1// Copyright 1995-2016 The OpenSSL Project Authors. All Rights Reserved.
2//
3// Licensed under the Apache License, Version 2.0 (the "License");
4// you may not use this file except in compliance with the License.
5// You may obtain a copy of the License at
6//
7//     https://www.apache.org/licenses/LICENSE-2.0
8//
9// Unless required by applicable law or agreed to in writing, software
10// distributed under the License is distributed on an "AS IS" BASIS,
11// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
12// See the License for the specific language governing permissions and
13// limitations under the License.
14
15#include <openssl/bn.h>
16
17#include <assert.h>
18#include <limits.h>
19
20#include <openssl/err.h>
21
22#include "internal.h"
23
24#if (defined(OPENSSL_X86) || defined(OPENSSL_X86_64)) && defined(_MSC_VER) && \
25    !defined(__clang__)
26#define HAVE_MSVC_DIV_INTRINSICS
27#include <immintrin.h>
28#if defined(OPENSSL_X86)
29#pragma intrinsic(_udiv64)
30#else
31#pragma intrinsic(_udiv128)
32#endif
33#endif
34
35
36// bn_div_words divides a double-width |h|,|l| by |d| and returns the result,
37// which must fit in a |BN_ULONG|, i.e. |h < d|.
38static inline BN_ULONG bn_div_words(BN_ULONG h, BN_ULONG l, BN_ULONG d) {
39  assert(h < d);
40  BN_ULONG dh, dl, q, ret = 0, th, tl, t;
41  int i, count = 2;
42
43  if (d == 0) {
44    return BN_MASK2;
45  }
46
47  i = BN_num_bits_word(d);
48  assert((i == BN_BITS2) || (h <= (BN_ULONG)1 << i));
49
50  i = BN_BITS2 - i;
51  if (h >= d) {
52    h -= d;
53  }
54
55  if (i) {
56    d <<= i;
57    h = (h << i) | (l >> (BN_BITS2 - i));
58    l <<= i;
59  }
60  dh = (d & BN_MASK2h) >> BN_BITS4;
61  dl = (d & BN_MASK2l);
62  for (;;) {
63    if ((h >> BN_BITS4) == dh) {
64      q = BN_MASK2l;
65    } else {
66      q = h / dh;
67    }
68
69    th = q * dh;
70    tl = dl * q;
71    for (;;) {
72      t = h - th;
73      if ((t & BN_MASK2h) ||
74          ((tl) <= ((t << BN_BITS4) | ((l & BN_MASK2h) >> BN_BITS4)))) {
75        break;
76      }
77      q--;
78      th -= dh;
79      tl -= dl;
80    }
81    t = (tl >> BN_BITS4);
82    tl = (tl << BN_BITS4) & BN_MASK2h;
83    th += t;
84
85    if (l < tl) {
86      th++;
87    }
88    l -= tl;
89    if (h < th) {
90      h += d;
91      q--;
92    }
93    h -= th;
94
95    if (--count == 0) {
96      break;
97    }
98
99    ret = q << BN_BITS4;
100    h = (h << BN_BITS4) | (l >> BN_BITS4);
101    l = (l & BN_MASK2l) << BN_BITS4;
102  }
103
104  ret |= q;
105  return ret;
106}
107
108// bn_div_rem_words divides a double-width numerator (high half |nh| and low
109// half |nl|) with a single-width divisor. It sets |*quotient_out| and
110// |*rem_out| to be the quotient and numerator, respectively. The quotient must
111// fit in a |BN_ULONG|, i.e. |nh < d|.
112static inline void bn_div_rem_words(BN_ULONG *quotient_out, BN_ULONG *rem_out,
113                                    BN_ULONG nh, BN_ULONG nl, BN_ULONG d) {
114  assert(nh < d);
115  // This operation is the x86 and x86_64 DIV instruction, but it is difficult
116  // for the compiler to emit it. Dividing a |BN_ULLONG| by a |BN_ULONG| does
117  // not work because, a priori, the quotient may not fit in |BN_ULONG| and DIV
118  // will trap on overflow, not truncate. The compiler will instead emit a call
119  // to a more expensive support function (e.g. |__udivdi3|). Thus we use inline
120  // assembly or intrinsics to get the instruction.
121  //
122  // These is specific to x86 and x86_64; Arm and RISC-V do not have double-wide
123  // division instructions.
124#if defined(BN_CAN_USE_INLINE_ASM) && defined(OPENSSL_X86)
125  __asm__ volatile("divl %4"
126                   : "=a"(*quotient_out), "=d"(*rem_out)
127                   : "a"(nl), "d"(nh), "rm"(d)
128                   : "cc");
129#elif defined(BN_CAN_USE_INLINE_ASM) && defined(OPENSSL_X86_64)
130  __asm__ volatile("divq %4"
131                   : "=a"(*quotient_out), "=d"(*rem_out)
132                   : "a"(nl), "d"(nh), "rm"(d)
133                   : "cc");
134#elif defined(HAVE_MSVC_DIV_INTRINSICS) && defined(OPENSSL_X86)
135  BN_ULLONG n = (((BN_ULLONG)nh) << BN_BITS2) | nl;
136  unsigned rem;
137  *quotient_out = _udiv64(n, d, &rem);
138  *rem_out = rem;
139#elif defined(HAVE_MSVC_DIV_INTRINSICS) && defined(OPENSSL_X86_64)
140  unsigned __int64 rem;
141  *quotient_out = _udiv128(nh, nl, d, &rem);
142  *rem_out = rem;
143#else
144#if defined(BN_CAN_DIVIDE_ULLONG)
145  BN_ULLONG n = (((BN_ULLONG)nh) << BN_BITS2) | nl;
146  *quotient_out = (BN_ULONG)(n / d);
147#else
148  *quotient_out = bn_div_words(nh, nl, d);
149#endif  // BN_CAN_DIVIDE_ULLONG
150  *rem_out = nl - (*quotient_out * d);
151#endif
152}
153
154int BN_div(BIGNUM *quotient, BIGNUM *rem, const BIGNUM *numerator,
155           const BIGNUM *divisor, BN_CTX *ctx) {
156  // This function implements long division, per Knuth, The Art of Computer
157  // Programming, Volume 2, Chapter 4.3.1, Algorithm D. This algorithm only
158  // divides non-negative integers, but we round towards zero, so we divide
159  // absolute values and adjust the signs separately.
160  //
161  // Inputs to this function are assumed public and may be leaked by timing and
162  // cache side channels. Division with secret inputs should use other
163  // implementation strategies such as Montgomery reduction.
164  if (BN_is_zero(divisor)) {
165    OPENSSL_PUT_ERROR(BN, BN_R_DIV_BY_ZERO);
166    return 0;
167  }
168
169  bssl::BN_CTXScope scope(ctx);
170  BIGNUM *tmp = BN_CTX_get(ctx);
171  BIGNUM *snum = BN_CTX_get(ctx);
172  BIGNUM *sdiv = BN_CTX_get(ctx);
173  BIGNUM *res = quotient == NULL ? BN_CTX_get(ctx) : quotient;
174  int norm_shift, num_n, loop, div_n;
175  BN_ULONG d0, d1;
176  if (tmp == NULL || snum == NULL || sdiv == NULL || res == NULL) {
177    return 0;
178  }
179
180  // Knuth step D1: Normalise the numbers such that the divisor's MSB is set.
181  // This ensures, in Knuth's terminology, that v1 >= b/2, needed for the
182  // quotient estimation step.
183  norm_shift = BN_BITS2 - (BN_num_bits(divisor) % BN_BITS2);
184  if (!BN_lshift(sdiv, divisor, norm_shift) ||
185      !BN_lshift(snum, numerator, norm_shift)) {
186    return 0;
187  }
188
189  // This algorithm relies on |sdiv| being minimal width. We do not use this
190  // function on secret inputs, so leaking this is fine. Also minimize |snum| to
191  // avoid looping on leading zeros, as we're not trying to be leak-free.
192  bn_set_minimal_width(sdiv);
193  bn_set_minimal_width(snum);
194  div_n = sdiv->width;
195  d0 = sdiv->d[div_n - 1];
196  d1 = (div_n == 1) ? 0 : sdiv->d[div_n - 2];
197  assert(d0 & (((BN_ULONG)1) << (BN_BITS2 - 1)));
198
199  // Extend |snum| with zeros to satisfy the long division invariants:
200  // - |snum| must have at least |div_n| + 1 words.
201  // - |snum|'s most significant word must be zero to guarantee the first loop
202  //   iteration works with a prefix greater than |sdiv|. (This is the extra u0
203  //   digit in Knuth step D1.)
204  num_n = snum->width <= div_n ? div_n + 1 : snum->width + 1;
205  if (!bn_resize_words(snum, num_n)) {
206    return 0;
207  }
208
209  // Knuth step D2: The quotient's width is the difference between numerator and
210  // denominator. Also set up its sign and size a temporary for the loop.
211  loop = num_n - div_n;
212  res->neg = snum->neg ^ sdiv->neg;
213  if (!bn_wexpand(res, loop) ||  //
214      !bn_wexpand(tmp, div_n + 1)) {
215    return 0;
216  }
217  res->width = loop;
218
219  // Knuth steps D2 through D7: Compute the quotient with a word-by-word long
220  // division. Note that Knuth indexes words from most to least significant, so
221  // our index is reversed. Each loop iteration computes res->d[i] of the
222  // quotient and updates snum with the running remainder. Before each loop
223  // iteration, the div_n words beginning at snum->d[i+1] must be less than
224  // snum.
225  for (int i = loop - 1; i >= 0; i--) {
226    // The next word of the quotient, q, is floor(wnum / sdiv), where wnum is
227    // the div_n + 1 words beginning at snum->d[i]. i starts at
228    // num_n - div_n - 1, so there are at least div_n + 1 words available.
229    //
230    // Knuth step D3: Compute q', an estimate of q by looking at the top words
231    // of wnum and sdiv. We must estimate such that q' = q or q' = q + 1.
232    BN_ULONG q, rm = 0;
233    BN_ULONG *wnum = snum->d + i;
234    BN_ULONG n0 = wnum[div_n];
235    BN_ULONG n1 = wnum[div_n - 1];
236    if (n0 == d0) {
237      // Estimate q' = b - 1, where b is the base.
238      q = BN_MASK2;
239      // Knuth also runs the fixup routine in this case, but this would require
240      // computing rm and is unnecessary. q' is already close enough. That is,
241      // the true quotient, q is either b - 1 or b - 2.
242      //
243      // By the loop invariant, q <= b - 1, so we must show that q >= b - 2. We
244      // do this by showing wnum / sdiv >= b - 2. Suppose wnum / sdiv < b - 2.
245      // wnum and sdiv have the same most significant word, so:
246      //
247      //    wnum >= n0 * b^div_n
248      //    sdiv <  (n0 + 1) * b^(d_div - 1)
249      //
250      // Thus:
251      //
252      //    b - 2 > wnum / sdiv
253      //          > (n0 * b^div_n) / (n0 + 1) * b^(div_n - 1)
254      //          = (n0 * b) / (n0 + 1)
255      //
256      //         (n0 + 1) * (b - 2) > n0 * b
257      //    n0 * b + b - 2 * n0 - 2 > n0 * b
258      //                      b - 2 > 2 * n0
259      //                    b/2 - 1 > n0
260      //
261      // This contradicts the normalization condition, so q >= b - 2 and our
262      // estimate is close enough.
263    } else {
264      // Estimate q' = floor(n0n1 / d0). Per Theorem B, q' - 2 <= q <= q', which
265      // is slightly outside of our bounds.
266      assert(n0 < d0);
267      bn_div_rem_words(&q, &rm, n0, n1, d0);
268
269      // Fix the estimate by examining one more word and adjusting q' as needed.
270      // This is the second half of step D3 and is sufficient per exercises 19,
271      // 20, and 21. Although only one iteration is needed to correct q + 2 to
272      // q + 1, Knuth uses a loop. A loop will often also correct q + 1 to q,
273      // saving the slightly more expensive underflow handling below.
274      if (div_n > 1) {
275        BN_ULONG n2 = wnum[div_n - 2];
276#ifdef BN_ULLONG
277        BN_ULLONG t2 = (BN_ULLONG)d1 * q;
278        for (;;) {
279          if (t2 <= ((((BN_ULLONG)rm) << BN_BITS2) | n2)) {
280            break;
281          }
282          q--;
283          rm += d0;
284          if (rm < d0) {
285            // If rm overflows, the true value exceeds BN_ULONG and the next
286            // t2 comparison should exit the loop.
287            break;
288          }
289          t2 -= d1;
290        }
291#else   // !BN_ULLONG
292        BN_ULONG t2l, t2h;
293        BN_UMULT_LOHI(t2l, t2h, d1, q);
294        for (;;) {
295          if (t2h < rm || (t2h == rm && t2l <= n2)) {
296            break;
297          }
298          q--;
299          rm += d0;
300          if (rm < d0) {
301            // If rm overflows, the true value exceeds BN_ULONG and the next
302            // t2 comparison should exit the loop.
303            break;
304          }
305          if (t2l < d1) {
306            t2h--;
307          }
308          t2l -= d1;
309        }
310#endif  // !BN_ULLONG
311      }
312    }
313
314    // Knuth step D4 through D6: Now q' = q or q' = q + 1, and
315    // -sdiv < wnum - sdiv * q < sdiv. If q' = q + 1, the subtraction will
316    // underflow, and we fix it up below.
317    tmp->d[div_n] = bn_mul_words(tmp->d, sdiv->d, div_n, q);
318    if (bn_sub_words(wnum, wnum, tmp->d, div_n + 1)) {
319      q--;
320      // The final addition is expected to overflow, canceling the underflow.
321      wnum[div_n] += bn_add_words(wnum, wnum, sdiv->d, div_n);
322    }
323
324    // q is now correct, and wnum has been updated to the running remainder.
325    res->d[i] = q;
326  }
327
328  // Trim leading zeros and correct any negative zeros.
329  bn_set_minimal_width(snum);
330  bn_set_minimal_width(res);
331
332  // Knuth step D8: Unnormalize. snum now contains the remainder.
333  if (rem != NULL && !BN_rshift(rem, snum, norm_shift)) {
334    return 0;
335  }
336
337  return 1;
338}
339
340int BN_nnmod(BIGNUM *r, const BIGNUM *m, const BIGNUM *d, BN_CTX *ctx) {
341  if (!(BN_mod(r, m, d, ctx))) {
342    return 0;
343  }
344  if (!r->neg) {
345    return 1;
346  }
347
348  // now -d < r < 0, so we have to set r := r + d. Ignoring the sign bits, this
349  // is r = d - r.
350  return BN_usub(r, d, r);
351}
352
353BN_ULONG bn_reduce_once(BN_ULONG *r, const BN_ULONG *a, BN_ULONG carry,
354                        const BN_ULONG *m, size_t num) {
355  assert(r != a);
356  // |r| = |a| - |m|. |bn_sub_words| performs the bulk of the subtraction, and
357  // then we apply the borrow to |carry|.
358  carry -= bn_sub_words(r, a, m, num);
359  // We know 0 <= |a| < 2*|m|, so -|m| <= |r| < |m|.
360  //
361  // If 0 <= |r| < |m|, |r| fits in |num| words and |carry| is zero. We then
362  // wish to select |r| as the answer. Otherwise -m <= r < 0 and we wish to
363  // return |r| + |m|, or |a|. |carry| must then be -1 or all ones. In both
364  // cases, |carry| is a suitable input to |bn_select_words|.
365  //
366  // Although |carry| may be one if it was one on input and |bn_sub_words|
367  // returns zero, this would give |r| > |m|, violating our input assumptions.
368  declassify_assert(carry + 1 <= 1);
369  bn_select_words(r, carry, a /* r < 0 */, r /* r >= 0 */, num);
370  return carry;
371}
372
373BN_ULONG bn_reduce_once_in_place(BN_ULONG *r, BN_ULONG carry, const BN_ULONG *m,
374                                 BN_ULONG *tmp, size_t num) {
375  // See |bn_reduce_once| for why this logic works.
376  carry -= bn_sub_words(tmp, r, m, num);
377  declassify_assert(carry + 1 <= 1);
378  bn_select_words(r, carry, r /* tmp < 0 */, tmp /* tmp >= 0 */, num);
379  return carry;
380}
381
382void bn_mod_sub_words(BN_ULONG *r, const BN_ULONG *a, const BN_ULONG *b,
383                      const BN_ULONG *m, BN_ULONG *tmp, size_t num) {
384  // r = a - b
385  BN_ULONG borrow = bn_sub_words(r, a, b, num);
386  // tmp = a - b + m
387  bn_add_words(tmp, r, m, num);
388  bn_select_words(r, 0 - borrow, tmp /* r < 0 */, r /* r >= 0 */, num);
389}
390
391void bn_mod_add_words(BN_ULONG *r, const BN_ULONG *a, const BN_ULONG *b,
392                      const BN_ULONG *m, BN_ULONG *tmp, size_t num) {
393  BN_ULONG carry = bn_add_words(r, a, b, num);
394  bn_reduce_once_in_place(r, carry, m, tmp, num);
395}
396
397int bn_div_consttime(BIGNUM *quotient, BIGNUM *remainder,
398                     const BIGNUM *numerator, const BIGNUM *divisor,
399                     unsigned divisor_min_bits, BN_CTX *ctx) {
400  if (BN_is_negative(numerator) || BN_is_negative(divisor)) {
401    OPENSSL_PUT_ERROR(BN, BN_R_NEGATIVE_NUMBER);
402    return 0;
403  }
404  if (BN_is_zero(divisor)) {
405    OPENSSL_PUT_ERROR(BN, BN_R_DIV_BY_ZERO);
406    return 0;
407  }
408
409  // This function implements long division in binary. It is not very efficient,
410  // but it is simple, easy to make constant-time, and performant enough for RSA
411  // key generation.
412
413  bssl::BN_CTXScope scope(ctx);
414  BIGNUM *q = quotient, *r = remainder;
415  if (quotient == NULL || quotient == numerator || quotient == divisor) {
416    q = BN_CTX_get(ctx);
417  }
418  if (remainder == NULL || remainder == numerator || remainder == divisor) {
419    r = BN_CTX_get(ctx);
420  }
421  BIGNUM *tmp = BN_CTX_get(ctx);
422  int initial_words;
423  if (q == NULL || r == NULL || tmp == NULL ||
424      !bn_wexpand(q, numerator->width) || !bn_wexpand(r, divisor->width) ||
425      !bn_wexpand(tmp, divisor->width)) {
426    return 0;
427  }
428
429  OPENSSL_memset(q->d, 0, numerator->width * sizeof(BN_ULONG));
430  q->width = numerator->width;
431  q->neg = 0;
432
433  OPENSSL_memset(r->d, 0, divisor->width * sizeof(BN_ULONG));
434  r->width = divisor->width;
435  r->neg = 0;
436
437  // Incorporate |numerator| into |r|, one bit at a time, reducing after each
438  // step. We maintain the invariant that |0 <= r < divisor| and
439  // |q * divisor + r = n| where |n| is the portion of |numerator| incorporated
440  // so far.
441  //
442  // First, we short-circuit the loop: if we know |divisor| has at least
443  // |divisor_min_bits| bits, the top |divisor_min_bits - 1| can be incorporated
444  // without reductions. This significantly speeds up |RSA_check_key|. For
445  // simplicity, we round down to a whole number of words.
446  declassify_assert(divisor_min_bits <= BN_num_bits(divisor));
447  initial_words = 0;
448  if (divisor_min_bits > 0) {
449    initial_words = (divisor_min_bits - 1) / BN_BITS2;
450    if (initial_words > numerator->width) {
451      initial_words = numerator->width;
452    }
453    OPENSSL_memcpy(r->d, numerator->d + numerator->width - initial_words,
454                   initial_words * sizeof(BN_ULONG));
455  }
456
457  for (int i = numerator->width - initial_words - 1; i >= 0; i--) {
458    for (int bit = BN_BITS2 - 1; bit >= 0; bit--) {
459      // Incorporate the next bit of the numerator, by computing
460      // r = 2*r or 2*r + 1. Note the result fits in one more word. We store the
461      // extra word in |carry|.
462      BN_ULONG carry = bn_add_words(r->d, r->d, r->d, divisor->width);
463      r->d[0] |= (numerator->d[i] >> bit) & 1;
464      // |r| was previously fully-reduced, so we know:
465      //      2*0 <= r <= 2*(divisor-1) + 1
466      //        0 <= r <= 2*divisor - 1 < 2*divisor.
467      // Thus |r| satisfies the preconditions for |bn_reduce_once_in_place|.
468      BN_ULONG subtracted = bn_reduce_once_in_place(r->d, carry, divisor->d,
469                                                    tmp->d, divisor->width);
470      // The corresponding bit of the quotient is set iff we needed to subtract.
471      q->d[i] |= (~subtracted & 1) << bit;
472    }
473  }
474
475  if ((quotient != NULL && !BN_copy(quotient, q)) ||
476      (remainder != NULL && !BN_copy(remainder, r))) {
477    return 0;
478  }
479
480  return 1;
481}
482
483static BIGNUM *bn_scratch_space_from_ctx(size_t width, BN_CTX *ctx) {
484  BIGNUM *ret = BN_CTX_get(ctx);
485  if (ret == NULL || !bn_wexpand(ret, width)) {
486    return NULL;
487  }
488  ret->neg = 0;
489  ret->width = (int)width;
490  return ret;
491}
492
493// bn_resized_from_ctx returns |bn| with width at least |width| or NULL on
494// error. This is so it may be used with low-level "words" functions. If
495// necessary, it allocates a new |BIGNUM| with a lifetime of the current scope
496// in |ctx|, so the caller does not need to explicitly free it. |bn| must fit in
497// |width| words.
498static const BIGNUM *bn_resized_from_ctx(const BIGNUM *bn, size_t width,
499                                         BN_CTX *ctx) {
500  if ((size_t)bn->width >= width) {
501    // Any excess words must be zero.
502    assert(bn_fits_in_words(bn, width));
503    return bn;
504  }
505  BIGNUM *ret = bn_scratch_space_from_ctx(width, ctx);
506  if (ret == NULL || !BN_copy(ret, bn) || !bn_resize_words(ret, width)) {
507    return NULL;
508  }
509  return ret;
510}
511
512int BN_mod_add(BIGNUM *r, const BIGNUM *a, const BIGNUM *b, const BIGNUM *m,
513               BN_CTX *ctx) {
514  if (!BN_add(r, a, b)) {
515    return 0;
516  }
517  return BN_nnmod(r, r, m, ctx);
518}
519
520int BN_mod_add_quick(BIGNUM *r, const BIGNUM *a, const BIGNUM *b,
521                     const BIGNUM *m) {
522  bssl::UniquePtr<BN_CTX> ctx(BN_CTX_new());
523  return ctx != nullptr && bn_mod_add_consttime(r, a, b, m, ctx.get());
524}
525
526int bn_mod_add_consttime(BIGNUM *r, const BIGNUM *a, const BIGNUM *b,
527                         const BIGNUM *m, BN_CTX *ctx) {
528  bssl::BN_CTXScope scope(ctx);
529  a = bn_resized_from_ctx(a, m->width, ctx);
530  b = bn_resized_from_ctx(b, m->width, ctx);
531  BIGNUM *tmp = bn_scratch_space_from_ctx(m->width, ctx);
532  if (a == nullptr || b == nullptr || tmp == nullptr ||
533      !bn_wexpand(r, m->width)) {
534    return 0;
535  }
536  bn_mod_add_words(r->d, a->d, b->d, m->d, tmp->d, m->width);
537  r->width = m->width;
538  r->neg = 0;
539  return 1;
540}
541
542int BN_mod_sub(BIGNUM *r, const BIGNUM *a, const BIGNUM *b, const BIGNUM *m,
543               BN_CTX *ctx) {
544  if (!BN_sub(r, a, b)) {
545    return 0;
546  }
547  return BN_nnmod(r, r, m, ctx);
548}
549
550int bn_mod_sub_consttime(BIGNUM *r, const BIGNUM *a, const BIGNUM *b,
551                         const BIGNUM *m, BN_CTX *ctx) {
552  bssl::BN_CTXScope scope(ctx);
553  a = bn_resized_from_ctx(a, m->width, ctx);
554  b = bn_resized_from_ctx(b, m->width, ctx);
555  BIGNUM *tmp = bn_scratch_space_from_ctx(m->width, ctx);
556  if (a == nullptr || b == nullptr || tmp == nullptr ||
557      !bn_wexpand(r, m->width)) {
558    return 0;
559  }
560  bn_mod_sub_words(r->d, a->d, b->d, m->d, tmp->d, m->width);
561  r->width = m->width;
562  r->neg = 0;
563  return 1;
564}
565
566int BN_mod_sub_quick(BIGNUM *r, const BIGNUM *a, const BIGNUM *b,
567                     const BIGNUM *m) {
568  bssl::UniquePtr<BN_CTX> ctx(BN_CTX_new());
569  return ctx != nullptr && bn_mod_sub_consttime(r, a, b, m, ctx.get());
570}
571
572int BN_mod_mul(BIGNUM *r, const BIGNUM *a, const BIGNUM *b, const BIGNUM *m,
573               BN_CTX *ctx) {
574  bssl::BN_CTXScope scope(ctx);
575  BIGNUM *t = BN_CTX_get(ctx);
576  if (t == NULL) {
577    return 0;
578  }
579
580  if (a == b) {
581    if (!BN_sqr(t, a, ctx)) {
582      return 0;
583    }
584  } else {
585    if (!BN_mul(t, a, b, ctx)) {
586      return 0;
587    }
588  }
589
590  if (!BN_nnmod(r, t, m, ctx)) {
591    return 0;
592  }
593
594  return 1;
595}
596
597int BN_mod_sqr(BIGNUM *r, const BIGNUM *a, const BIGNUM *m, BN_CTX *ctx) {
598  if (!BN_sqr(r, a, ctx)) {
599    return 0;
600  }
601
602  // r->neg == 0,  thus we don't need BN_nnmod
603  return BN_mod(r, r, m, ctx);
604}
605
606int BN_mod_lshift(BIGNUM *r, const BIGNUM *a, int n, const BIGNUM *m,
607                  BN_CTX *ctx) {
608  if (!BN_nnmod(r, a, m, ctx)) {
609    return 0;
610  }
611
612  bssl::UniquePtr<BIGNUM> abs_m;
613  if (m->neg) {
614    abs_m.reset(BN_dup(m));
615    if (abs_m == nullptr) {
616      return 0;
617    }
618    abs_m->neg = 0;
619  }
620
621  return bn_mod_lshift_consttime(r, r, n, (abs_m ? abs_m.get() : m), ctx);
622}
623
624int bn_mod_lshift_consttime(BIGNUM *r, const BIGNUM *a, int n, const BIGNUM *m,
625                            BN_CTX *ctx) {
626  if (!BN_copy(r, a) || !bn_resize_words(r, m->width)) {
627    return 0;
628  }
629
630  bssl::BN_CTXScope scope(ctx);
631  BIGNUM *tmp = bn_scratch_space_from_ctx(m->width, ctx);
632  if (tmp == nullptr) {
633    return 0;
634  }
635  for (int i = 0; i < n; i++) {
636    bn_mod_add_words(r->d, r->d, r->d, m->d, tmp->d, m->width);
637  }
638  r->neg = 0;
639  return 1;
640}
641
642int BN_mod_lshift_quick(BIGNUM *r, const BIGNUM *a, int n, const BIGNUM *m) {
643  bssl::UniquePtr<BN_CTX> ctx(BN_CTX_new());
644  return ctx != nullptr && bn_mod_lshift_consttime(r, a, n, m, ctx.get());
645}
646
647int BN_mod_lshift1(BIGNUM *r, const BIGNUM *a, const BIGNUM *m, BN_CTX *ctx) {
648  if (!BN_lshift1(r, a)) {
649    return 0;
650  }
651
652  return BN_nnmod(r, r, m, ctx);
653}
654
655int bn_mod_lshift1_consttime(BIGNUM *r, const BIGNUM *a, const BIGNUM *m,
656                             BN_CTX *ctx) {
657  return bn_mod_add_consttime(r, a, a, m, ctx);
658}
659
660int BN_mod_lshift1_quick(BIGNUM *r, const BIGNUM *a, const BIGNUM *m) {
661  bssl::UniquePtr<BN_CTX> ctx(BN_CTX_new());
662  return ctx != nullptr && bn_mod_lshift1_consttime(r, a, m, ctx.get());
663}
664
665BN_ULONG BN_div_word(BIGNUM *a, BN_ULONG w) {
666  BN_ULONG ret = 0;
667  int i, j;
668
669  if (!w) {
670    // actually this an error (division by zero)
671    return (BN_ULONG)-1;
672  }
673
674  if (a->width == 0) {
675    return 0;
676  }
677
678  // normalize input for |bn_div_rem_words|.
679  j = BN_BITS2 - BN_num_bits_word(w);
680  w <<= j;
681  if (!BN_lshift(a, a, j)) {
682    return (BN_ULONG)-1;
683  }
684
685  for (i = a->width - 1; i >= 0; i--) {
686    BN_ULONG l = a->d[i];
687    BN_ULONG d;
688    BN_ULONG unused_rem;
689    bn_div_rem_words(&d, &unused_rem, ret, l, w);
690    ret = l - (d * w);
691    a->d[i] = d;
692  }
693
694  bn_set_minimal_width(a);
695  ret >>= j;
696  return ret;
697}
698
699BN_ULONG BN_mod_word(const BIGNUM *a, BN_ULONG w) {
700#ifndef BN_CAN_DIVIDE_ULLONG
701  BN_ULONG ret = 0;
702#else
703  BN_ULLONG ret = 0;
704#endif
705  int i;
706
707  if (w == 0) {
708    return (BN_ULONG)-1;
709  }
710
711#ifndef BN_CAN_DIVIDE_ULLONG
712  // If |w| is too long and we don't have |BN_ULLONG| division then we need to
713  // fall back to using |BN_div_word|.
714  if (w > ((BN_ULONG)1 << BN_BITS4)) {
715    BIGNUM *tmp = BN_dup(a);
716    if (tmp == NULL) {
717      return (BN_ULONG)-1;
718    }
719    ret = BN_div_word(tmp, w);
720    BN_free(tmp);
721    return ret;
722  }
723#endif
724
725  for (i = a->width - 1; i >= 0; i--) {
726#ifndef BN_CAN_DIVIDE_ULLONG
727    ret = ((ret << BN_BITS4) | ((a->d[i] >> BN_BITS4) & BN_MASK2l)) % w;
728    ret = ((ret << BN_BITS4) | (a->d[i] & BN_MASK2l)) % w;
729#else
730    ret = (BN_ULLONG)(((ret << (BN_ULLONG)BN_BITS2) | a->d[i]) % (BN_ULLONG)w);
731#endif
732  }
733  return (BN_ULONG)ret;
734}
735