1 // Copyright 1995-2016 The OpenSSL Project Authors. All Rights Reserved.
2 // Copyright (c) 2002, Oracle and/or its affiliates. All rights reserved.
3 //
4 // Licensed under the Apache License, Version 2.0 (the "License");
5 // you may not use this file except in compliance with the License.
6 // You may obtain a copy of the License at
7 //
8 // https://www.apache.org/licenses/LICENSE-2.0
9 //
10 // Unless required by applicable law or agreed to in writing, software
11 // distributed under the License is distributed on an "AS IS" BASIS,
12 // WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
13 // See the License for the specific language governing permissions and
14 // limitations under the License.
15
16 #ifndef OPENSSL_HEADER_CRYPTO_FIPSMODULE_BN_INTERNAL_H
17 #define OPENSSL_HEADER_CRYPTO_FIPSMODULE_BN_INTERNAL_H
18
19 #include <openssl/bn.h>
20
21 #if defined(OPENSSL_X86_64) && defined(_MSC_VER)
22 #include <intrin.h>
23 #pragma intrinsic(__umulh, _umul128)
24 #endif
25
26 #include "../../internal.h"
27
28 #if defined(__cplusplus)
29 extern "C" {
30 #endif
31
32 #if defined(OPENSSL_64_BIT)
33
34 #if defined(BORINGSSL_HAS_UINT128)
35 // MSVC doesn't support two-word integers on 64-bit.
36 #define BN_ULLONG uint128_t
37 #if defined(BORINGSSL_CAN_DIVIDE_UINT128)
38 #define BN_CAN_DIVIDE_ULLONG
39 #endif
40 #endif
41
42 #define BN_BITS2 64
43 #define BN_BITS2_LG 6
44 #define BN_BYTES 8
45 #define BN_BITS4 32
46 #define BN_MASK2 (0xffffffffffffffffUL)
47 #define BN_MASK2l (0xffffffffUL)
48 #define BN_MASK2h (0xffffffff00000000UL)
49 #define BN_MASK2h1 (0xffffffff80000000UL)
50 #define BN_MONT_CTX_N0_LIMBS 1
51 #define BN_DEC_CONV (10000000000000000000UL)
52 #define BN_DEC_NUM 19
53 #define TOBN(hi, lo) ((BN_ULONG)(hi) << 32 | (lo))
54
55 #elif defined(OPENSSL_32_BIT)
56
57 #define BN_ULLONG uint64_t
58 #define BN_CAN_DIVIDE_ULLONG
59 #define BN_BITS2 32
60 #define BN_BITS2_LG 5
61 #define BN_BYTES 4
62 #define BN_BITS4 16
63 #define BN_MASK2 (0xffffffffUL)
64 #define BN_MASK2l (0xffffUL)
65 #define BN_MASK2h1 (0xffff8000UL)
66 #define BN_MASK2h (0xffff0000UL)
67 // On some 32-bit platforms, Montgomery multiplication is done using 64-bit
68 // arithmetic with SIMD instructions. On such platforms, |BN_MONT_CTX::n0|
69 // needs to be two words long. Only certain 32-bit platforms actually make use
70 // of n0[1] and shorter R value would suffice for the others. However,
71 // currently only the assembly files know which is which.
72 #define BN_MONT_CTX_N0_LIMBS 2
73 #define BN_DEC_CONV (1000000000UL)
74 #define BN_DEC_NUM 9
75 #define TOBN(hi, lo) (lo), (hi)
76
77 #else
78 #error "Must define either OPENSSL_32_BIT or OPENSSL_64_BIT"
79 #endif
80
81 #if !defined(OPENSSL_NO_ASM) && (defined(__GNUC__) || defined(__clang__))
82 #define BN_CAN_USE_INLINE_ASM
83 #endif
84
85 // MOD_EXP_CTIME_ALIGN is the alignment needed for |BN_mod_exp_mont_consttime|'s
86 // tables.
87 //
88 // TODO(davidben): Historically, this alignment came from cache line
89 // assumptions, which we've since removed. Is 64-byte alignment still necessary
90 // or ideal? The true alignment requirement seems to now be 32 bytes, coming
91 // from RSAZ's use of VMOVDQA to a YMM register. Non-x86_64 has even fewer
92 // requirements.
93 #define MOD_EXP_CTIME_ALIGN 64
94
95 // MOD_EXP_CTIME_STORAGE_LEN is the number of |BN_ULONG|s needed for the
96 // |BN_mod_exp_mont_consttime| stack-allocated storage buffer. The buffer is
97 // just the right size for the RSAZ and is about ~1KB larger than what's
98 // necessary (4480 bytes) for 1024-bit inputs.
99 #define MOD_EXP_CTIME_STORAGE_LEN \
100 (((320u * 3u) + (32u * 9u * 16u)) / sizeof(BN_ULONG))
101
102 #define STATIC_BIGNUM(x) \
103 { \
104 (BN_ULONG *)(x), sizeof(x) / sizeof(BN_ULONG), \
105 sizeof(x) / sizeof(BN_ULONG), 0, BN_FLG_STATIC_DATA \
106 }
107
108 // bn_minimal_width returns the minimal number of words needed to represent
109 // |bn|.
110 int bn_minimal_width(const BIGNUM *bn);
111
112 // bn_set_minimal_width sets |bn->width| to |bn_minimal_width(bn)|. If |bn| is
113 // zero, |bn->neg| is set to zero.
114 void bn_set_minimal_width(BIGNUM *bn);
115
116 // bn_wexpand ensures that |bn| has at least |words| works of space without
117 // altering its value. It returns one on success or zero on allocation
118 // failure.
119 int bn_wexpand(BIGNUM *bn, size_t words);
120
121 // bn_expand acts the same as |bn_wexpand|, but takes a number of bits rather
122 // than a number of words.
123 int bn_expand(BIGNUM *bn, size_t bits);
124
125 // bn_resize_words adjusts |bn->width| to be |words|. It returns one on success
126 // and zero on allocation error or if |bn|'s value is too large.
127 OPENSSL_EXPORT int bn_resize_words(BIGNUM *bn, size_t words);
128
129 // bn_select_words sets |r| to |a| if |mask| is all ones or |b| if |mask| is
130 // all zeros.
131 void bn_select_words(BN_ULONG *r, BN_ULONG mask, const BN_ULONG *a,
132 const BN_ULONG *b, size_t num);
133
134 // bn_set_words sets |bn| to the value encoded in the |num| words in |words|,
135 // least significant word first.
136 int bn_set_words(BIGNUM *bn, const BN_ULONG *words, size_t num);
137
138 // bn_set_static_words acts like |bn_set_words|, but doesn't copy the data. A
139 // flag is set on |bn| so that |BN_free| won't attempt to free the data.
140 //
141 // The |STATIC_BIGNUM| macro is probably a better solution for this outside of
142 // the FIPS module. Inside of the FIPS module that macro generates rel.ro data,
143 // which doesn't work with FIPS requirements.
144 void bn_set_static_words(BIGNUM *bn, const BN_ULONG *words, size_t num);
145
146 // bn_fits_in_words returns one if |bn| may be represented in |num| words, plus
147 // a sign bit, and zero otherwise.
148 int bn_fits_in_words(const BIGNUM *bn, size_t num);
149
150 // bn_copy_words copies the value of |bn| to |out| and returns one if the value
151 // is representable in |num| words. Otherwise, it returns zero.
152 int bn_copy_words(BN_ULONG *out, size_t num, const BIGNUM *bn);
153
154 // bn_assert_fits_in_bytes asserts that |bn| fits in |num| bytes. This is a
155 // no-op in release builds, but triggers an assert in debug builds, and
156 // declassifies all bytes which are therefore known to be zero in constant-time
157 // validation.
158 void bn_assert_fits_in_bytes(const BIGNUM *bn, size_t num);
159
160 // bn_secret marks |bn|'s contents, but not its width or sign, as secret. See
161 // |CONSTTIME_SECRET| for details.
bn_secret(BIGNUM * bn)162 inline void bn_secret(BIGNUM *bn) {
163 CONSTTIME_SECRET(bn->d, bn->width * sizeof(BN_ULONG));
164 }
165
166 // bn_declassify marks |bn|'s value as public. See |CONSTTIME_DECLASSIFY| for
167 // details.
bn_declassify(BIGNUM * bn)168 inline void bn_declassify(BIGNUM *bn) {
169 CONSTTIME_DECLASSIFY(bn->d, bn->width * sizeof(BN_ULONG));
170 }
171
172 // bn_mul_add_words multiples |ap| by |w|, adds the result to |rp|, and places
173 // the result in |rp|. |ap| and |rp| must both be |num| words long. It returns
174 // the carry word of the operation. |ap| and |rp| may be equal but otherwise may
175 // not alias.
176 BN_ULONG bn_mul_add_words(BN_ULONG *rp, const BN_ULONG *ap, size_t num,
177 BN_ULONG w);
178
179 // bn_mul_words multiples |ap| by |w| and places the result in |rp|. |ap| and
180 // |rp| must both be |num| words long. It returns the carry word of the
181 // operation. |ap| and |rp| may be equal but otherwise may not alias.
182 BN_ULONG bn_mul_words(BN_ULONG *rp, const BN_ULONG *ap, size_t num, BN_ULONG w);
183
184 // bn_sqr_add_words computes |tmp| where |tmp[2*i]| and |tmp[2*i+1]| are
185 // |ap[i]|'s square, for all |i| up to |num|, and adds the result to |rp|. If
186 // the result does not fit in |2*num| words, the final carry bit is truncated.
187 // |ap| is an array of |num| words and |rp| an array of |2*num| words. |ap| and
188 // |rp| may not alias.
189 //
190 // This gives the contribution of the |ap[i]*ap[i]| terms when squaring |ap|.
191 void bn_sqr_add_words(BN_ULONG *rp, const BN_ULONG *ap, size_t num);
192
193 // bn_add_words adds |ap| to |bp| and places the result in |rp|, each of which
194 // are |num| words long. It returns the carry bit, which is one if the operation
195 // overflowed and zero otherwise. Any pair of |ap|, |bp|, and |rp| may be equal
196 // to each other but otherwise may not alias.
197 BN_ULONG bn_add_words(BN_ULONG *rp, const BN_ULONG *ap, const BN_ULONG *bp,
198 size_t num);
199
200 // bn_sub_words subtracts |bp| from |ap| and places the result in |rp|. It
201 // returns the borrow bit, which is one if the computation underflowed and zero
202 // otherwise. Any pair of |ap|, |bp|, and |rp| may be equal to each other but
203 // otherwise may not alias.
204 BN_ULONG bn_sub_words(BN_ULONG *rp, const BN_ULONG *ap, const BN_ULONG *bp,
205 size_t num);
206
207 // bn_mul_comba4 sets |r| to the product of |a| and |b|.
208 void bn_mul_comba4(BN_ULONG r[8], const BN_ULONG a[4], const BN_ULONG b[4]);
209
210 // bn_mul_comba8 sets |r| to the product of |a| and |b|.
211 void bn_mul_comba8(BN_ULONG r[16], const BN_ULONG a[8], const BN_ULONG b[8]);
212
213 // bn_sqr_comba8 sets |r| to |a|^2.
214 void bn_sqr_comba8(BN_ULONG r[16], const BN_ULONG a[8]);
215
216 // bn_sqr_comba4 sets |r| to |a|^2.
217 void bn_sqr_comba4(BN_ULONG r[8], const BN_ULONG a[4]);
218
219 // bn_less_than_words returns one if |a| < |b| and zero otherwise, where |a|
220 // and |b| both are |len| words long. It runs in constant time.
221 int bn_less_than_words(const BN_ULONG *a, const BN_ULONG *b, size_t len);
222
223 // bn_in_range_words returns one if |min_inclusive| <= |a| < |max_exclusive|,
224 // where |a| and |max_exclusive| both are |len| words long. |a| and
225 // |max_exclusive| are treated as secret.
226 int bn_in_range_words(const BN_ULONG *a, BN_ULONG min_inclusive,
227 const BN_ULONG *max_exclusive, size_t len);
228
229 // bn_rand_range_words sets |out| to a uniformly distributed random number from
230 // |min_inclusive| to |max_exclusive|. Both |out| and |max_exclusive| are |len|
231 // words long.
232 //
233 // This function runs in time independent of the result, but |min_inclusive| and
234 // |max_exclusive| are public data. (Information about the range is unavoidably
235 // leaked by how many iterations it took to select a number.)
236 int bn_rand_range_words(BN_ULONG *out, BN_ULONG min_inclusive,
237 const BN_ULONG *max_exclusive, size_t len,
238 const uint8_t additional_data[32]);
239
240 // bn_range_secret_range behaves like |BN_rand_range_ex|, but treats
241 // |max_exclusive| as secret. Because of this constraint, the distribution of
242 // values returned is more complex.
243 //
244 // Rather than repeatedly generating values until one is in range, which would
245 // leak information, it generates one value. If the value is in range, it sets
246 // |*out_is_uniform| to one. Otherwise, it sets |*out_is_uniform| to zero,
247 // fixing up the value to force it in range.
248 //
249 // The subset of calls to |bn_rand_secret_range| which set |*out_is_uniform| to
250 // one are uniformly distributed in the target range. Calls overall are not.
251 // This function is intended for use in situations where the extra values are
252 // still usable and where the number of iterations needed to reach the target
253 // number of uniform outputs may be blinded for negligible probabilities of
254 // timing leaks.
255 //
256 // Although this function treats |max_exclusive| as secret, it treats the number
257 // of bits in |max_exclusive| as public.
258 int bn_rand_secret_range(BIGNUM *r, int *out_is_uniform, BN_ULONG min_inclusive,
259 const BIGNUM *max_exclusive);
260
261 // BN_MONTGOMERY_MAX_WORDS is the maximum number of words allowed in a |BIGNUM|
262 // used with Montgomery reduction. Ideally this limit would be applied to all
263 // |BIGNUM|s, in |bn_wexpand|, but the exactfloat library needs to create 8 MiB
264 // values for other operations.
265 //
266 // This limit is set so that one number fits within 1 KiB, giving room to
267 // allocate a few of them on the stack in |bn_mul_mont_words| without exceeding
268 // a page (4 KiB). It is also set to limit the DoS impact of large RSA, DH, and
269 // DSA keys, which scale cubically.
270 #define BN_MONTGOMERY_MAX_WORDS (8192 / BN_BITS2)
271
272 struct bn_mont_ctx_st {
273 // RR is R^2, reduced modulo |N|. It is used to convert to Montgomery form. It
274 // is guaranteed to have the same width as |N|.
275 BIGNUM RR;
276 // N is the modulus. It is always stored in minimal form, so |N.width|
277 // determines R.
278 BIGNUM N;
279 BN_ULONG n0[BN_MONT_CTX_N0_LIMBS]; // least significant words of (R*Ri-1)/N
280 };
281
282 #if !defined(OPENSSL_NO_ASM) && \
283 (defined(OPENSSL_X86) || defined(OPENSSL_X86_64) || \
284 defined(OPENSSL_ARM) || defined(OPENSSL_AARCH64))
285 #define OPENSSL_BN_ASM_MONT
286 // bn_mul_mont_words writes |ap| * |bp| mod |np| to |rp|, each |num| words
287 // long. Inputs and outputs are in Montgomery form. |n0| is a pointer to the
288 // corresponding field in |BN_MONT_CTX|.
289 //
290 // If at least one of |ap| or |bp| is fully reduced, |rp| will be fully reduced.
291 // If neither is fully-reduced, the output may not be either.
292 //
293 // This function allocates up to 2 * |num| words (plus a constant allocation) on
294 // the stack, so |num| should be at most |BN_MONTGOMERY_MAX_WORDS|.
295 // Additionally, |num| must be at least 128 / |BN_BITS2|.
296 //
297 // TODO(davidben): The x86_64 implementation expects a 32-bit input and masks
298 // off upper bits. The aarch64 implementation expects a 64-bit input and does
299 // not. |size_t| is the safer option but not strictly correct for x86_64. But
300 // the |BN_MONTGOMERY_MAX_WORDS| bound makes this moot.
301 //
302 // See also discussion in |ToWord| in abi_test.h for notes on smaller-than-word
303 // inputs.
304 void bn_mul_mont_words(BN_ULONG *rp, const BN_ULONG *ap, const BN_ULONG *bp,
305 const BN_ULONG *np,
306 const BN_ULONG n0[BN_MONT_CTX_N0_LIMBS], size_t num);
307
308 #if defined(OPENSSL_X86_64)
bn_mulx_adx_capable(void)309 inline int bn_mulx_adx_capable(void) {
310 // MULX is in BMI2.
311 return CRYPTO_is_BMI2_capable() && CRYPTO_is_ADX_capable();
312 }
313 void bn_mul_mont_nohw(BN_ULONG *rp, const BN_ULONG *ap, const BN_ULONG *bp,
314 const BN_ULONG *np,
315 const BN_ULONG n0[BN_MONT_CTX_N0_LIMBS], size_t num);
bn_mul4x_mont_capable(size_t num)316 inline int bn_mul4x_mont_capable(size_t num) {
317 return num >= 8 && (num & 3) == 0;
318 }
319 void bn_mul4x_mont(BN_ULONG *rp, const BN_ULONG *ap, const BN_ULONG *bp,
320 const BN_ULONG *np, const BN_ULONG n0[BN_MONT_CTX_N0_LIMBS],
321 size_t num);
bn_mulx4x_mont_capable(size_t num)322 inline int bn_mulx4x_mont_capable(size_t num) {
323 return bn_mul4x_mont_capable(num) && bn_mulx_adx_capable();
324 }
325 void bn_mulx4x_mont(BN_ULONG *rp, const BN_ULONG *ap, const BN_ULONG *bp,
326 const BN_ULONG *np, const BN_ULONG n0[BN_MONT_CTX_N0_LIMBS],
327 size_t num);
bn_sqr8x_mont_capable(size_t num)328 inline int bn_sqr8x_mont_capable(size_t num) {
329 return num >= 8 && (num & 7) == 0;
330 }
331 void bn_sqr8x_mont(BN_ULONG *rp, const BN_ULONG *ap, BN_ULONG mulx_adx_capable,
332 const BN_ULONG *np, const BN_ULONG n0[BN_MONT_CTX_N0_LIMBS],
333 size_t num);
334 #elif defined(OPENSSL_ARM)
bn_mul8x_mont_neon_capable(size_t num)335 inline int bn_mul8x_mont_neon_capable(size_t num) {
336 return (num & 7) == 0 && CRYPTO_is_NEON_capable();
337 }
338 void bn_mul8x_mont_neon(BN_ULONG *rp, const BN_ULONG *ap, const BN_ULONG *bp,
339 const BN_ULONG *np,
340 const BN_ULONG n0[BN_MONT_CTX_N0_LIMBS], size_t num);
341 void bn_mul_mont_nohw(BN_ULONG *rp, const BN_ULONG *ap, const BN_ULONG *bp,
342 const BN_ULONG *np,
343 const BN_ULONG n0[BN_MONT_CTX_N0_LIMBS], size_t num);
344 #endif
345
346 #endif // OPENSSL_BN_ASM_MONT
347
348 #if !defined(OPENSSL_NO_ASM) && defined(OPENSSL_X86_64)
349 #define OPENSSL_BN_ASM_MONT5
350
351 // The following functions implement |bn_mul_mont_gather5|. See
352 // |bn_mul_mont_gather5| for details.
bn_mul4x_mont_gather5_capable(int num)353 inline int bn_mul4x_mont_gather5_capable(int num) { return (num & 7) == 0; }
354 void bn_mul4x_mont_gather5(BN_ULONG *rp, const BN_ULONG *ap,
355 const BN_ULONG *table, const BN_ULONG *np,
356 const BN_ULONG n0[BN_MONT_CTX_N0_LIMBS], int num,
357 int power);
358
bn_mulx4x_mont_gather5_capable(int num)359 inline int bn_mulx4x_mont_gather5_capable(int num) {
360 return bn_mul4x_mont_gather5_capable(num) && CRYPTO_is_ADX_capable() &&
361 CRYPTO_is_BMI1_capable() && CRYPTO_is_BMI2_capable();
362 }
363 void bn_mulx4x_mont_gather5(BN_ULONG *rp, const BN_ULONG *ap,
364 const BN_ULONG *table, const BN_ULONG *np,
365 const BN_ULONG n0[BN_MONT_CTX_N0_LIMBS], int num,
366 int power);
367
368 void bn_mul_mont_gather5_nohw(BN_ULONG *rp, const BN_ULONG *ap,
369 const BN_ULONG *table, const BN_ULONG *np,
370 const BN_ULONG n0[BN_MONT_CTX_N0_LIMBS], int num,
371 int power);
372
373 // bn_scatter5 stores |inp| to index |power| of |table|. |inp| and each entry of
374 // |table| are |num| words long. |power| must be less than 32 and is treated as
375 // public. |table| must be 32*|num| words long. |table| must be aligned to at
376 // least 16 bytes.
377 void bn_scatter5(const BN_ULONG *inp, size_t num, BN_ULONG *table,
378 size_t power);
379
380 // bn_gather5 loads index |power| of |table| and stores it in |out|. |out| and
381 // each entry of |table| are |num| words long. |power| must be less than 32 and
382 // is treated as secret. |table| must be aligned to at least 16 bytes.
383 void bn_gather5(BN_ULONG *out, size_t num, const BN_ULONG *table, size_t power);
384
385 // The following functions implement |bn_power5|. See |bn_power5| for details.
386 void bn_power5_nohw(BN_ULONG *rp, const BN_ULONG *ap, const BN_ULONG *table,
387 const BN_ULONG *np, const BN_ULONG n0[BN_MONT_CTX_N0_LIMBS],
388 int num, int power);
389
bn_power5_capable(int num)390 inline int bn_power5_capable(int num) { return (num & 7) == 0; }
391
bn_powerx5_capable(int num)392 inline int bn_powerx5_capable(int num) {
393 return bn_power5_capable(num) && CRYPTO_is_ADX_capable() &&
394 CRYPTO_is_BMI1_capable() && CRYPTO_is_BMI2_capable();
395 }
396 void bn_powerx5(BN_ULONG *rp, const BN_ULONG *ap, const BN_ULONG *table,
397 const BN_ULONG *np, const BN_ULONG n0[BN_MONT_CTX_N0_LIMBS],
398 int num, int power);
399
400 #endif // !OPENSSL_NO_ASM && OPENSSL_X86_64
401
402 uint64_t bn_mont_n0(const BIGNUM *n);
403
404 // bn_mont_ctx_set_RR_consttime initializes |mont->RR|. It returns one on
405 // success and zero on error. |mont->N| and |mont->n0| must have been
406 // initialized already. The bit width of |mont->N| is assumed public, but
407 // |mont->N| is otherwise treated as secret.
408 int bn_mont_ctx_set_RR_consttime(BN_MONT_CTX *mont, BN_CTX *ctx);
409
410 #if defined(_MSC_VER)
411 #if defined(OPENSSL_X86_64)
412 #define BN_UMULT_LOHI(low, high, a, b) ((low) = _umul128((a), (b), &(high)))
413 #elif defined(OPENSSL_AARCH64)
414 #define BN_UMULT_LOHI(low, high, a, b) \
415 do { \
416 const BN_ULONG _a = (a); \
417 const BN_ULONG _b = (b); \
418 (low) = _a * _b; \
419 (high) = __umulh(_a, _b); \
420 } while (0)
421 #endif
422 #endif // _MSC_VER
423
424 #if !defined(BN_ULLONG) && !defined(BN_UMULT_LOHI)
425 #error "Either BN_ULLONG or BN_UMULT_LOHI must be defined on every platform."
426 #endif
427
428 // bn_jacobi returns the Jacobi symbol of |a| and |b| (which is -1, 0 or 1), or
429 // -2 on error.
430 int bn_jacobi(const BIGNUM *a, const BIGNUM *b, BN_CTX *ctx);
431
432 // bn_is_bit_set_words returns one if bit |bit| is set in |a| and zero
433 // otherwise.
434 int bn_is_bit_set_words(const BN_ULONG *a, size_t num, size_t bit);
435
436 // bn_one_to_montgomery sets |r| to one in Montgomery form. It returns one on
437 // success and zero on error. This function treats the bit width of the modulus
438 // as public.
439 int bn_one_to_montgomery(BIGNUM *r, const BN_MONT_CTX *mont, BN_CTX *ctx);
440
441 // bn_less_than_montgomery_R returns one if |bn| is less than the Montgomery R
442 // value for |mont| and zero otherwise.
443 int bn_less_than_montgomery_R(const BIGNUM *bn, const BN_MONT_CTX *mont);
444
445 // bn_mod_u16_consttime returns |bn| mod |d|, ignoring |bn|'s sign bit. It runs
446 // in time independent of the value of |bn|, but it treats |d| as public.
447 OPENSSL_EXPORT uint16_t bn_mod_u16_consttime(const BIGNUM *bn, uint16_t d);
448
449 // bn_odd_number_is_obviously_composite returns one if |bn| is divisible by one
450 // of the first several odd primes and zero otherwise.
451 int bn_odd_number_is_obviously_composite(const BIGNUM *bn);
452
453 // A BN_MILLER_RABIN stores state common to each Miller-Rabin iteration. It is
454 // initialized within an existing |BN_CTX| scope and may not be used after
455 // that scope is released with |BN_CTX_end|. Field names match those in FIPS
456 // 186-4, section C.3.1.
457 typedef struct {
458 // w1 is w-1.
459 BIGNUM *w1;
460 // m is (w-1)/2^a.
461 BIGNUM *m;
462 // one_mont is 1 (mod w) in Montgomery form.
463 BIGNUM *one_mont;
464 // w1_mont is w-1 (mod w) in Montgomery form.
465 BIGNUM *w1_mont;
466 // w_bits is BN_num_bits(w).
467 int w_bits;
468 // a is the largest integer such that 2^a divides w-1.
469 int a;
470 } BN_MILLER_RABIN;
471
472 // bn_miller_rabin_init initializes |miller_rabin| for testing if |mont->N| is
473 // prime. It returns one on success and zero on error.
474 OPENSSL_EXPORT int bn_miller_rabin_init(BN_MILLER_RABIN *miller_rabin,
475 const BN_MONT_CTX *mont, BN_CTX *ctx);
476
477 // bn_miller_rabin_iteration performs one Miller-Rabin iteration, checking if
478 // |b| is a composite witness for |mont->N|. |miller_rabin| must have been
479 // initialized with |bn_miller_rabin_setup|. On success, it returns one and sets
480 // |*out_is_possibly_prime| to one if |mont->N| may still be prime or zero if
481 // |b| shows it is composite. On allocation or internal failure, it returns
482 // zero.
483 OPENSSL_EXPORT int bn_miller_rabin_iteration(
484 const BN_MILLER_RABIN *miller_rabin, int *out_is_possibly_prime,
485 const BIGNUM *b, const BN_MONT_CTX *mont, BN_CTX *ctx);
486
487 // bn_rshift1_words sets |r| to |a| >> 1, where both arrays are |num| bits wide.
488 void bn_rshift1_words(BN_ULONG *r, const BN_ULONG *a, size_t num);
489
490 // bn_rshift_words sets |r| to |a| >> |shift|, where both arrays are |num| bits
491 // wide.
492 void bn_rshift_words(BN_ULONG *r, const BN_ULONG *a, unsigned shift,
493 size_t num);
494
495 // bn_rshift_secret_shift behaves like |BN_rshift| but runs in time independent
496 // of both |a| and |n|.
497 OPENSSL_EXPORT int bn_rshift_secret_shift(BIGNUM *r, const BIGNUM *a,
498 unsigned n, BN_CTX *ctx);
499
500 // bn_reduce_once sets |r| to |a| mod |m| where 0 <= |a| < 2*|m|. It returns
501 // zero if |a| < |m| and a mask of all ones if |a| >= |m|. Each array is |num|
502 // words long, but |a| has an additional word specified by |carry|. |carry| must
503 // be zero or one, as implied by the bounds on |a|.
504 //
505 // |r|, |a|, and |m| may not alias. Use |bn_reduce_once_in_place| if |r| and |a|
506 // must alias.
507 BN_ULONG bn_reduce_once(BN_ULONG *r, const BN_ULONG *a, BN_ULONG carry,
508 const BN_ULONG *m, size_t num);
509
510 // bn_reduce_once_in_place behaves like |bn_reduce_once| but acts in-place on
511 // |r|, using |tmp| as scratch space. |r|, |tmp|, and |m| may not alias.
512 BN_ULONG bn_reduce_once_in_place(BN_ULONG *r, BN_ULONG carry, const BN_ULONG *m,
513 BN_ULONG *tmp, size_t num);
514
515
516 // Constant-time non-modular arithmetic.
517 //
518 // The following functions implement non-modular arithmetic in constant-time
519 // and pessimally set |r->width| to the largest possible word size.
520 //
521 // Note this means that, e.g., repeatedly multiplying by one will cause widths
522 // to increase without bound. The corresponding public API functions minimize
523 // their outputs to avoid regressing calculator consumers.
524
525 // bn_uadd_consttime behaves like |BN_uadd|, but it pessimally sets
526 // |r->width| = |a->width| + |b->width| + 1.
527 int bn_uadd_consttime(BIGNUM *r, const BIGNUM *a, const BIGNUM *b);
528
529 // bn_usub_consttime behaves like |BN_usub|, but it pessimally sets
530 // |r->width| = |a->width|.
531 int bn_usub_consttime(BIGNUM *r, const BIGNUM *a, const BIGNUM *b);
532
533 // bn_abs_sub_consttime sets |r| to the absolute value of |a| - |b|, treating
534 // both inputs as secret. It returns one on success and zero on error.
535 OPENSSL_EXPORT int bn_abs_sub_consttime(BIGNUM *r, const BIGNUM *a,
536 const BIGNUM *b, BN_CTX *ctx);
537
538 // bn_mul_consttime behaves like |BN_mul|, but it rejects negative inputs and
539 // pessimally sets |r->width| to |a->width| + |b->width|, to avoid leaking
540 // information about |a| and |b|.
541 int bn_mul_consttime(BIGNUM *r, const BIGNUM *a, const BIGNUM *b, BN_CTX *ctx);
542
543 // bn_sqrt_consttime behaves like |BN_sqrt|, but it pessimally sets |r->width|
544 // to 2*|a->width|, to avoid leaking information about |a| and |b|.
545 int bn_sqr_consttime(BIGNUM *r, const BIGNUM *a, BN_CTX *ctx);
546
547 // bn_div_consttime behaves like |BN_div|, but it rejects negative inputs and
548 // treats both inputs, including their magnitudes, as secret. It is, as a
549 // result, much slower than |BN_div| and should only be used for rare operations
550 // where Montgomery reduction is not available. |divisor_min_bits| is a
551 // public lower bound for |BN_num_bits(divisor)|. When |divisor|'s bit width is
552 // public, this can speed up the operation.
553 //
554 // Note that |quotient->width| will be set pessimally to |numerator->width|.
555 OPENSSL_EXPORT int bn_div_consttime(BIGNUM *quotient, BIGNUM *remainder,
556 const BIGNUM *numerator,
557 const BIGNUM *divisor,
558 unsigned divisor_min_bits, BN_CTX *ctx);
559
560 // bn_is_relatively_prime checks whether GCD(|x|, |y|) is one. On success, it
561 // returns one and sets |*out_relatively_prime| to one if the GCD was one and
562 // zero otherwise. On error, it returns zero.
563 OPENSSL_EXPORT int bn_is_relatively_prime(int *out_relatively_prime,
564 const BIGNUM *x, const BIGNUM *y,
565 BN_CTX *ctx);
566
567 // bn_lcm_consttime sets |r| to LCM(|a|, |b|). It returns one and success and
568 // zero on error. |a| and |b| are both treated as secret.
569 OPENSSL_EXPORT int bn_lcm_consttime(BIGNUM *r, const BIGNUM *a, const BIGNUM *b,
570 BN_CTX *ctx);
571
572 // bn_mont_ctx_init zero-initialies |mont|.
573 void bn_mont_ctx_init(BN_MONT_CTX *mont);
574
575 // bn_mont_ctx_cleanup releases memory associated with |mont|, without freeing
576 // |mont| itself.
577 void bn_mont_ctx_cleanup(BN_MONT_CTX *mont);
578
579
580 // Constant-time modular arithmetic.
581 //
582 // The following functions implement basic constant-time modular arithmetic.
583
584 // bn_mod_add_words sets |r| to |a| + |b| (mod |m|), using |tmp| as scratch
585 // space. Each array is |num| words long. |a| and |b| must be < |m|. Any pair of
586 // |r|, |a|, and |b| may alias.
587 void bn_mod_add_words(BN_ULONG *r, const BN_ULONG *a, const BN_ULONG *b,
588 const BN_ULONG *m, BN_ULONG *tmp, size_t num);
589
590 // bn_mod_add_consttime acts like |BN_mod_add_quick| but takes a |BN_CTX|.
591 int bn_mod_add_consttime(BIGNUM *r, const BIGNUM *a, const BIGNUM *b,
592 const BIGNUM *m, BN_CTX *ctx);
593
594 // bn_mod_sub_words sets |r| to |a| - |b| (mod |m|), using |tmp| as scratch
595 // space. Each array is |num| words long. |a| and |b| must be < |m|. Any pair of
596 // |r|, |a|, and |b| may alias.
597 void bn_mod_sub_words(BN_ULONG *r, const BN_ULONG *a, const BN_ULONG *b,
598 const BN_ULONG *m, BN_ULONG *tmp, size_t num);
599
600 // bn_mod_sub_consttime acts like |BN_mod_sub_quick| but takes a |BN_CTX|.
601 int bn_mod_sub_consttime(BIGNUM *r, const BIGNUM *a, const BIGNUM *b,
602 const BIGNUM *m, BN_CTX *ctx);
603
604 // bn_mod_lshift1_consttime acts like |BN_mod_lshift1_quick| but takes a
605 // |BN_CTX|.
606 int bn_mod_lshift1_consttime(BIGNUM *r, const BIGNUM *a, const BIGNUM *m,
607 BN_CTX *ctx);
608
609 // bn_mod_lshift_consttime acts like |BN_mod_lshift_quick| but takes a |BN_CTX|.
610 int bn_mod_lshift_consttime(BIGNUM *r, const BIGNUM *a, int n, const BIGNUM *m,
611 BN_CTX *ctx);
612
613 // bn_mod_inverse_consttime sets |r| to |a|^-1, mod |n|. |a| must be non-
614 // negative and less than |n|. It returns one on success and zero on error. On
615 // failure, if the failure was caused by |a| having no inverse mod |n| then
616 // |*out_no_inverse| will be set to one; otherwise it will be set to zero.
617 //
618 // This function treats both |a| and |n| as secret, provided they are both non-
619 // zero and the inverse exists. It should only be used for even moduli where
620 // none of the less general implementations are applicable.
621 OPENSSL_EXPORT int bn_mod_inverse_consttime(BIGNUM *r, int *out_no_inverse,
622 const BIGNUM *a, const BIGNUM *n,
623 BN_CTX *ctx);
624
625 // bn_mod_inverse_prime sets |out| to the modular inverse of |a| modulo |p|,
626 // computed with Fermat's Little Theorem. It returns one on success and zero on
627 // error. If |mont_p| is NULL, one will be computed temporarily.
628 int bn_mod_inverse_prime(BIGNUM *out, const BIGNUM *a, const BIGNUM *p,
629 BN_CTX *ctx, const BN_MONT_CTX *mont_p);
630
631 // bn_mod_inverse_secret_prime behaves like |bn_mod_inverse_prime| but uses
632 // |BN_mod_exp_mont_consttime| instead of |BN_mod_exp_mont| in hopes of
633 // protecting the exponent.
634 int bn_mod_inverse_secret_prime(BIGNUM *out, const BIGNUM *a, const BIGNUM *p,
635 BN_CTX *ctx, const BN_MONT_CTX *mont_p);
636
637 // BN_MONT_CTX_set_locked takes |lock| and checks whether |*pmont| is NULL. If
638 // so, it creates a new |BN_MONT_CTX| and sets the modulus for it to |mod|. It
639 // then stores it as |*pmont|. It returns one on success and zero on error. Note
640 // this function assumes |mod| is public.
641 //
642 // If |*pmont| is already non-NULL then it does nothing and returns one.
643 int BN_MONT_CTX_set_locked(BN_MONT_CTX **pmont, CRYPTO_MUTEX *lock,
644 const BIGNUM *mod, BN_CTX *bn_ctx);
645
646
647 // Low-level operations for small numbers.
648 //
649 // The following functions implement algorithms suitable for use with scalars
650 // and field elements in elliptic curves. They rely on the number being small
651 // both to stack-allocate various temporaries and because they do not implement
652 // optimizations useful for the larger values used in RSA.
653
654 // BN_SMALL_MAX_WORDS is the largest size input these functions handle. This
655 // limit allows temporaries to be more easily stack-allocated. This limit is set
656 // to accommodate P-521.
657 #if defined(OPENSSL_32_BIT)
658 #define BN_SMALL_MAX_WORDS 17
659 #else
660 #define BN_SMALL_MAX_WORDS 9
661 #endif
662
663 // bn_mul_small sets |r| to |a|*|b|. |num_r| must be |num_a| + |num_b|. |r| may
664 // not alias with |a| or |b|.
665 void bn_mul_small(BN_ULONG *r, size_t num_r, const BN_ULONG *a, size_t num_a,
666 const BN_ULONG *b, size_t num_b);
667
668 // bn_sqr_small sets |r| to |a|^2. |num_r| must be |num_a|*2. |r| and |a| may
669 // not alias.
670 void bn_sqr_small(BN_ULONG *r, size_t num_r, const BN_ULONG *a, size_t num_a);
671
672 // In the following functions, the modulus must be at most |BN_SMALL_MAX_WORDS|
673 // words long.
674
675 // bn_to_montgomery_small sets |r| to |a| translated to the Montgomery domain.
676 // |r| and |a| are |num| words long, which must be |mont->N.width|. |a| must be
677 // fully reduced and may alias |r|.
678 void bn_to_montgomery_small(BN_ULONG *r, const BN_ULONG *a, size_t num,
679 const BN_MONT_CTX *mont);
680
681 // bn_from_montgomery_small sets |r| to |a| translated out of the Montgomery
682 // domain. |r| and |a| are |num_r| and |num_a| words long, respectively. |num_r|
683 // must be |mont->N.width|. |a| must be at most |mont->N|^2 and may alias |r|.
684 //
685 // Unlike most of these functions, only |num_r| is bounded by
686 // |BN_SMALL_MAX_WORDS|. |num_a| may exceed it, but must be at most 2 * |num_r|.
687 void bn_from_montgomery_small(BN_ULONG *r, size_t num_r, const BN_ULONG *a,
688 size_t num_a, const BN_MONT_CTX *mont);
689
690 // bn_mod_mul_montgomery_small sets |r| to |a| * |b| mod |mont->N|. Both inputs
691 // and outputs are in the Montgomery domain. Each array is |num| words long,
692 // which must be |mont->N.width|. Any two of |r|, |a|, and |b| may alias. |a|
693 // and |b| must be reduced on input.
694 void bn_mod_mul_montgomery_small(BN_ULONG *r, const BN_ULONG *a,
695 const BN_ULONG *b, size_t num,
696 const BN_MONT_CTX *mont);
697
698 // bn_mod_exp_mont_small sets |r| to |a|^|p| mod |mont->N|. It returns one on
699 // success and zero on programmer or internal error. Both inputs and outputs are
700 // in the Montgomery domain. |r| and |a| are |num| words long, which must be
701 // |mont->N.width| and at most |BN_SMALL_MAX_WORDS|. |num_p|, measured in bits,
702 // must fit in |size_t|. |a| must be fully-reduced. This function runs in time
703 // independent of |a|, but |p| and |mont->N| are public values. |a| must be
704 // fully-reduced and may alias with |r|.
705 //
706 // Note this function differs from |BN_mod_exp_mont| which uses Montgomery
707 // reduction but takes input and output outside the Montgomery domain. Combine
708 // this function with |bn_from_montgomery_small| and |bn_to_montgomery_small|
709 // if necessary.
710 void bn_mod_exp_mont_small(BN_ULONG *r, const BN_ULONG *a, size_t num,
711 const BN_ULONG *p, size_t num_p,
712 const BN_MONT_CTX *mont);
713
714 // bn_mod_inverse0_prime_mont_small sets |r| to |a|^-1 mod |mont->N|. If |a| is
715 // zero, |r| is set to zero. |mont->N| must be a prime. |r| and |a| are |num|
716 // words long, which must be |mont->N.width| and at most |BN_SMALL_MAX_WORDS|.
717 // |a| must be fully-reduced and may alias |r|. This function runs in time
718 // independent of |a|, but |mont->N| is a public value.
719 void bn_mod_inverse0_prime_mont_small(BN_ULONG *r, const BN_ULONG *a,
720 size_t num, const BN_MONT_CTX *mont);
721
722
723 // Word-based byte conversion functions.
724
725 // bn_big_endian_to_words interprets |in_len| bytes from |in| as a big-endian,
726 // unsigned integer and writes the result to |out_len| words in |out|. |out_len|
727 // must be large enough to represent any |in_len|-byte value. That is, |in_len|
728 // must be at most |BN_BYTES * out_len|.
729 void bn_big_endian_to_words(BN_ULONG *out, size_t out_len, const uint8_t *in,
730 size_t in_len);
731
732 // bn_words_to_big_endian represents |in_len| words from |in| as a big-endian,
733 // unsigned integer in |out_len| bytes. It writes the result to |out|. |out_len|
734 // must be large enough to represent |in| without truncation.
735 //
736 // Note |out_len| may be less than |BN_BYTES * in_len| if |in| is known to have
737 // leading zeros.
738 void bn_words_to_big_endian(uint8_t *out, size_t out_len, const BN_ULONG *in,
739 size_t in_len);
740
741
742 #if defined(__cplusplus)
743 } // extern C
744 #endif
745
746 #endif // OPENSSL_HEADER_CRYPTO_FIPSMODULE_BN_INTERNAL_H
747