1// Copyright 2009 The Go Authors. All rights reserved. 2// Use of this source code is governed by a BSD-style 3// license that can be found in the LICENSE file. 4 5package runner 6 7import ( 8 "crypto" 9 "crypto/hkdf" 10 "crypto/hmac" 11 "crypto/md5" 12 "crypto/sha1" 13 "crypto/sha256" 14 "encoding" 15 "hash" 16 17 "golang.org/x/crypto/cryptobyte" 18) 19 20// copyHash returns a copy of |h|, which must be an instance of |hashType|. 21func copyHash(h hash.Hash, hash crypto.Hash) hash.Hash { 22 // While hash.Hash is not copyable, the documentation says all standard 23 // library hash.Hash implementations implement BinaryMarshaler and 24 // BinaryUnmarshaler interfaces. 25 m, ok := h.(encoding.BinaryMarshaler) 26 if !ok { 27 panic("hash did not implement encoding.BinaryMarshaler") 28 } 29 data, err := m.MarshalBinary() 30 if err != nil { 31 panic(err) 32 } 33 ret := hash.New() 34 u, ok := ret.(encoding.BinaryUnmarshaler) 35 if !ok { 36 panic("hash did not implement BinaryUnmarshaler") 37 } 38 if err := u.UnmarshalBinary(data); err != nil { 39 panic(err) 40 } 41 return ret 42} 43 44// Split a premaster secret in two as specified in RFC 4346, section 5. 45func splitPreMasterSecret(secret []byte) (s1, s2 []byte) { 46 s1 = secret[0 : (len(secret)+1)/2] 47 s2 = secret[len(secret)/2:] 48 return 49} 50 51// pHash implements the P_hash function, as defined in RFC 4346, section 5. 52func pHash(result, secret, seed []byte, hash func() hash.Hash) { 53 h := hmac.New(hash, secret) 54 h.Write(seed) 55 a := h.Sum(nil) 56 57 j := 0 58 for j < len(result) { 59 h.Reset() 60 h.Write(a) 61 h.Write(seed) 62 b := h.Sum(nil) 63 todo := len(b) 64 if j+todo > len(result) { 65 todo = len(result) - j 66 } 67 copy(result[j:j+todo], b) 68 j += todo 69 70 h.Reset() 71 h.Write(a) 72 a = h.Sum(nil) 73 } 74} 75 76// prf10 implements the TLS 1.0 pseudo-random function, as defined in RFC 2246, section 5. 77func prf10(result, secret, label, seed []byte) { 78 hashSHA1 := sha1.New 79 hashMD5 := md5.New 80 81 labelAndSeed := make([]byte, len(label)+len(seed)) 82 copy(labelAndSeed, label) 83 copy(labelAndSeed[len(label):], seed) 84 85 s1, s2 := splitPreMasterSecret(secret) 86 pHash(result, s1, labelAndSeed, hashMD5) 87 result2 := make([]byte, len(result)) 88 pHash(result2, s2, labelAndSeed, hashSHA1) 89 90 for i, b := range result2 { 91 result[i] ^= b 92 } 93} 94 95// prf12 implements the TLS 1.2 pseudo-random function, as defined in RFC 5246, section 5. 96func prf12(hashFunc func() hash.Hash) func(result, secret, label, seed []byte) { 97 return func(result, secret, label, seed []byte) { 98 labelAndSeed := make([]byte, len(label)+len(seed)) 99 copy(labelAndSeed, label) 100 copy(labelAndSeed[len(label):], seed) 101 102 pHash(result, secret, labelAndSeed, hashFunc) 103 } 104} 105 106const ( 107 tlsRandomLength = 32 // Length of a random nonce in TLS 1.1. 108 masterSecretLength = 48 // Length of a master secret in TLS 1.1. 109 finishedVerifyLength = 12 // Length of verify_data in a Finished message. 110) 111 112var masterSecretLabel = []byte("master secret") 113var extendedMasterSecretLabel = []byte("extended master secret") 114var keyExpansionLabel = []byte("key expansion") 115var clientFinishedLabel = []byte("client finished") 116var serverFinishedLabel = []byte("server finished") 117var finishedLabel = []byte("finished") 118var channelIDLabel = []byte("TLS Channel ID signature\x00") 119var channelIDResumeLabel = []byte("Resumption\x00") 120 121func prfForVersion(version uint16, suite *cipherSuite) func(result, secret, label, seed []byte) { 122 switch version { 123 case VersionTLS10, VersionTLS11: 124 return prf10 125 case VersionTLS12: 126 return prf12(suite.hash().New) 127 } 128 panic("unknown version") 129} 130 131// masterFromPreMasterSecret generates the master secret from the pre-master 132// secret. See http://tools.ietf.org/html/rfc5246#section-8.1 133func masterFromPreMasterSecret(version uint16, suite *cipherSuite, preMasterSecret, clientRandom, serverRandom []byte) []byte { 134 var seed [tlsRandomLength * 2]byte 135 copy(seed[0:len(clientRandom)], clientRandom) 136 copy(seed[len(clientRandom):], serverRandom) 137 masterSecret := make([]byte, masterSecretLength) 138 prfForVersion(version, suite)(masterSecret, preMasterSecret, masterSecretLabel, seed[0:]) 139 return masterSecret 140} 141 142// extendedMasterFromPreMasterSecret generates the master secret from the 143// pre-master secret when the Triple Handshake fix is in effect. See 144// https://tools.ietf.org/html/rfc7627 145func extendedMasterFromPreMasterSecret(version uint16, suite *cipherSuite, preMasterSecret []byte, h finishedHash) []byte { 146 masterSecret := make([]byte, masterSecretLength) 147 prfForVersion(version, suite)(masterSecret, preMasterSecret, extendedMasterSecretLabel, h.Sum()) 148 return masterSecret 149} 150 151// keysFromMasterSecret generates the connection keys from the master 152// secret, given the lengths of the MAC key, cipher key and IV, as defined in 153// RFC 2246, section 6.3. 154func keysFromMasterSecret(version uint16, suite *cipherSuite, masterSecret, clientRandom, serverRandom []byte, macLen, keyLen, ivLen int) (clientMAC, serverMAC, clientKey, serverKey, clientIV, serverIV []byte) { 155 var seed [tlsRandomLength * 2]byte 156 copy(seed[0:len(clientRandom)], serverRandom) 157 copy(seed[len(serverRandom):], clientRandom) 158 159 n := 2*macLen + 2*keyLen + 2*ivLen 160 keyMaterial := make([]byte, n) 161 prfForVersion(version, suite)(keyMaterial, masterSecret, keyExpansionLabel, seed[0:]) 162 clientMAC = keyMaterial[:macLen] 163 keyMaterial = keyMaterial[macLen:] 164 serverMAC = keyMaterial[:macLen] 165 keyMaterial = keyMaterial[macLen:] 166 clientKey = keyMaterial[:keyLen] 167 keyMaterial = keyMaterial[keyLen:] 168 serverKey = keyMaterial[:keyLen] 169 keyMaterial = keyMaterial[keyLen:] 170 clientIV = keyMaterial[:ivLen] 171 keyMaterial = keyMaterial[ivLen:] 172 serverIV = keyMaterial[:ivLen] 173 return 174} 175 176func newFinishedHash(wireVersion uint16, isDTLS bool, cipherSuite *cipherSuite) finishedHash { 177 version, ok := wireToVersion(wireVersion, isDTLS) 178 if !ok { 179 panic("unknown version") 180 } 181 182 var ret finishedHash 183 if version >= VersionTLS12 { 184 ret.hash = cipherSuite.hash().New() 185 186 if version == VersionTLS12 { 187 ret.prf = prf12(cipherSuite.hash().New) 188 } else { 189 ret.secret = make([]byte, ret.hash.Size()) 190 } 191 } else { 192 ret.hash = sha1.New() 193 ret.md5 = md5.New() 194 195 ret.prf = prf10 196 } 197 198 ret.suite = cipherSuite 199 ret.buffer = []byte{} 200 ret.version = version 201 ret.wireVersion = wireVersion 202 ret.isDTLS = isDTLS 203 return ret 204} 205 206// A finishedHash calculates the hash of a set of handshake messages suitable 207// for including in a Finished message. 208type finishedHash struct { 209 suite *cipherSuite 210 211 // hash maintains a running hash of handshake messages. In TLS 1.2 and up, 212 // the hash is determined from suite.hash(). In TLS 1.0 and 1.1, this is the 213 // SHA-1 half of the MD5/SHA-1 concatenation. 214 hash hash.Hash 215 216 // md5 is the MD5 half of the TLS 1.0 and 1.1 MD5/SHA1 concatenation. 217 md5 hash.Hash 218 219 // In TLS 1.2, a full buffer is required. 220 buffer []byte 221 222 version uint16 223 wireVersion uint16 224 isDTLS bool 225 prf func(result, secret, label, seed []byte) 226 227 // secret, in TLS 1.3, is the running input secret. 228 secret []byte 229} 230 231func (h *finishedHash) UpdateForHelloRetryRequest() { 232 data := cryptobyte.NewBuilder(nil) 233 data.AddUint8(typeMessageHash) 234 data.AddUint24(uint32(h.hash.Size())) 235 data.AddBytes(h.Sum()) 236 h.hash = h.suite.hash().New() 237 if h.buffer != nil { 238 h.buffer = []byte{} 239 } 240 h.Write(data.BytesOrPanic()) 241} 242 243func (h *finishedHash) Write(msg []byte) (n int, err error) { 244 h.hash.Write(msg) 245 246 if h.version < VersionTLS12 { 247 h.md5.Write(msg) 248 } 249 250 if h.buffer != nil { 251 h.buffer = append(h.buffer, msg...) 252 } 253 254 return len(msg), nil 255} 256 257// WriteHandshake appends |msg| to the hash, which must be a serialized 258// handshake message with a TLS header. In DTLS, the header is rewritten to a 259// DTLS header with |seqno| as the sequence number. 260func (h *finishedHash) WriteHandshake(msg []byte, seqno uint16) { 261 if h.isDTLS && h.version <= VersionTLS12 { 262 // This is somewhat hacky. DTLS <= 1.2 hashes a slightly different format. (DTLS 1.3 uses the same format as TLS.) 263 // First, the TLS header. 264 h.Write(msg[:4]) 265 // Then the sequence number and reassembled fragment offset (always 0). 266 h.Write([]byte{byte(seqno >> 8), byte(seqno), 0, 0, 0}) 267 // Then the reassembled fragment (always equal to the message length). 268 h.Write(msg[1:4]) 269 // And then the message body. 270 h.Write(msg[4:]) 271 } else { 272 h.Write(msg) 273 } 274} 275 276func (h finishedHash) Sum() []byte { 277 if h.version >= VersionTLS12 { 278 return h.hash.Sum(nil) 279 } 280 281 out := make([]byte, 0, md5.Size+sha1.Size) 282 out = h.md5.Sum(out) 283 return h.hash.Sum(out) 284} 285 286// clientSum returns the contents of the verify_data member of a client's 287// Finished message. 288func (h finishedHash) clientSum(baseKey []byte) []byte { 289 if h.version < VersionTLS13 { 290 out := make([]byte, finishedVerifyLength) 291 h.prf(out, baseKey, clientFinishedLabel, h.Sum()) 292 return out 293 } 294 295 clientFinishedKey := hkdfExpandLabel(h.suite.hash(), baseKey, finishedLabel, nil, h.hash.Size(), h.isDTLS) 296 finishedHMAC := hmac.New(h.suite.hash().New, clientFinishedKey) 297 finishedHMAC.Write(h.appendContextHashes(nil)) 298 return finishedHMAC.Sum(nil) 299} 300 301// serverSum returns the contents of the verify_data member of a server's 302// Finished message. 303func (h finishedHash) serverSum(baseKey []byte) []byte { 304 if h.version < VersionTLS13 { 305 out := make([]byte, finishedVerifyLength) 306 h.prf(out, baseKey, serverFinishedLabel, h.Sum()) 307 return out 308 } 309 310 serverFinishedKey := hkdfExpandLabel(h.suite.hash(), baseKey, finishedLabel, nil, h.hash.Size(), h.isDTLS) 311 finishedHMAC := hmac.New(h.suite.hash().New, serverFinishedKey) 312 finishedHMAC.Write(h.appendContextHashes(nil)) 313 return finishedHMAC.Sum(nil) 314} 315 316// hashForChannelID returns the hash to be signed for TLS Channel 317// ID. If a resumption, resumeHash has the previous handshake 318// hash. Otherwise, it is nil. 319func (h finishedHash) hashForChannelID(resumeHash []byte) []byte { 320 hash := sha256.New() 321 hash.Write(channelIDLabel) 322 if resumeHash != nil { 323 hash.Write(channelIDResumeLabel) 324 hash.Write(resumeHash) 325 } 326 hash.Write(h.Sum()) 327 return hash.Sum(nil) 328} 329 330// discardHandshakeBuffer is called when there is no more need to 331// buffer the entirety of the handshake messages. 332func (h *finishedHash) discardHandshakeBuffer() { 333 h.buffer = nil 334} 335 336// zeroSecretTLS13 returns the default all zeros secret for TLS 1.3, used when a 337// given secret is not available in the handshake. See RFC 8446, section 7.1. 338func (h *finishedHash) zeroSecret() []byte { 339 return make([]byte, h.hash.Size()) 340} 341 342// addEntropy incorporates ikm into the running TLS 1.3 secret with HKDF-Expand. 343func (h *finishedHash) addEntropy(ikm []byte) { 344 var err error 345 h.secret, err = hkdf.Extract(h.suite.hash().New, ikm, h.secret) 346 if err != nil { 347 panic(err) 348 } 349} 350 351func (h *finishedHash) nextSecret() { 352 h.secret = hkdfExpandLabel(h.suite.hash(), h.secret, []byte("derived"), h.suite.hash().New().Sum(nil), h.hash.Size(), h.isDTLS) 353} 354 355// hkdfExpandLabel implements TLS 1.3's HKDF-Expand-Label function, as defined 356// in section 7.1 of RFC 8446. 357func hkdfExpandLabel(hash crypto.Hash, secret, label, hashValue []byte, length int, isDTLS bool) []byte { 358 if len(label) > 255 || len(hashValue) > 255 { 359 panic("hkdfExpandLabel: label or hashValue too long") 360 } 361 362 versionLabel := []byte("tls13 ") 363 if isDTLS { 364 versionLabel = []byte("dtls13") 365 } 366 hkdfLabel := make([]byte, 3+len(versionLabel)+len(label)+1+len(hashValue)) 367 x := hkdfLabel 368 x[0] = byte(length >> 8) 369 x[1] = byte(length) 370 x[2] = byte(len(versionLabel) + len(label)) 371 x = x[3:] 372 copy(x, versionLabel) 373 x = x[len(versionLabel):] 374 copy(x, label) 375 x = x[len(label):] 376 x[0] = byte(len(hashValue)) 377 copy(x[1:], hashValue) 378 ret, err := hkdf.Expand(hash.New, secret, string(hkdfLabel), length) 379 if err != nil { 380 panic(err) 381 } 382 return ret 383} 384 385// appendContextHashes returns the concatenation of the handshake hash and the 386// resumption context hash, as used in TLS 1.3. 387func (h *finishedHash) appendContextHashes(b []byte) []byte { 388 b = h.hash.Sum(b) 389 return b 390} 391 392var ( 393 externalPSKBinderLabel = []byte("ext binder") 394 resumptionPSKBinderLabel = []byte("res binder") 395 earlyTrafficLabel = []byte("c e traffic") 396 clientHandshakeTrafficLabel = []byte("c hs traffic") 397 serverHandshakeTrafficLabel = []byte("s hs traffic") 398 clientApplicationTrafficLabel = []byte("c ap traffic") 399 serverApplicationTrafficLabel = []byte("s ap traffic") 400 applicationTrafficLabel = []byte("traffic upd") 401 earlyExporterLabel = []byte("e exp master") 402 exporterLabel = []byte("exp master") 403 resumptionLabel = []byte("res master") 404 405 resumptionPSKLabel = []byte("resumption") 406 407 echAcceptConfirmationLabel = []byte("ech accept confirmation") 408 echAcceptConfirmationHRRLabel = []byte("hrr ech accept confirmation") 409) 410 411// deriveSecret implements TLS 1.3's Derive-Secret function, as defined in 412// section 7.1 of RFC8446. 413func (h *finishedHash) deriveSecret(label []byte) []byte { 414 return hkdfExpandLabel(h.suite.hash(), h.secret, label, h.appendContextHashes(nil), h.hash.Size(), h.isDTLS) 415} 416 417// echAcceptConfirmation computes the ECH accept confirmation signal, as defined 418// in sections 7.2 and 7.2.1 of draft-ietf-tls-esni-13. The transcript hash is 419// computed by concatenating |h| with |extraMessages|. 420func (h *finishedHash) echAcceptConfirmation(clientRandom, label, extraMessages []byte) []byte { 421 secret, err := hkdf.Extract(h.suite.hash().New, clientRandom, h.zeroSecret()) 422 if err != nil { 423 panic(err) 424 } 425 hashCopy := copyHash(h.hash, h.suite.hash()) 426 hashCopy.Write(extraMessages) 427 return hkdfExpandLabel(h.suite.hash(), secret, label, hashCopy.Sum(nil), echAcceptConfirmationLength, h.isDTLS) 428} 429 430// The following are context strings for CertificateVerify in TLS 1.3. 431var ( 432 clientCertificateVerifyContextTLS13 = []byte("TLS 1.3, client CertificateVerify") 433 serverCertificateVerifyContextTLS13 = []byte("TLS 1.3, server CertificateVerify") 434 channelIDContextTLS13 = []byte("TLS 1.3, Channel ID") 435) 436 437// certificateVerifyMessage returns the input to be signed for CertificateVerify 438// in TLS 1.3. 439func (h *finishedHash) certificateVerifyInput(context []byte) []byte { 440 const paddingLen = 64 441 b := make([]byte, paddingLen, paddingLen+len(context)+1+2*h.hash.Size()) 442 for i := 0; i < paddingLen; i++ { 443 b[i] = 32 444 } 445 b = append(b, context...) 446 b = append(b, 0) 447 b = h.appendContextHashes(b) 448 return b 449} 450 451type trafficDirection int 452 453const ( 454 clientWrite trafficDirection = iota 455 serverWrite 456) 457 458var ( 459 keyTLS13 = []byte("key") 460 ivTLS13 = []byte("iv") 461) 462 463// deriveTrafficAEAD derives traffic keys and constructs an AEAD given a traffic 464// secret. 465func deriveTrafficAEAD(version uint16, suite *cipherSuite, secret []byte, side trafficDirection, isDTLS bool) any { 466 key := hkdfExpandLabel(suite.hash(), secret, keyTLS13, nil, suite.keyLen, isDTLS) 467 iv := hkdfExpandLabel(suite.hash(), secret, ivTLS13, nil, suite.ivLen(version), isDTLS) 468 469 return suite.aead(version, key, iv) 470} 471 472func updateTrafficSecret(hash crypto.Hash, version uint16, secret []byte, isDTLS bool) []byte { 473 return hkdfExpandLabel(hash, secret, applicationTrafficLabel, nil, hash.Size(), isDTLS) 474} 475 476func computePSKBinder(psk []byte, version uint16, isDTLS bool, label []byte, cipherSuite *cipherSuite, clientHello, helloRetryRequest, truncatedHello []byte) []byte { 477 finishedHash := newFinishedHash(version, isDTLS, cipherSuite) 478 finishedHash.addEntropy(psk) 479 binderKey := finishedHash.deriveSecret(label) 480 finishedHash.Write(clientHello) 481 if len(helloRetryRequest) != 0 { 482 finishedHash.UpdateForHelloRetryRequest() 483 } 484 finishedHash.Write(helloRetryRequest) 485 finishedHash.Write(truncatedHello) 486 return finishedHash.clientSum(binderKey) 487} 488 489func deriveSessionPSK(suite *cipherSuite, version uint16, masterSecret []byte, nonce []byte, isDTLS bool) []byte { 490 hash := suite.hash() 491 return hkdfExpandLabel(hash, masterSecret, resumptionPSKLabel, nonce, hash.Size(), isDTLS) 492} 493