1 // Copyright 2014 The BoringSSL Authors
2 //
3 // Licensed under the Apache License, Version 2.0 (the "License");
4 // you may not use this file except in compliance with the License.
5 // You may obtain a copy of the License at
6 //
7 // https://www.apache.org/licenses/LICENSE-2.0
8 //
9 // Unless required by applicable law or agreed to in writing, software
10 // distributed under the License is distributed on an "AS IS" BASIS,
11 // WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
12 // See the License for the specific language governing permissions and
13 // limitations under the License.
14
15 #include <assert.h>
16 #include <limits.h>
17 #include <string.h>
18
19 #include <openssl/aead.h>
20 #include <openssl/cipher.h>
21 #include <openssl/err.h>
22 #include <openssl/hmac.h>
23 #include <openssl/md5.h>
24 #include <openssl/mem.h>
25 #include <openssl/sha.h>
26
27 #include "../fipsmodule/cipher/internal.h"
28 #include "../internal.h"
29 #include "internal.h"
30
31
32 typedef struct {
33 EVP_CIPHER_CTX cipher_ctx;
34 HMAC_CTX *hmac_ctx;
35 // mac_key is the portion of the key used for the MAC. It is retained
36 // separately for the constant-time CBC code.
37 uint8_t mac_key[EVP_MAX_MD_SIZE];
38 uint8_t mac_key_len;
39 // implicit_iv is one iff this is a pre-TLS-1.1 CBC cipher without an explicit
40 // IV.
41 char implicit_iv;
42 } AEAD_TLS_CTX;
43
44 static_assert(EVP_MAX_MD_SIZE < 256, "mac_key_len does not fit in uint8_t");
45
46 static_assert(sizeof(((EVP_AEAD_CTX *)NULL)->state) >= sizeof(AEAD_TLS_CTX),
47 "AEAD state is too small");
48 static_assert(alignof(union evp_aead_ctx_st_state) >= alignof(AEAD_TLS_CTX),
49 "AEAD state has insufficient alignment");
50
aead_tls_cleanup(EVP_AEAD_CTX * ctx)51 static void aead_tls_cleanup(EVP_AEAD_CTX *ctx) {
52 AEAD_TLS_CTX *tls_ctx = (AEAD_TLS_CTX *)&ctx->state;
53 EVP_CIPHER_CTX_cleanup(&tls_ctx->cipher_ctx);
54 HMAC_CTX_free(tls_ctx->hmac_ctx);
55 }
56
aead_tls_init(EVP_AEAD_CTX * ctx,const uint8_t * key,size_t key_len,size_t tag_len,enum evp_aead_direction_t dir,const EVP_CIPHER * cipher,const EVP_MD * md,char implicit_iv)57 static int aead_tls_init(EVP_AEAD_CTX *ctx, const uint8_t *key, size_t key_len,
58 size_t tag_len, enum evp_aead_direction_t dir,
59 const EVP_CIPHER *cipher, const EVP_MD *md,
60 char implicit_iv) {
61 if (tag_len != EVP_AEAD_DEFAULT_TAG_LENGTH && tag_len != EVP_MD_size(md)) {
62 OPENSSL_PUT_ERROR(CIPHER, CIPHER_R_UNSUPPORTED_TAG_SIZE);
63 return 0;
64 }
65
66 if (key_len != EVP_AEAD_key_length(ctx->aead)) {
67 OPENSSL_PUT_ERROR(CIPHER, CIPHER_R_BAD_KEY_LENGTH);
68 return 0;
69 }
70
71 size_t mac_key_len = EVP_MD_size(md);
72 size_t enc_key_len = EVP_CIPHER_key_length(cipher);
73 assert(mac_key_len + enc_key_len +
74 (implicit_iv ? EVP_CIPHER_iv_length(cipher) : 0) ==
75 key_len);
76
77 AEAD_TLS_CTX *tls_ctx = (AEAD_TLS_CTX *)&ctx->state;
78 tls_ctx->hmac_ctx = HMAC_CTX_new();
79 if (!tls_ctx->hmac_ctx) {
80 return 0;
81 }
82 EVP_CIPHER_CTX_init(&tls_ctx->cipher_ctx);
83 assert(mac_key_len <= EVP_MAX_MD_SIZE);
84 OPENSSL_memcpy(tls_ctx->mac_key, key, mac_key_len);
85 tls_ctx->mac_key_len = (uint8_t)mac_key_len;
86 tls_ctx->implicit_iv = implicit_iv;
87
88 if (!EVP_CipherInit_ex(&tls_ctx->cipher_ctx, cipher, NULL, &key[mac_key_len],
89 implicit_iv ? &key[mac_key_len + enc_key_len] : NULL,
90 dir == evp_aead_seal) ||
91 !HMAC_Init_ex(tls_ctx->hmac_ctx, key, mac_key_len, md, NULL)) {
92 aead_tls_cleanup(ctx);
93 return 0;
94 }
95 EVP_CIPHER_CTX_set_padding(&tls_ctx->cipher_ctx, 0);
96
97 return 1;
98 }
99
aead_tls_tag_len(const EVP_AEAD_CTX * ctx,const size_t in_len,const size_t extra_in_len)100 static size_t aead_tls_tag_len(const EVP_AEAD_CTX *ctx, const size_t in_len,
101 const size_t extra_in_len) {
102 assert(extra_in_len == 0);
103 const AEAD_TLS_CTX *tls_ctx = (AEAD_TLS_CTX *)&ctx->state;
104
105 const size_t hmac_len = HMAC_size(tls_ctx->hmac_ctx);
106 if (EVP_CIPHER_CTX_mode(&tls_ctx->cipher_ctx) != EVP_CIPH_CBC_MODE) {
107 // The NULL cipher.
108 return hmac_len;
109 }
110
111 const size_t block_size = EVP_CIPHER_CTX_block_size(&tls_ctx->cipher_ctx);
112 // An overflow of |in_len + hmac_len| doesn't affect the result mod
113 // |block_size|, provided that |block_size| is a smaller power of two.
114 assert(block_size != 0 && (block_size & (block_size - 1)) == 0);
115 const size_t pad_len = block_size - (in_len + hmac_len) % block_size;
116 return hmac_len + pad_len;
117 }
118
aead_tls_seal_scatter(const EVP_AEAD_CTX * ctx,uint8_t * out,uint8_t * out_tag,size_t * out_tag_len,const size_t max_out_tag_len,const uint8_t * nonce,const size_t nonce_len,const uint8_t * in,const size_t in_len,const uint8_t * extra_in,const size_t extra_in_len,const uint8_t * ad,const size_t ad_len)119 static int aead_tls_seal_scatter(const EVP_AEAD_CTX *ctx, uint8_t *out,
120 uint8_t *out_tag, size_t *out_tag_len,
121 const size_t max_out_tag_len,
122 const uint8_t *nonce, const size_t nonce_len,
123 const uint8_t *in, const size_t in_len,
124 const uint8_t *extra_in,
125 const size_t extra_in_len, const uint8_t *ad,
126 const size_t ad_len) {
127 AEAD_TLS_CTX *tls_ctx = (AEAD_TLS_CTX *)&ctx->state;
128
129 if (!tls_ctx->cipher_ctx.encrypt) {
130 // Unlike a normal AEAD, a TLS AEAD may only be used in one direction.
131 OPENSSL_PUT_ERROR(CIPHER, CIPHER_R_INVALID_OPERATION);
132 return 0;
133 }
134
135 if (in_len > INT_MAX) {
136 // EVP_CIPHER takes int as input.
137 OPENSSL_PUT_ERROR(CIPHER, CIPHER_R_TOO_LARGE);
138 return 0;
139 }
140
141 if (max_out_tag_len < aead_tls_tag_len(ctx, in_len, extra_in_len)) {
142 OPENSSL_PUT_ERROR(CIPHER, CIPHER_R_BUFFER_TOO_SMALL);
143 return 0;
144 }
145
146 if (nonce_len != EVP_AEAD_nonce_length(ctx->aead)) {
147 OPENSSL_PUT_ERROR(CIPHER, CIPHER_R_INVALID_NONCE_SIZE);
148 return 0;
149 }
150
151 if (ad_len != 13 - 2 /* length bytes */) {
152 OPENSSL_PUT_ERROR(CIPHER, CIPHER_R_INVALID_AD_SIZE);
153 return 0;
154 }
155
156 // To allow for CBC mode which changes cipher length, |ad| doesn't include the
157 // length for legacy ciphers.
158 uint8_t ad_extra[2];
159 ad_extra[0] = (uint8_t)(in_len >> 8);
160 ad_extra[1] = (uint8_t)(in_len & 0xff);
161
162 // Compute the MAC. This must be first in case the operation is being done
163 // in-place.
164 uint8_t mac[EVP_MAX_MD_SIZE];
165 unsigned mac_len;
166 if (!HMAC_Init_ex(tls_ctx->hmac_ctx, NULL, 0, NULL, NULL) ||
167 !HMAC_Update(tls_ctx->hmac_ctx, ad, ad_len) ||
168 !HMAC_Update(tls_ctx->hmac_ctx, ad_extra, sizeof(ad_extra)) ||
169 !HMAC_Update(tls_ctx->hmac_ctx, in, in_len) ||
170 !HMAC_Final(tls_ctx->hmac_ctx, mac, &mac_len)) {
171 return 0;
172 }
173
174 // Configure the explicit IV.
175 if (EVP_CIPHER_CTX_mode(&tls_ctx->cipher_ctx) == EVP_CIPH_CBC_MODE &&
176 !tls_ctx->implicit_iv &&
177 !EVP_EncryptInit_ex(&tls_ctx->cipher_ctx, NULL, NULL, NULL, nonce)) {
178 return 0;
179 }
180
181 // Encrypt the input.
182 int len;
183 if (!EVP_EncryptUpdate(&tls_ctx->cipher_ctx, out, &len, in, (int)in_len)) {
184 return 0;
185 }
186
187 unsigned block_size = EVP_CIPHER_CTX_block_size(&tls_ctx->cipher_ctx);
188
189 // Feed the MAC into the cipher in two steps. First complete the final partial
190 // block from encrypting the input and split the result between |out| and
191 // |out_tag|. Then feed the rest.
192
193 const size_t early_mac_len =
194 (block_size - (in_len % block_size)) % block_size;
195 if (early_mac_len != 0) {
196 assert(len + block_size - early_mac_len == in_len);
197 uint8_t buf[EVP_MAX_BLOCK_LENGTH];
198 int buf_len;
199 if (!EVP_EncryptUpdate(&tls_ctx->cipher_ctx, buf, &buf_len, mac,
200 (int)early_mac_len)) {
201 return 0;
202 }
203 assert(buf_len == (int)block_size);
204 OPENSSL_memcpy(out + len, buf, block_size - early_mac_len);
205 OPENSSL_memcpy(out_tag, buf + block_size - early_mac_len, early_mac_len);
206 }
207 size_t tag_len = early_mac_len;
208
209 if (!EVP_EncryptUpdate(&tls_ctx->cipher_ctx, out_tag + tag_len, &len,
210 mac + tag_len, mac_len - tag_len)) {
211 return 0;
212 }
213 tag_len += len;
214
215 if (block_size > 1) {
216 assert(block_size <= 256);
217 assert(EVP_CIPHER_CTX_mode(&tls_ctx->cipher_ctx) == EVP_CIPH_CBC_MODE);
218
219 // Compute padding and feed that into the cipher.
220 uint8_t padding[256];
221 unsigned padding_len = block_size - ((in_len + mac_len) % block_size);
222 OPENSSL_memset(padding, padding_len - 1, padding_len);
223 if (!EVP_EncryptUpdate(&tls_ctx->cipher_ctx, out_tag + tag_len, &len,
224 padding, (int)padding_len)) {
225 return 0;
226 }
227 tag_len += len;
228 }
229
230 if (!EVP_EncryptFinal_ex(&tls_ctx->cipher_ctx, out_tag + tag_len, &len)) {
231 return 0;
232 }
233 assert(len == 0); // Padding is explicit.
234 assert(tag_len == aead_tls_tag_len(ctx, in_len, extra_in_len));
235
236 *out_tag_len = tag_len;
237 return 1;
238 }
239
aead_tls_open(const EVP_AEAD_CTX * ctx,uint8_t * out,size_t * out_len,size_t max_out_len,const uint8_t * nonce,size_t nonce_len,const uint8_t * in,size_t in_len,const uint8_t * ad,size_t ad_len)240 static int aead_tls_open(const EVP_AEAD_CTX *ctx, uint8_t *out, size_t *out_len,
241 size_t max_out_len, const uint8_t *nonce,
242 size_t nonce_len, const uint8_t *in, size_t in_len,
243 const uint8_t *ad, size_t ad_len) {
244 AEAD_TLS_CTX *tls_ctx = (AEAD_TLS_CTX *)&ctx->state;
245
246 if (tls_ctx->cipher_ctx.encrypt) {
247 // Unlike a normal AEAD, a TLS AEAD may only be used in one direction.
248 OPENSSL_PUT_ERROR(CIPHER, CIPHER_R_INVALID_OPERATION);
249 return 0;
250 }
251
252 if (in_len < HMAC_size(tls_ctx->hmac_ctx)) {
253 OPENSSL_PUT_ERROR(CIPHER, CIPHER_R_BAD_DECRYPT);
254 return 0;
255 }
256
257 if (max_out_len < in_len) {
258 // This requires that the caller provide space for the MAC, even though it
259 // will always be removed on return.
260 OPENSSL_PUT_ERROR(CIPHER, CIPHER_R_BUFFER_TOO_SMALL);
261 return 0;
262 }
263
264 if (nonce_len != EVP_AEAD_nonce_length(ctx->aead)) {
265 OPENSSL_PUT_ERROR(CIPHER, CIPHER_R_INVALID_NONCE_SIZE);
266 return 0;
267 }
268
269 if (ad_len != 13 - 2 /* length bytes */) {
270 OPENSSL_PUT_ERROR(CIPHER, CIPHER_R_INVALID_AD_SIZE);
271 return 0;
272 }
273
274 if (in_len > INT_MAX) {
275 // EVP_CIPHER takes int as input.
276 OPENSSL_PUT_ERROR(CIPHER, CIPHER_R_TOO_LARGE);
277 return 0;
278 }
279
280 // Configure the explicit IV.
281 if (EVP_CIPHER_CTX_mode(&tls_ctx->cipher_ctx) == EVP_CIPH_CBC_MODE &&
282 !tls_ctx->implicit_iv &&
283 !EVP_DecryptInit_ex(&tls_ctx->cipher_ctx, NULL, NULL, NULL, nonce)) {
284 return 0;
285 }
286
287 // Decrypt to get the plaintext + MAC + padding.
288 size_t total = 0;
289 int len;
290 if (!EVP_DecryptUpdate(&tls_ctx->cipher_ctx, out, &len, in, (int)in_len)) {
291 return 0;
292 }
293 total += len;
294 if (!EVP_DecryptFinal_ex(&tls_ctx->cipher_ctx, out + total, &len)) {
295 return 0;
296 }
297 total += len;
298 assert(total == in_len);
299
300 CONSTTIME_SECRET(out, total);
301
302 // Remove CBC padding. Code from here on is timing-sensitive with respect to
303 // |padding_ok| and |data_plus_mac_len| for CBC ciphers.
304 size_t data_plus_mac_len;
305 crypto_word_t padding_ok;
306 if (EVP_CIPHER_CTX_mode(&tls_ctx->cipher_ctx) == EVP_CIPH_CBC_MODE) {
307 if (!EVP_tls_cbc_remove_padding(
308 &padding_ok, &data_plus_mac_len, out, total,
309 EVP_CIPHER_CTX_block_size(&tls_ctx->cipher_ctx),
310 HMAC_size(tls_ctx->hmac_ctx))) {
311 // Publicly invalid. This can be rejected in non-constant time.
312 OPENSSL_PUT_ERROR(CIPHER, CIPHER_R_BAD_DECRYPT);
313 return 0;
314 }
315 } else {
316 padding_ok = CONSTTIME_TRUE_W;
317 data_plus_mac_len = total;
318 // |data_plus_mac_len| = |total| = |in_len| at this point. |in_len| has
319 // already been checked against the MAC size at the top of the function.
320 assert(data_plus_mac_len >= HMAC_size(tls_ctx->hmac_ctx));
321 }
322 size_t data_len = data_plus_mac_len - HMAC_size(tls_ctx->hmac_ctx);
323
324 // At this point, if the padding is valid, the first |data_plus_mac_len| bytes
325 // after |out| are the plaintext and MAC. Otherwise, |data_plus_mac_len| is
326 // still large enough to extract a MAC, but it will be irrelevant.
327
328 // To allow for CBC mode which changes cipher length, |ad| doesn't include the
329 // length for legacy ciphers.
330 uint8_t ad_fixed[13];
331 OPENSSL_memcpy(ad_fixed, ad, 11);
332 ad_fixed[11] = (uint8_t)(data_len >> 8);
333 ad_fixed[12] = (uint8_t)(data_len & 0xff);
334 ad_len += 2;
335
336 // Compute the MAC and extract the one in the record.
337 uint8_t mac[EVP_MAX_MD_SIZE];
338 size_t mac_len;
339 uint8_t record_mac_tmp[EVP_MAX_MD_SIZE];
340 uint8_t *record_mac;
341 if (EVP_CIPHER_CTX_mode(&tls_ctx->cipher_ctx) == EVP_CIPH_CBC_MODE &&
342 EVP_tls_cbc_record_digest_supported(tls_ctx->hmac_ctx->md)) {
343 if (!EVP_tls_cbc_digest_record(tls_ctx->hmac_ctx->md, mac, &mac_len,
344 ad_fixed, out, data_len, total,
345 tls_ctx->mac_key, tls_ctx->mac_key_len)) {
346 OPENSSL_PUT_ERROR(CIPHER, CIPHER_R_BAD_DECRYPT);
347 return 0;
348 }
349 assert(mac_len == HMAC_size(tls_ctx->hmac_ctx));
350
351 record_mac = record_mac_tmp;
352 EVP_tls_cbc_copy_mac(record_mac, mac_len, out, data_plus_mac_len, total);
353 } else {
354 // We should support the constant-time path for all CBC-mode ciphers
355 // implemented.
356 assert(EVP_CIPHER_CTX_mode(&tls_ctx->cipher_ctx) != EVP_CIPH_CBC_MODE);
357
358 unsigned mac_len_u;
359 if (!HMAC_Init_ex(tls_ctx->hmac_ctx, NULL, 0, NULL, NULL) ||
360 !HMAC_Update(tls_ctx->hmac_ctx, ad_fixed, ad_len) ||
361 !HMAC_Update(tls_ctx->hmac_ctx, out, data_len) ||
362 !HMAC_Final(tls_ctx->hmac_ctx, mac, &mac_len_u)) {
363 return 0;
364 }
365 mac_len = mac_len_u;
366
367 assert(mac_len == HMAC_size(tls_ctx->hmac_ctx));
368 record_mac = &out[data_len];
369 }
370
371 // Perform the MAC check and the padding check in constant-time. It should be
372 // safe to simply perform the padding check first, but it would not be under a
373 // different choice of MAC location on padding failure. See
374 // EVP_tls_cbc_remove_padding.
375 crypto_word_t good =
376 constant_time_eq_int(CRYPTO_memcmp(record_mac, mac, mac_len), 0);
377 good &= padding_ok;
378 CONSTTIME_DECLASSIFY(&good, sizeof(good));
379 if (!good) {
380 OPENSSL_PUT_ERROR(CIPHER, CIPHER_R_BAD_DECRYPT);
381 return 0;
382 }
383
384 CONSTTIME_DECLASSIFY(&data_len, sizeof(data_len));
385 CONSTTIME_DECLASSIFY(out, data_len);
386
387 // End of timing-sensitive code.
388
389 *out_len = data_len;
390 return 1;
391 }
392
aead_aes_128_cbc_sha1_tls_init(EVP_AEAD_CTX * ctx,const uint8_t * key,size_t key_len,size_t tag_len,enum evp_aead_direction_t dir)393 static int aead_aes_128_cbc_sha1_tls_init(EVP_AEAD_CTX *ctx, const uint8_t *key,
394 size_t key_len, size_t tag_len,
395 enum evp_aead_direction_t dir) {
396 return aead_tls_init(ctx, key, key_len, tag_len, dir, EVP_aes_128_cbc(),
397 EVP_sha1(), 0);
398 }
399
aead_aes_128_cbc_sha1_tls_implicit_iv_init(EVP_AEAD_CTX * ctx,const uint8_t * key,size_t key_len,size_t tag_len,enum evp_aead_direction_t dir)400 static int aead_aes_128_cbc_sha1_tls_implicit_iv_init(
401 EVP_AEAD_CTX *ctx, const uint8_t *key, size_t key_len, size_t tag_len,
402 enum evp_aead_direction_t dir) {
403 return aead_tls_init(ctx, key, key_len, tag_len, dir, EVP_aes_128_cbc(),
404 EVP_sha1(), 1);
405 }
406
aead_aes_128_cbc_sha256_tls_init(EVP_AEAD_CTX * ctx,const uint8_t * key,size_t key_len,size_t tag_len,enum evp_aead_direction_t dir)407 static int aead_aes_128_cbc_sha256_tls_init(EVP_AEAD_CTX *ctx,
408 const uint8_t *key, size_t key_len,
409 size_t tag_len,
410 enum evp_aead_direction_t dir) {
411 return aead_tls_init(ctx, key, key_len, tag_len, dir, EVP_aes_128_cbc(),
412 EVP_sha256(), 0);
413 }
414
aead_aes_256_cbc_sha1_tls_init(EVP_AEAD_CTX * ctx,const uint8_t * key,size_t key_len,size_t tag_len,enum evp_aead_direction_t dir)415 static int aead_aes_256_cbc_sha1_tls_init(EVP_AEAD_CTX *ctx, const uint8_t *key,
416 size_t key_len, size_t tag_len,
417 enum evp_aead_direction_t dir) {
418 return aead_tls_init(ctx, key, key_len, tag_len, dir, EVP_aes_256_cbc(),
419 EVP_sha1(), 0);
420 }
421
aead_aes_256_cbc_sha1_tls_implicit_iv_init(EVP_AEAD_CTX * ctx,const uint8_t * key,size_t key_len,size_t tag_len,enum evp_aead_direction_t dir)422 static int aead_aes_256_cbc_sha1_tls_implicit_iv_init(
423 EVP_AEAD_CTX *ctx, const uint8_t *key, size_t key_len, size_t tag_len,
424 enum evp_aead_direction_t dir) {
425 return aead_tls_init(ctx, key, key_len, tag_len, dir, EVP_aes_256_cbc(),
426 EVP_sha1(), 1);
427 }
428
aead_des_ede3_cbc_sha1_tls_init(EVP_AEAD_CTX * ctx,const uint8_t * key,size_t key_len,size_t tag_len,enum evp_aead_direction_t dir)429 static int aead_des_ede3_cbc_sha1_tls_init(EVP_AEAD_CTX *ctx,
430 const uint8_t *key, size_t key_len,
431 size_t tag_len,
432 enum evp_aead_direction_t dir) {
433 return aead_tls_init(ctx, key, key_len, tag_len, dir, EVP_des_ede3_cbc(),
434 EVP_sha1(), 0);
435 }
436
aead_des_ede3_cbc_sha1_tls_implicit_iv_init(EVP_AEAD_CTX * ctx,const uint8_t * key,size_t key_len,size_t tag_len,enum evp_aead_direction_t dir)437 static int aead_des_ede3_cbc_sha1_tls_implicit_iv_init(
438 EVP_AEAD_CTX *ctx, const uint8_t *key, size_t key_len, size_t tag_len,
439 enum evp_aead_direction_t dir) {
440 return aead_tls_init(ctx, key, key_len, tag_len, dir, EVP_des_ede3_cbc(),
441 EVP_sha1(), 1);
442 }
443
aead_tls_get_iv(const EVP_AEAD_CTX * ctx,const uint8_t ** out_iv,size_t * out_iv_len)444 static int aead_tls_get_iv(const EVP_AEAD_CTX *ctx, const uint8_t **out_iv,
445 size_t *out_iv_len) {
446 const AEAD_TLS_CTX *tls_ctx = (AEAD_TLS_CTX *)&ctx->state;
447 const size_t iv_len = EVP_CIPHER_CTX_iv_length(&tls_ctx->cipher_ctx);
448 if (iv_len <= 1) {
449 OPENSSL_PUT_ERROR(CIPHER, ERR_R_SHOULD_NOT_HAVE_BEEN_CALLED);
450 return 0;
451 }
452
453 *out_iv = tls_ctx->cipher_ctx.iv;
454 *out_iv_len = iv_len;
455 return 1;
456 }
457
458 static const EVP_AEAD aead_aes_128_cbc_sha1_tls = {
459 SHA_DIGEST_LENGTH + 16, // key len (SHA1 + AES128)
460 16, // nonce len (IV)
461 16 + SHA_DIGEST_LENGTH, // overhead (padding + SHA1)
462 SHA_DIGEST_LENGTH, // max tag length
463 0, // seal_scatter_supports_extra_in
464
465 NULL, // init
466 aead_aes_128_cbc_sha1_tls_init,
467 aead_tls_cleanup,
468 aead_tls_open,
469 aead_tls_seal_scatter,
470 NULL, // open_gather
471 NULL, // get_iv
472 aead_tls_tag_len,
473 };
474
475 static const EVP_AEAD aead_aes_128_cbc_sha1_tls_implicit_iv = {
476 SHA_DIGEST_LENGTH + 16 + 16, // key len (SHA1 + AES128 + IV)
477 0, // nonce len
478 16 + SHA_DIGEST_LENGTH, // overhead (padding + SHA1)
479 SHA_DIGEST_LENGTH, // max tag length
480 0, // seal_scatter_supports_extra_in
481
482 NULL, // init
483 aead_aes_128_cbc_sha1_tls_implicit_iv_init,
484 aead_tls_cleanup,
485 aead_tls_open,
486 aead_tls_seal_scatter,
487 NULL, // open_gather
488 aead_tls_get_iv, // get_iv
489 aead_tls_tag_len,
490 };
491
492 static const EVP_AEAD aead_aes_128_cbc_sha256_tls = {
493 SHA256_DIGEST_LENGTH + 16, // key len (SHA256 + AES128)
494 16, // nonce len (IV)
495 16 + SHA256_DIGEST_LENGTH, // overhead (padding + SHA256)
496 SHA256_DIGEST_LENGTH, // max tag length
497 0, // seal_scatter_supports_extra_in
498
499 NULL, // init
500 aead_aes_128_cbc_sha256_tls_init,
501 aead_tls_cleanup,
502 aead_tls_open,
503 aead_tls_seal_scatter,
504 NULL, // open_gather
505 NULL, // get_iv
506 aead_tls_tag_len,
507 };
508
509 static const EVP_AEAD aead_aes_256_cbc_sha1_tls = {
510 SHA_DIGEST_LENGTH + 32, // key len (SHA1 + AES256)
511 16, // nonce len (IV)
512 16 + SHA_DIGEST_LENGTH, // overhead (padding + SHA1)
513 SHA_DIGEST_LENGTH, // max tag length
514 0, // seal_scatter_supports_extra_in
515
516 NULL, // init
517 aead_aes_256_cbc_sha1_tls_init,
518 aead_tls_cleanup,
519 aead_tls_open,
520 aead_tls_seal_scatter,
521 NULL, // open_gather
522 NULL, // get_iv
523 aead_tls_tag_len,
524 };
525
526 static const EVP_AEAD aead_aes_256_cbc_sha1_tls_implicit_iv = {
527 SHA_DIGEST_LENGTH + 32 + 16, // key len (SHA1 + AES256 + IV)
528 0, // nonce len
529 16 + SHA_DIGEST_LENGTH, // overhead (padding + SHA1)
530 SHA_DIGEST_LENGTH, // max tag length
531 0, // seal_scatter_supports_extra_in
532
533 NULL, // init
534 aead_aes_256_cbc_sha1_tls_implicit_iv_init,
535 aead_tls_cleanup,
536 aead_tls_open,
537 aead_tls_seal_scatter,
538 NULL, // open_gather
539 aead_tls_get_iv, // get_iv
540 aead_tls_tag_len,
541 };
542
543 static const EVP_AEAD aead_des_ede3_cbc_sha1_tls = {
544 SHA_DIGEST_LENGTH + 24, // key len (SHA1 + 3DES)
545 8, // nonce len (IV)
546 8 + SHA_DIGEST_LENGTH, // overhead (padding + SHA1)
547 SHA_DIGEST_LENGTH, // max tag length
548 0, // seal_scatter_supports_extra_in
549
550 NULL, // init
551 aead_des_ede3_cbc_sha1_tls_init,
552 aead_tls_cleanup,
553 aead_tls_open,
554 aead_tls_seal_scatter,
555 NULL, // open_gather
556 NULL, // get_iv
557 aead_tls_tag_len,
558 };
559
560 static const EVP_AEAD aead_des_ede3_cbc_sha1_tls_implicit_iv = {
561 SHA_DIGEST_LENGTH + 24 + 8, // key len (SHA1 + 3DES + IV)
562 0, // nonce len
563 8 + SHA_DIGEST_LENGTH, // overhead (padding + SHA1)
564 SHA_DIGEST_LENGTH, // max tag length
565 0, // seal_scatter_supports_extra_in
566
567 NULL, // init
568 aead_des_ede3_cbc_sha1_tls_implicit_iv_init,
569 aead_tls_cleanup,
570 aead_tls_open,
571 aead_tls_seal_scatter,
572 NULL, // open_gather
573 aead_tls_get_iv, // get_iv
574 aead_tls_tag_len,
575 };
576
EVP_aead_aes_128_cbc_sha1_tls(void)577 const EVP_AEAD *EVP_aead_aes_128_cbc_sha1_tls(void) {
578 return &aead_aes_128_cbc_sha1_tls;
579 }
580
EVP_aead_aes_128_cbc_sha1_tls_implicit_iv(void)581 const EVP_AEAD *EVP_aead_aes_128_cbc_sha1_tls_implicit_iv(void) {
582 return &aead_aes_128_cbc_sha1_tls_implicit_iv;
583 }
584
EVP_aead_aes_128_cbc_sha256_tls(void)585 const EVP_AEAD *EVP_aead_aes_128_cbc_sha256_tls(void) {
586 return &aead_aes_128_cbc_sha256_tls;
587 }
588
EVP_aead_aes_256_cbc_sha1_tls(void)589 const EVP_AEAD *EVP_aead_aes_256_cbc_sha1_tls(void) {
590 return &aead_aes_256_cbc_sha1_tls;
591 }
592
EVP_aead_aes_256_cbc_sha1_tls_implicit_iv(void)593 const EVP_AEAD *EVP_aead_aes_256_cbc_sha1_tls_implicit_iv(void) {
594 return &aead_aes_256_cbc_sha1_tls_implicit_iv;
595 }
596
EVP_aead_des_ede3_cbc_sha1_tls(void)597 const EVP_AEAD *EVP_aead_des_ede3_cbc_sha1_tls(void) {
598 return &aead_des_ede3_cbc_sha1_tls;
599 }
600
EVP_aead_des_ede3_cbc_sha1_tls_implicit_iv(void)601 const EVP_AEAD *EVP_aead_des_ede3_cbc_sha1_tls_implicit_iv(void) {
602 return &aead_des_ede3_cbc_sha1_tls_implicit_iv;
603 }
604