
564 if (dtls13_header) {
565 // Record number encryption uses bytes from the ciphertext as a sample to
566 // generate the mask used for encryption. For simplicity, pass in the whole
567 // ciphertext as the sample - GenerateRecordNumberMask will read only what
568 // it needs (and error if |sample| is too short).
569 Span<const uint8_t> sample(out + record_header_len, ciphertext_len);
570 uint8_t mask[2];
571 if (!write_epoch->rn_encrypter->GenerateMask(mask, sample)) {
572 return false;
573 }
574 out[1] ^= mask[0];
575 out[2] ^= mask[1];
576 }
577
578 *out_number = record_number;
579 write_epoch->next_record = record_number.Next();
580 *out_len = record_header_len + ciphertext_len;
581 ssl_do_msg_callback(ssl, 1 /* write */, SSL3_RT_HEADER, header);
582 return true;
583 }
584
585 BSSL_NAMESPACE_END
586