1// Copyright 2001-2016 The OpenSSL Project Authors. All Rights Reserved. 2// 3// Licensed under the Apache License, Version 2.0 (the "License"); 4// you may not use this file except in compliance with the License. 5// You may obtain a copy of the License at 6// 7// https://www.apache.org/licenses/LICENSE-2.0 8// 9// Unless required by applicable law or agreed to in writing, software 10// distributed under the License is distributed on an "AS IS" BASIS, 11// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. 12// See the License for the specific language governing permissions and 13// limitations under the License. 14 15#include <assert.h> 16#include <limits.h> 17#include <string.h> 18 19#include <openssl/aead.h> 20#include <openssl/aes.h> 21#include <openssl/cipher.h> 22#include <openssl/err.h> 23#include <openssl/mem.h> 24#include <openssl/nid.h> 25 26#include "../../internal.h" 27#include "../aes/internal.h" 28#include "../bcm_interface.h" 29#include "../delocate.h" 30#include "../service_indicator/internal.h" 31#include "internal.h" 32 33 34#define AES_GCM_NONCE_LENGTH 12 35 36typedef struct { 37 union { 38 double align; 39 AES_KEY ks; 40 } ks; 41 block128_f block; 42 union { 43 cbc128_f cbc; 44 ctr128_f ctr; 45 } stream; 46} EVP_AES_KEY; 47 48typedef struct { 49 GCM128_KEY key; 50 GCM128_CONTEXT gcm; 51 int key_set; // Set if key initialised 52 int iv_set; // Set if an iv is set 53 uint8_t *iv; // Temporary IV store 54 int ivlen; // IV length 55 int taglen; 56 int iv_gen; // It is OK to generate IVs 57 ctr128_f ctr; 58} EVP_AES_GCM_CTX; 59 60static int aes_init_key(EVP_CIPHER_CTX *ctx, const uint8_t *key, 61 const uint8_t *iv, int enc) { 62 int ret; 63 EVP_AES_KEY *dat = (EVP_AES_KEY *)ctx->cipher_data; 64 const int mode = ctx->cipher->flags & EVP_CIPH_MODE_MASK; 65 66 if (mode == EVP_CIPH_CTR_MODE) { 67 switch (ctx->key_len) { 68 case 16: 69 boringssl_fips_inc_counter(fips_counter_evp_aes_128_ctr); 70 break; 71 72 case 32: 73 boringssl_fips_inc_counter(fips_counter_evp_aes_256_ctr); 74 break; 75 } 76 } 77 78 if ((mode == EVP_CIPH_ECB_MODE || mode == EVP_CIPH_CBC_MODE) && !enc) { 79 if (hwaes_capable()) { 80 ret = aes_hw_set_decrypt_key(key, ctx->key_len * 8, &dat->ks.ks); 81 dat->block = aes_hw_decrypt; 82 dat->stream.cbc = NULL; 83 if (mode == EVP_CIPH_CBC_MODE) { 84 dat->stream.cbc = aes_hw_cbc_encrypt; 85 } 86 } else if (bsaes_capable() && mode == EVP_CIPH_CBC_MODE) { 87 assert(vpaes_capable()); 88 ret = vpaes_set_decrypt_key(key, ctx->key_len * 8, &dat->ks.ks); 89 if (ret == 0) { 90 vpaes_decrypt_key_to_bsaes(&dat->ks.ks, &dat->ks.ks); 91 } 92 // If |dat->stream.cbc| is provided, |dat->block| is never used. 93 dat->block = NULL; 94 dat->stream.cbc = bsaes_cbc_encrypt; 95 } else if (vpaes_capable()) { 96 ret = vpaes_set_decrypt_key(key, ctx->key_len * 8, &dat->ks.ks); 97 dat->block = vpaes_decrypt; 98 dat->stream.cbc = NULL; 99#if defined(VPAES_CBC) 100 if (mode == EVP_CIPH_CBC_MODE) { 101 dat->stream.cbc = vpaes_cbc_encrypt; 102 } 103#endif 104 } else { 105 ret = aes_nohw_set_decrypt_key(key, ctx->key_len * 8, &dat->ks.ks); 106 dat->block = aes_nohw_decrypt; 107 dat->stream.cbc = NULL; 108 if (mode == EVP_CIPH_CBC_MODE) { 109 dat->stream.cbc = aes_nohw_cbc_encrypt; 110 } 111 } 112 } else if (hwaes_capable()) { 113 ret = aes_hw_set_encrypt_key(key, ctx->key_len * 8, &dat->ks.ks); 114 dat->block = aes_hw_encrypt; 115 dat->stream.cbc = NULL; 116 if (mode == EVP_CIPH_CBC_MODE) { 117 dat->stream.cbc = aes_hw_cbc_encrypt; 118 } else if (mode == EVP_CIPH_CTR_MODE) { 119 dat->stream.ctr = aes_hw_ctr32_encrypt_blocks; 120 } 121 } else if (vpaes_capable()) { 122 ret = vpaes_set_encrypt_key(key, ctx->key_len * 8, &dat->ks.ks); 123 dat->block = vpaes_encrypt; 124 dat->stream.cbc = NULL; 125#if defined(VPAES_CBC) 126 if (mode == EVP_CIPH_CBC_MODE) { 127 dat->stream.cbc = vpaes_cbc_encrypt; 128 } 129#endif 130 if (mode == EVP_CIPH_CTR_MODE) { 131#if defined(BSAES) 132 assert(bsaes_capable()); 133 dat->stream.ctr = vpaes_ctr32_encrypt_blocks_with_bsaes; 134#else 135 dat->stream.ctr = vpaes_ctr32_encrypt_blocks; 136#endif 137 } 138 } else { 139 ret = aes_nohw_set_encrypt_key(key, ctx->key_len * 8, &dat->ks.ks); 140 dat->block = aes_nohw_encrypt; 141 dat->stream.cbc = NULL; 142 if (mode == EVP_CIPH_CBC_MODE) { 143 dat->stream.cbc = aes_nohw_cbc_encrypt; 144 } else if (mode == EVP_CIPH_CTR_MODE) { 145 dat->stream.ctr = aes_nohw_ctr32_encrypt_blocks; 146 } 147 } 148 149 if (ret < 0) { 150 OPENSSL_PUT_ERROR(CIPHER, CIPHER_R_AES_KEY_SETUP_FAILED); 151 return 0; 152 } 153 154 return 1; 155} 156 157static int aes_cbc_cipher(EVP_CIPHER_CTX *ctx, uint8_t *out, const uint8_t *in, 158 size_t len) { 159 EVP_AES_KEY *dat = (EVP_AES_KEY *)ctx->cipher_data; 160 161 if (dat->stream.cbc) { 162 (*dat->stream.cbc)(in, out, len, &dat->ks.ks, ctx->iv, ctx->encrypt); 163 } else if (ctx->encrypt) { 164 CRYPTO_cbc128_encrypt(in, out, len, &dat->ks.ks, ctx->iv, dat->block); 165 } else { 166 CRYPTO_cbc128_decrypt(in, out, len, &dat->ks.ks, ctx->iv, dat->block); 167 } 168 169 return 1; 170} 171 172static int aes_ecb_cipher(EVP_CIPHER_CTX *ctx, uint8_t *out, const uint8_t *in, 173 size_t len) { 174 size_t bl = ctx->cipher->block_size; 175 EVP_AES_KEY *dat = (EVP_AES_KEY *)ctx->cipher_data; 176 177 if (len < bl) { 178 return 1; 179 } 180 181 len -= bl; 182 for (size_t i = 0; i <= len; i += bl) { 183 (*dat->block)(in + i, out + i, &dat->ks.ks); 184 } 185 186 return 1; 187} 188 189static int aes_ctr_cipher(EVP_CIPHER_CTX *ctx, uint8_t *out, const uint8_t *in, 190 size_t len) { 191 EVP_AES_KEY *dat = (EVP_AES_KEY *)ctx->cipher_data; 192 CRYPTO_ctr128_encrypt_ctr32(in, out, len, &dat->ks.ks, ctx->iv, ctx->buf, 193 &ctx->num, dat->stream.ctr); 194 return 1; 195} 196 197static int aes_ofb_cipher(EVP_CIPHER_CTX *ctx, uint8_t *out, const uint8_t *in, 198 size_t len) { 199 EVP_AES_KEY *dat = (EVP_AES_KEY *)ctx->cipher_data; 200 201 CRYPTO_ofb128_encrypt(in, out, len, &dat->ks.ks, ctx->iv, &ctx->num, 202 dat->block); 203 return 1; 204} 205 206static int aes_gcm_init_key(EVP_CIPHER_CTX *ctx, const uint8_t *key, 207 const uint8_t *iv, int enc) { 208 EVP_AES_GCM_CTX *gctx = reinterpret_cast<EVP_AES_GCM_CTX *>(ctx->cipher_data); 209 if (!iv && !key) { 210 return 1; 211 } 212 213 // We must configure first the key, then the IV, but the caller may pass both 214 // together, or separately in either order. 215 if (key) { 216 OPENSSL_memset(&gctx->gcm, 0, sizeof(gctx->gcm)); 217 CRYPTO_gcm128_init_aes_key(&gctx->key, key, ctx->key_len); 218 // Use the IV if specified. Otherwise, use the saved IV, if any. 219 if (iv == NULL && gctx->iv_set) { 220 iv = gctx->iv; 221 } 222 if (iv) { 223 CRYPTO_gcm128_init_ctx(&gctx->key, &gctx->gcm, iv, gctx->ivlen); 224 gctx->iv_set = 1; 225 } 226 gctx->key_set = 1; 227 } else { 228 if (gctx->key_set) { 229 CRYPTO_gcm128_init_ctx(&gctx->key, &gctx->gcm, iv, gctx->ivlen); 230 } else { 231 // The caller specified the IV before the key. Save the IV for later. 232 OPENSSL_memcpy(gctx->iv, iv, gctx->ivlen); 233 } 234 gctx->iv_set = 1; 235 gctx->iv_gen = 0; 236 } 237 return 1; 238} 239 240static void aes_gcm_cleanup(EVP_CIPHER_CTX *c) { 241 EVP_AES_GCM_CTX *gctx = reinterpret_cast<EVP_AES_GCM_CTX *>(c->cipher_data); 242 OPENSSL_cleanse(&gctx->key, sizeof(gctx->key)); 243 OPENSSL_cleanse(&gctx->gcm, sizeof(gctx->gcm)); 244 if (gctx->iv != c->iv) { 245 OPENSSL_free(gctx->iv); 246 } 247} 248 249static int aes_gcm_ctrl(EVP_CIPHER_CTX *c, int type, int arg, void *ptr) { 250 EVP_AES_GCM_CTX *gctx = reinterpret_cast<EVP_AES_GCM_CTX *>(c->cipher_data); 251 switch (type) { 252 case EVP_CTRL_INIT: 253 gctx->key_set = 0; 254 gctx->iv_set = 0; 255 gctx->ivlen = c->cipher->iv_len; 256 gctx->iv = c->iv; 257 gctx->taglen = -1; 258 gctx->iv_gen = 0; 259 return 1; 260 261 case EVP_CTRL_AEAD_SET_IVLEN: 262 if (arg <= 0) { 263 return 0; 264 } 265 266 // Allocate memory for IV if needed 267 if (arg > EVP_MAX_IV_LENGTH && arg > gctx->ivlen) { 268 if (gctx->iv != c->iv) { 269 OPENSSL_free(gctx->iv); 270 } 271 gctx->iv = reinterpret_cast<uint8_t *>(OPENSSL_malloc(arg)); 272 if (!gctx->iv) { 273 return 0; 274 } 275 } 276 gctx->ivlen = arg; 277 return 1; 278 279 case EVP_CTRL_GET_IVLEN: 280 *(int *)ptr = gctx->ivlen; 281 return 1; 282 283 case EVP_CTRL_AEAD_SET_TAG: 284 if (arg <= 0 || arg > 16 || c->encrypt) { 285 return 0; 286 } 287 OPENSSL_memcpy(c->buf, ptr, arg); 288 gctx->taglen = arg; 289 return 1; 290 291 case EVP_CTRL_AEAD_GET_TAG: 292 if (arg <= 0 || arg > 16 || !c->encrypt || gctx->taglen < 0) { 293 return 0; 294 } 295 OPENSSL_memcpy(ptr, c->buf, arg); 296 return 1; 297 298 case EVP_CTRL_AEAD_SET_IV_FIXED: 299 // Special case: -1 length restores whole IV 300 if (arg == -1) { 301 OPENSSL_memcpy(gctx->iv, ptr, gctx->ivlen); 302 gctx->iv_gen = 1; 303 return 1; 304 } 305 // Fixed field must be at least 4 bytes and invocation field 306 // at least 8. 307 if (arg < 4 || (gctx->ivlen - arg) < 8) { 308 return 0; 309 } 310 OPENSSL_memcpy(gctx->iv, ptr, arg); 311 if (c->encrypt) { 312 // |BCM_rand_bytes| calls within the fipsmodule should be wrapped with 313 // state lock functions to avoid updating the service indicator with the 314 // DRBG functions. 315 FIPS_service_indicator_lock_state(); 316 BCM_rand_bytes(gctx->iv + arg, gctx->ivlen - arg); 317 FIPS_service_indicator_unlock_state(); 318 } 319 gctx->iv_gen = 1; 320 return 1; 321 322 case EVP_CTRL_GCM_IV_GEN: { 323 if (gctx->iv_gen == 0 || gctx->key_set == 0) { 324 return 0; 325 } 326 CRYPTO_gcm128_init_ctx(&gctx->key, &gctx->gcm, gctx->iv, gctx->ivlen); 327 if (arg <= 0 || arg > gctx->ivlen) { 328 arg = gctx->ivlen; 329 } 330 OPENSSL_memcpy(ptr, gctx->iv + gctx->ivlen - arg, arg); 331 // Invocation field will be at least 8 bytes in size, so no need to check 332 // wrap around or increment more than last 8 bytes. 333 uint8_t *ctr = gctx->iv + gctx->ivlen - 8; 334 CRYPTO_store_u64_be(ctr, CRYPTO_load_u64_be(ctr) + 1); 335 gctx->iv_set = 1; 336 return 1; 337 } 338 339 case EVP_CTRL_GCM_SET_IV_INV: 340 if (gctx->iv_gen == 0 || gctx->key_set == 0 || c->encrypt) { 341 return 0; 342 } 343 OPENSSL_memcpy(gctx->iv + gctx->ivlen - arg, ptr, arg); 344 CRYPTO_gcm128_init_ctx(&gctx->key, &gctx->gcm, gctx->iv, gctx->ivlen); 345 gctx->iv_set = 1; 346 return 1; 347 348 case EVP_CTRL_COPY: { 349 EVP_CIPHER_CTX *out = reinterpret_cast<EVP_CIPHER_CTX *>(ptr); 350 EVP_AES_GCM_CTX *gctx_out = 351 reinterpret_cast<EVP_AES_GCM_CTX *>(out->cipher_data); 352 if (gctx->iv == c->iv) { 353 gctx_out->iv = out->iv; 354 } else { 355 gctx_out->iv = 356 reinterpret_cast<uint8_t *>(OPENSSL_memdup(gctx->iv, gctx->ivlen)); 357 if (!gctx_out->iv) { 358 return 0; 359 } 360 } 361 return 1; 362 } 363 364 default: 365 return -1; 366 } 367} 368 369static int aes_gcm_cipher(EVP_CIPHER_CTX *ctx, uint8_t *out, const uint8_t *in, 370 size_t len) { 371 EVP_AES_GCM_CTX *gctx = reinterpret_cast<EVP_AES_GCM_CTX *>(ctx->cipher_data); 372 373 // If not set up, return error 374 if (!gctx->key_set) { 375 return -1; 376 } 377 if (!gctx->iv_set) { 378 return -1; 379 } 380 381 if (len > INT_MAX) { 382 // This function signature can only express up to |INT_MAX| bytes encrypted. 383 // 384 // TODO(https://crbug.com/boringssl/494): Make the internal |EVP_CIPHER| 385 // calling convention |size_t|-clean. 386 return -1; 387 } 388 389 if (in) { 390 if (out == NULL) { 391 if (!CRYPTO_gcm128_aad(&gctx->key, &gctx->gcm, in, len)) { 392 return -1; 393 } 394 } else if (ctx->encrypt) { 395 if (!CRYPTO_gcm128_encrypt(&gctx->key, &gctx->gcm, in, out, len)) { 396 return -1; 397 } 398 } else { 399 if (!CRYPTO_gcm128_decrypt(&gctx->key, &gctx->gcm, in, out, len)) { 400 return -1; 401 } 402 } 403 return (int)len; 404 } else { 405 if (!ctx->encrypt) { 406 if (gctx->taglen < 0 || !CRYPTO_gcm128_finish(&gctx->key, &gctx->gcm, 407 ctx->buf, gctx->taglen)) { 408 return -1; 409 } 410 gctx->iv_set = 0; 411 return 0; 412 } 413 CRYPTO_gcm128_tag(&gctx->key, &gctx->gcm, ctx->buf, 16); 414 gctx->taglen = 16; 415 // Don't reuse the IV 416 gctx->iv_set = 0; 417 return 0; 418 } 419} 420 421DEFINE_METHOD_FUNCTION(EVP_CIPHER, EVP_aes_128_cbc) { 422 memset(out, 0, sizeof(EVP_CIPHER)); 423 424 out->nid = NID_aes_128_cbc; 425 out->block_size = 16; 426 out->key_len = 16; 427 out->iv_len = 16; 428 out->ctx_size = sizeof(EVP_AES_KEY); 429 out->flags = EVP_CIPH_CBC_MODE; 430 out->init = aes_init_key; 431 out->cipher = aes_cbc_cipher; 432} 433 434DEFINE_METHOD_FUNCTION(EVP_CIPHER, EVP_aes_128_ctr) { 435 memset(out, 0, sizeof(EVP_CIPHER)); 436 437 out->nid = NID_aes_128_ctr; 438 out->block_size = 1; 439 out->key_len = 16; 440 out->iv_len = 16; 441 out->ctx_size = sizeof(EVP_AES_KEY); 442 out->flags = EVP_CIPH_CTR_MODE; 443 out->init = aes_init_key; 444 out->cipher = aes_ctr_cipher; 445} 446 447DEFINE_LOCAL_DATA(EVP_CIPHER, aes_128_ecb_generic) { 448 memset(out, 0, sizeof(EVP_CIPHER)); 449 450 out->nid = NID_aes_128_ecb; 451 out->block_size = 16; 452 out->key_len = 16; 453 out->ctx_size = sizeof(EVP_AES_KEY); 454 out->flags = EVP_CIPH_ECB_MODE; 455 out->init = aes_init_key; 456 out->cipher = aes_ecb_cipher; 457} 458 459DEFINE_METHOD_FUNCTION(EVP_CIPHER, EVP_aes_128_ofb) { 460 memset(out, 0, sizeof(EVP_CIPHER)); 461 462 out->nid = NID_aes_128_ofb128; 463 out->block_size = 1; 464 out->key_len = 16; 465 out->iv_len = 16; 466 out->ctx_size = sizeof(EVP_AES_KEY); 467 out->flags = EVP_CIPH_OFB_MODE; 468 out->init = aes_init_key; 469 out->cipher = aes_ofb_cipher; 470} 471 472DEFINE_METHOD_FUNCTION(EVP_CIPHER, EVP_aes_128_gcm) { 473 memset(out, 0, sizeof(EVP_CIPHER)); 474 475 out->nid = NID_aes_128_gcm; 476 out->block_size = 1; 477 out->key_len = 16; 478 out->iv_len = AES_GCM_NONCE_LENGTH; 479 out->ctx_size = sizeof(EVP_AES_GCM_CTX); 480 out->flags = EVP_CIPH_GCM_MODE | EVP_CIPH_CUSTOM_IV | EVP_CIPH_CUSTOM_COPY | 481 EVP_CIPH_FLAG_CUSTOM_CIPHER | EVP_CIPH_ALWAYS_CALL_INIT | 482 EVP_CIPH_CTRL_INIT | EVP_CIPH_FLAG_AEAD_CIPHER; 483 out->init = aes_gcm_init_key; 484 out->cipher = aes_gcm_cipher; 485 out->cleanup = aes_gcm_cleanup; 486 out->ctrl = aes_gcm_ctrl; 487} 488 489DEFINE_METHOD_FUNCTION(EVP_CIPHER, EVP_aes_192_cbc) { 490 memset(out, 0, sizeof(EVP_CIPHER)); 491 492 out->nid = NID_aes_192_cbc; 493 out->block_size = 16; 494 out->key_len = 24; 495 out->iv_len = 16; 496 out->ctx_size = sizeof(EVP_AES_KEY); 497 out->flags = EVP_CIPH_CBC_MODE; 498 out->init = aes_init_key; 499 out->cipher = aes_cbc_cipher; 500} 501 502DEFINE_METHOD_FUNCTION(EVP_CIPHER, EVP_aes_192_ctr) { 503 memset(out, 0, sizeof(EVP_CIPHER)); 504 505 out->nid = NID_aes_192_ctr; 506 out->block_size = 1; 507 out->key_len = 24; 508 out->iv_len = 16; 509 out->ctx_size = sizeof(EVP_AES_KEY); 510 out->flags = EVP_CIPH_CTR_MODE; 511 out->init = aes_init_key; 512 out->cipher = aes_ctr_cipher; 513} 514 515DEFINE_LOCAL_DATA(EVP_CIPHER, aes_192_ecb_generic) { 516 memset(out, 0, sizeof(EVP_CIPHER)); 517 518 out->nid = NID_aes_192_ecb; 519 out->block_size = 16; 520 out->key_len = 24; 521 out->ctx_size = sizeof(EVP_AES_KEY); 522 out->flags = EVP_CIPH_ECB_MODE; 523 out->init = aes_init_key; 524 out->cipher = aes_ecb_cipher; 525} 526 527DEFINE_METHOD_FUNCTION(EVP_CIPHER, EVP_aes_192_ofb) { 528 memset(out, 0, sizeof(EVP_CIPHER)); 529 530 out->nid = NID_aes_192_ofb128; 531 out->block_size = 1; 532 out->key_len = 24; 533 out->iv_len = 16; 534 out->ctx_size = sizeof(EVP_AES_KEY); 535 out->flags = EVP_CIPH_OFB_MODE; 536 out->init = aes_init_key; 537 out->cipher = aes_ofb_cipher; 538} 539 540DEFINE_METHOD_FUNCTION(EVP_CIPHER, EVP_aes_192_gcm) { 541 memset(out, 0, sizeof(EVP_CIPHER)); 542 543 out->nid = NID_aes_192_gcm; 544 out->block_size = 1; 545 out->key_len = 24; 546 out->iv_len = AES_GCM_NONCE_LENGTH; 547 out->ctx_size = sizeof(EVP_AES_GCM_CTX); 548 out->flags = EVP_CIPH_GCM_MODE | EVP_CIPH_CUSTOM_IV | EVP_CIPH_CUSTOM_COPY | 549 EVP_CIPH_FLAG_CUSTOM_CIPHER | EVP_CIPH_ALWAYS_CALL_INIT | 550 EVP_CIPH_CTRL_INIT | EVP_CIPH_FLAG_AEAD_CIPHER; 551 out->init = aes_gcm_init_key; 552 out->cipher = aes_gcm_cipher; 553 out->cleanup = aes_gcm_cleanup; 554 out->ctrl = aes_gcm_ctrl; 555} 556 557DEFINE_METHOD_FUNCTION(EVP_CIPHER, EVP_aes_256_cbc) { 558 memset(out, 0, sizeof(EVP_CIPHER)); 559 560 out->nid = NID_aes_256_cbc; 561 out->block_size = 16; 562 out->key_len = 32; 563 out->iv_len = 16; 564 out->ctx_size = sizeof(EVP_AES_KEY); 565 out->flags = EVP_CIPH_CBC_MODE; 566 out->init = aes_init_key; 567 out->cipher = aes_cbc_cipher; 568} 569 570DEFINE_METHOD_FUNCTION(EVP_CIPHER, EVP_aes_256_ctr) { 571 memset(out, 0, sizeof(EVP_CIPHER)); 572 573 out->nid = NID_aes_256_ctr; 574 out->block_size = 1; 575 out->key_len = 32; 576 out->iv_len = 16; 577 out->ctx_size = sizeof(EVP_AES_KEY); 578 out->flags = EVP_CIPH_CTR_MODE; 579 out->init = aes_init_key; 580 out->cipher = aes_ctr_cipher; 581} 582 583DEFINE_LOCAL_DATA(EVP_CIPHER, aes_256_ecb_generic) { 584 memset(out, 0, sizeof(EVP_CIPHER)); 585 586 out->nid = NID_aes_256_ecb; 587 out->block_size = 16; 588 out->key_len = 32; 589 out->ctx_size = sizeof(EVP_AES_KEY); 590 out->flags = EVP_CIPH_ECB_MODE; 591 out->init = aes_init_key; 592 out->cipher = aes_ecb_cipher; 593} 594 595DEFINE_METHOD_FUNCTION(EVP_CIPHER, EVP_aes_256_ofb) { 596 memset(out, 0, sizeof(EVP_CIPHER)); 597 598 out->nid = NID_aes_256_ofb128; 599 out->block_size = 1; 600 out->key_len = 32; 601 out->iv_len = 16; 602 out->ctx_size = sizeof(EVP_AES_KEY); 603 out->flags = EVP_CIPH_OFB_MODE; 604 out->init = aes_init_key; 605 out->cipher = aes_ofb_cipher; 606} 607 608DEFINE_METHOD_FUNCTION(EVP_CIPHER, EVP_aes_256_gcm) { 609 memset(out, 0, sizeof(EVP_CIPHER)); 610 611 out->nid = NID_aes_256_gcm; 612 out->block_size = 1; 613 out->key_len = 32; 614 out->iv_len = AES_GCM_NONCE_LENGTH; 615 out->ctx_size = sizeof(EVP_AES_GCM_CTX); 616 out->flags = EVP_CIPH_GCM_MODE | EVP_CIPH_CUSTOM_IV | EVP_CIPH_CUSTOM_COPY | 617 EVP_CIPH_FLAG_CUSTOM_CIPHER | EVP_CIPH_ALWAYS_CALL_INIT | 618 EVP_CIPH_CTRL_INIT | EVP_CIPH_FLAG_AEAD_CIPHER; 619 out->init = aes_gcm_init_key; 620 out->cipher = aes_gcm_cipher; 621 out->cleanup = aes_gcm_cleanup; 622 out->ctrl = aes_gcm_ctrl; 623} 624 625#if defined(HWAES_ECB) 626 627static int aes_hw_ecb_cipher(EVP_CIPHER_CTX *ctx, uint8_t *out, 628 const uint8_t *in, size_t len) { 629 size_t bl = ctx->cipher->block_size; 630 631 if (len < bl) { 632 return 1; 633 } 634 635 aes_hw_ecb_encrypt(in, out, len, 636 reinterpret_cast<const AES_KEY *>(ctx->cipher_data), 637 ctx->encrypt); 638 639 return 1; 640} 641 642DEFINE_LOCAL_DATA(EVP_CIPHER, aes_hw_128_ecb) { 643 memset(out, 0, sizeof(EVP_CIPHER)); 644 645 out->nid = NID_aes_128_ecb; 646 out->block_size = 16; 647 out->key_len = 16; 648 out->ctx_size = sizeof(EVP_AES_KEY); 649 out->flags = EVP_CIPH_ECB_MODE; 650 out->init = aes_init_key; 651 out->cipher = aes_hw_ecb_cipher; 652} 653 654DEFINE_LOCAL_DATA(EVP_CIPHER, aes_hw_192_ecb) { 655 memset(out, 0, sizeof(EVP_CIPHER)); 656 657 out->nid = NID_aes_192_ecb; 658 out->block_size = 16; 659 out->key_len = 24; 660 out->ctx_size = sizeof(EVP_AES_KEY); 661 out->flags = EVP_CIPH_ECB_MODE; 662 out->init = aes_init_key; 663 out->cipher = aes_hw_ecb_cipher; 664} 665 666DEFINE_LOCAL_DATA(EVP_CIPHER, aes_hw_256_ecb) { 667 memset(out, 0, sizeof(EVP_CIPHER)); 668 669 out->nid = NID_aes_256_ecb; 670 out->block_size = 16; 671 out->key_len = 32; 672 out->ctx_size = sizeof(EVP_AES_KEY); 673 out->flags = EVP_CIPH_ECB_MODE; 674 out->init = aes_init_key; 675 out->cipher = aes_hw_ecb_cipher; 676} 677 678#define EVP_ECB_CIPHER_FUNCTION(keybits) \ 679 const EVP_CIPHER *EVP_aes_##keybits##_ecb(void) { \ 680 if (hwaes_capable()) { \ 681 return aes_hw_##keybits##_ecb(); \ 682 } \ 683 return aes_##keybits##_ecb_generic(); \ 684 } 685 686#else 687 688#define EVP_ECB_CIPHER_FUNCTION(keybits) \ 689 const EVP_CIPHER *EVP_aes_##keybits##_ecb(void) { \ 690 return aes_##keybits##_ecb_generic(); \ 691 } 692 693#endif // HWAES_ECB 694 695EVP_ECB_CIPHER_FUNCTION(128) 696EVP_ECB_CIPHER_FUNCTION(192) 697EVP_ECB_CIPHER_FUNCTION(256) 698 699 700#define EVP_AEAD_AES_GCM_TAG_LEN 16 701 702namespace { 703struct aead_aes_gcm_ctx { 704 GCM128_KEY key; 705}; 706} // namespace 707 708static int aead_aes_gcm_init_impl(struct aead_aes_gcm_ctx *gcm_ctx, 709 size_t *out_tag_len, const uint8_t *key, 710 size_t key_len, size_t tag_len) { 711 const size_t key_bits = key_len * 8; 712 if (key_bits != 128 && key_bits != 192 && key_bits != 256) { 713 OPENSSL_PUT_ERROR(CIPHER, CIPHER_R_BAD_KEY_LENGTH); 714 return 0; // EVP_AEAD_CTX_init should catch this. 715 } 716 717 if (tag_len == EVP_AEAD_DEFAULT_TAG_LENGTH) { 718 tag_len = EVP_AEAD_AES_GCM_TAG_LEN; 719 } 720 721 if (tag_len > EVP_AEAD_AES_GCM_TAG_LEN) { 722 OPENSSL_PUT_ERROR(CIPHER, CIPHER_R_TAG_TOO_LARGE); 723 return 0; 724 } 725 726 CRYPTO_gcm128_init_aes_key(&gcm_ctx->key, key, key_len); 727 *out_tag_len = tag_len; 728 return 1; 729} 730 731static_assert(sizeof(((EVP_AEAD_CTX *)NULL)->state) >= 732 sizeof(struct aead_aes_gcm_ctx), 733 "AEAD state is too small"); 734static_assert(alignof(union evp_aead_ctx_st_state) >= 735 alignof(struct aead_aes_gcm_ctx), 736 "AEAD state has insufficient alignment"); 737 738static int aead_aes_gcm_init(EVP_AEAD_CTX *ctx, const uint8_t *key, 739 size_t key_len, size_t requested_tag_len) { 740 struct aead_aes_gcm_ctx *gcm_ctx = (struct aead_aes_gcm_ctx *)&ctx->state; 741 742 size_t actual_tag_len; 743 if (!aead_aes_gcm_init_impl(gcm_ctx, &actual_tag_len, key, key_len, 744 requested_tag_len)) { 745 return 0; 746 } 747 748 ctx->tag_len = actual_tag_len; 749 return 1; 750} 751 752static void aead_aes_gcm_cleanup(EVP_AEAD_CTX *ctx) {} 753 754static int aead_aes_gcm_seal_scatter_impl( 755 const struct aead_aes_gcm_ctx *gcm_ctx, uint8_t *out, uint8_t *out_tag, 756 size_t *out_tag_len, size_t max_out_tag_len, const uint8_t *nonce, 757 size_t nonce_len, const uint8_t *in, size_t in_len, const uint8_t *extra_in, 758 size_t extra_in_len, const uint8_t *ad, size_t ad_len, size_t tag_len) { 759 if (extra_in_len + tag_len < tag_len) { 760 OPENSSL_PUT_ERROR(CIPHER, CIPHER_R_TOO_LARGE); 761 return 0; 762 } 763 if (max_out_tag_len < extra_in_len + tag_len) { 764 OPENSSL_PUT_ERROR(CIPHER, CIPHER_R_BUFFER_TOO_SMALL); 765 return 0; 766 } 767 if (nonce_len == 0) { 768 OPENSSL_PUT_ERROR(CIPHER, CIPHER_R_INVALID_NONCE_SIZE); 769 return 0; 770 } 771 772 const GCM128_KEY *key = &gcm_ctx->key; 773 GCM128_CONTEXT gcm; 774 CRYPTO_gcm128_init_ctx(key, &gcm, nonce, nonce_len); 775 776 if (ad_len > 0 && !CRYPTO_gcm128_aad(key, &gcm, ad, ad_len)) { 777 return 0; 778 } 779 780 if (!CRYPTO_gcm128_encrypt(key, &gcm, in, out, in_len)) { 781 return 0; 782 } 783 784 if (extra_in_len > 0 && 785 !CRYPTO_gcm128_encrypt(key, &gcm, extra_in, out_tag, extra_in_len)) { 786 return 0; 787 } 788 789 CRYPTO_gcm128_tag(key, &gcm, out_tag + extra_in_len, tag_len); 790 *out_tag_len = tag_len + extra_in_len; 791 792 return 1; 793} 794 795static int aead_aes_gcm_seal_scatter( 796 const EVP_AEAD_CTX *ctx, uint8_t *out, uint8_t *out_tag, 797 size_t *out_tag_len, size_t max_out_tag_len, const uint8_t *nonce, 798 size_t nonce_len, const uint8_t *in, size_t in_len, const uint8_t *extra_in, 799 size_t extra_in_len, const uint8_t *ad, size_t ad_len) { 800 const struct aead_aes_gcm_ctx *gcm_ctx = 801 (const struct aead_aes_gcm_ctx *)&ctx->state; 802 return aead_aes_gcm_seal_scatter_impl( 803 gcm_ctx, out, out_tag, out_tag_len, max_out_tag_len, nonce, nonce_len, in, 804 in_len, extra_in, extra_in_len, ad, ad_len, ctx->tag_len); 805} 806 807static int aead_aes_gcm_open_gather_impl(const struct aead_aes_gcm_ctx *gcm_ctx, 808 uint8_t *out, const uint8_t *nonce, 809 size_t nonce_len, const uint8_t *in, 810 size_t in_len, const uint8_t *in_tag, 811 size_t in_tag_len, const uint8_t *ad, 812 size_t ad_len, size_t tag_len) { 813 uint8_t tag[EVP_AEAD_AES_GCM_TAG_LEN]; 814 815 if (nonce_len == 0) { 816 OPENSSL_PUT_ERROR(CIPHER, CIPHER_R_INVALID_NONCE_SIZE); 817 return 0; 818 } 819 820 if (in_tag_len != tag_len) { 821 OPENSSL_PUT_ERROR(CIPHER, CIPHER_R_BAD_DECRYPT); 822 return 0; 823 } 824 825 const GCM128_KEY *key = &gcm_ctx->key; 826 GCM128_CONTEXT gcm; 827 CRYPTO_gcm128_init_ctx(key, &gcm, nonce, nonce_len); 828 829 if (!CRYPTO_gcm128_aad(key, &gcm, ad, ad_len)) { 830 return 0; 831 } 832 833 if (!CRYPTO_gcm128_decrypt(key, &gcm, in, out, in_len)) { 834 return 0; 835 } 836 837 CRYPTO_gcm128_tag(key, &gcm, tag, tag_len); 838 if (CRYPTO_memcmp(tag, in_tag, tag_len) != 0) { 839 OPENSSL_PUT_ERROR(CIPHER, CIPHER_R_BAD_DECRYPT); 840 return 0; 841 } 842 843 return 1; 844} 845 846static int aead_aes_gcm_open_gather(const EVP_AEAD_CTX *ctx, uint8_t *out, 847 const uint8_t *nonce, size_t nonce_len, 848 const uint8_t *in, size_t in_len, 849 const uint8_t *in_tag, size_t in_tag_len, 850 const uint8_t *ad, size_t ad_len) { 851 struct aead_aes_gcm_ctx *gcm_ctx = (struct aead_aes_gcm_ctx *)&ctx->state; 852 if (!aead_aes_gcm_open_gather_impl(gcm_ctx, out, nonce, nonce_len, in, in_len, 853 in_tag, in_tag_len, ad, ad_len, 854 ctx->tag_len)) { 855 return 0; 856 } 857 858 AEAD_GCM_verify_service_indicator(ctx); 859 return 1; 860} 861 862DEFINE_METHOD_FUNCTION(EVP_AEAD, EVP_aead_aes_128_gcm) { 863 memset(out, 0, sizeof(EVP_AEAD)); 864 865 out->key_len = 16; 866 out->nonce_len = AES_GCM_NONCE_LENGTH; 867 out->overhead = EVP_AEAD_AES_GCM_TAG_LEN; 868 out->max_tag_len = EVP_AEAD_AES_GCM_TAG_LEN; 869 out->seal_scatter_supports_extra_in = 1; 870 871 out->init = aead_aes_gcm_init; 872 out->cleanup = aead_aes_gcm_cleanup; 873 out->seal_scatter = aead_aes_gcm_seal_scatter; 874 out->open_gather = aead_aes_gcm_open_gather; 875} 876 877DEFINE_METHOD_FUNCTION(EVP_AEAD, EVP_aead_aes_192_gcm) { 878 memset(out, 0, sizeof(EVP_AEAD)); 879 880 out->key_len = 24; 881 out->nonce_len = AES_GCM_NONCE_LENGTH; 882 out->overhead = EVP_AEAD_AES_GCM_TAG_LEN; 883 out->max_tag_len = EVP_AEAD_AES_GCM_TAG_LEN; 884 out->seal_scatter_supports_extra_in = 1; 885 886 out->init = aead_aes_gcm_init; 887 out->cleanup = aead_aes_gcm_cleanup; 888 out->seal_scatter = aead_aes_gcm_seal_scatter; 889 out->open_gather = aead_aes_gcm_open_gather; 890} 891 892DEFINE_METHOD_FUNCTION(EVP_AEAD, EVP_aead_aes_256_gcm) { 893 memset(out, 0, sizeof(EVP_AEAD)); 894 895 out->key_len = 32; 896 out->nonce_len = AES_GCM_NONCE_LENGTH; 897 out->overhead = EVP_AEAD_AES_GCM_TAG_LEN; 898 out->max_tag_len = EVP_AEAD_AES_GCM_TAG_LEN; 899 out->seal_scatter_supports_extra_in = 1; 900 901 out->init = aead_aes_gcm_init; 902 out->cleanup = aead_aes_gcm_cleanup; 903 out->seal_scatter = aead_aes_gcm_seal_scatter; 904 out->open_gather = aead_aes_gcm_open_gather; 905} 906 907static int aead_aes_gcm_init_randnonce(EVP_AEAD_CTX *ctx, const uint8_t *key, 908 size_t key_len, 909 size_t requested_tag_len) { 910 if (requested_tag_len != EVP_AEAD_DEFAULT_TAG_LENGTH) { 911 if (requested_tag_len < AES_GCM_NONCE_LENGTH) { 912 OPENSSL_PUT_ERROR(CIPHER, CIPHER_R_BUFFER_TOO_SMALL); 913 return 0; 914 } 915 requested_tag_len -= AES_GCM_NONCE_LENGTH; 916 } 917 918 if (!aead_aes_gcm_init(ctx, key, key_len, requested_tag_len)) { 919 return 0; 920 } 921 922 ctx->tag_len += AES_GCM_NONCE_LENGTH; 923 return 1; 924} 925 926static int aead_aes_gcm_seal_scatter_randnonce( 927 const EVP_AEAD_CTX *ctx, uint8_t *out, uint8_t *out_tag, 928 size_t *out_tag_len, size_t max_out_tag_len, const uint8_t *external_nonce, 929 size_t external_nonce_len, const uint8_t *in, size_t in_len, 930 const uint8_t *extra_in, size_t extra_in_len, const uint8_t *ad, 931 size_t ad_len) { 932 if (external_nonce_len != 0) { 933 OPENSSL_PUT_ERROR(CIPHER, CIPHER_R_INVALID_NONCE_SIZE); 934 return 0; 935 } 936 937 uint8_t nonce[AES_GCM_NONCE_LENGTH]; 938 if (max_out_tag_len < sizeof(nonce)) { 939 OPENSSL_PUT_ERROR(CIPHER, CIPHER_R_BUFFER_TOO_SMALL); 940 return 0; 941 } 942 943 // |BCM_rand_bytes| calls within the fipsmodule should be wrapped with state 944 // lock functions to avoid updating the service indicator with the DRBG 945 // functions. 946 FIPS_service_indicator_lock_state(); 947 BCM_rand_bytes(nonce, sizeof(nonce)); 948 FIPS_service_indicator_unlock_state(); 949 950 const struct aead_aes_gcm_ctx *gcm_ctx = 951 (const struct aead_aes_gcm_ctx *)&ctx->state; 952 if (!aead_aes_gcm_seal_scatter_impl(gcm_ctx, out, out_tag, out_tag_len, 953 max_out_tag_len - AES_GCM_NONCE_LENGTH, 954 nonce, sizeof(nonce), in, in_len, 955 extra_in, extra_in_len, ad, ad_len, 956 ctx->tag_len - AES_GCM_NONCE_LENGTH)) { 957 return 0; 958 } 959 960 assert(*out_tag_len + sizeof(nonce) <= max_out_tag_len); 961 memcpy(out_tag + *out_tag_len, nonce, sizeof(nonce)); 962 *out_tag_len += sizeof(nonce); 963 964 AEAD_GCM_verify_service_indicator(ctx); 965 return 1; 966} 967 968static int aead_aes_gcm_open_gather_randnonce( 969 const EVP_AEAD_CTX *ctx, uint8_t *out, const uint8_t *external_nonce, 970 size_t external_nonce_len, const uint8_t *in, size_t in_len, 971 const uint8_t *in_tag, size_t in_tag_len, const uint8_t *ad, 972 size_t ad_len) { 973 if (external_nonce_len != 0) { 974 OPENSSL_PUT_ERROR(CIPHER, CIPHER_R_INVALID_NONCE_SIZE); 975 return 0; 976 } 977 978 if (in_tag_len < AES_GCM_NONCE_LENGTH) { 979 OPENSSL_PUT_ERROR(CIPHER, CIPHER_R_BAD_DECRYPT); 980 return 0; 981 } 982 const uint8_t *nonce = in_tag + in_tag_len - AES_GCM_NONCE_LENGTH; 983 984 const struct aead_aes_gcm_ctx *gcm_ctx = 985 (const struct aead_aes_gcm_ctx *)&ctx->state; 986 if (!aead_aes_gcm_open_gather_impl( 987 gcm_ctx, out, nonce, AES_GCM_NONCE_LENGTH, in, in_len, in_tag, 988 in_tag_len - AES_GCM_NONCE_LENGTH, ad, ad_len, 989 ctx->tag_len - AES_GCM_NONCE_LENGTH)) { 990 return 0; 991 } 992 993 AEAD_GCM_verify_service_indicator(ctx); 994 return 1; 995} 996 997DEFINE_METHOD_FUNCTION(EVP_AEAD, EVP_aead_aes_128_gcm_randnonce) { 998 memset(out, 0, sizeof(EVP_AEAD)); 999 1000 out->key_len = 16; 1001 out->nonce_len = 0; 1002 out->overhead = EVP_AEAD_AES_GCM_TAG_LEN + AES_GCM_NONCE_LENGTH; 1003 out->max_tag_len = EVP_AEAD_AES_GCM_TAG_LEN + AES_GCM_NONCE_LENGTH; 1004 out->seal_scatter_supports_extra_in = 1; 1005 1006 out->init = aead_aes_gcm_init_randnonce; 1007 out->cleanup = aead_aes_gcm_cleanup; 1008 out->seal_scatter = aead_aes_gcm_seal_scatter_randnonce; 1009 out->open_gather = aead_aes_gcm_open_gather_randnonce; 1010} 1011 1012DEFINE_METHOD_FUNCTION(EVP_AEAD, EVP_aead_aes_256_gcm_randnonce) { 1013 memset(out, 0, sizeof(EVP_AEAD)); 1014 1015 out->key_len = 32; 1016 out->nonce_len = 0; 1017 out->overhead = EVP_AEAD_AES_GCM_TAG_LEN + AES_GCM_NONCE_LENGTH; 1018 out->max_tag_len = EVP_AEAD_AES_GCM_TAG_LEN + AES_GCM_NONCE_LENGTH; 1019 out->seal_scatter_supports_extra_in = 1; 1020 1021 out->init = aead_aes_gcm_init_randnonce; 1022 out->cleanup = aead_aes_gcm_cleanup; 1023 out->seal_scatter = aead_aes_gcm_seal_scatter_randnonce; 1024 out->open_gather = aead_aes_gcm_open_gather_randnonce; 1025} 1026 1027namespace { 1028struct aead_aes_gcm_tls12_ctx { 1029 struct aead_aes_gcm_ctx gcm_ctx; 1030 uint64_t min_next_nonce; 1031}; 1032} // namespace 1033 1034static_assert(sizeof(((EVP_AEAD_CTX *)NULL)->state) >= 1035 sizeof(struct aead_aes_gcm_tls12_ctx), 1036 "AEAD state is too small"); 1037static_assert(alignof(union evp_aead_ctx_st_state) >= 1038 alignof(struct aead_aes_gcm_tls12_ctx), 1039 "AEAD state has insufficient alignment"); 1040 1041static int aead_aes_gcm_tls12_init(EVP_AEAD_CTX *ctx, const uint8_t *key, 1042 size_t key_len, size_t requested_tag_len) { 1043 struct aead_aes_gcm_tls12_ctx *gcm_ctx = 1044 (struct aead_aes_gcm_tls12_ctx *)&ctx->state; 1045 1046 gcm_ctx->min_next_nonce = 0; 1047 1048 size_t actual_tag_len; 1049 if (!aead_aes_gcm_init_impl(&gcm_ctx->gcm_ctx, &actual_tag_len, key, key_len, 1050 requested_tag_len)) { 1051 return 0; 1052 } 1053 1054 ctx->tag_len = actual_tag_len; 1055 return 1; 1056} 1057 1058static int aead_aes_gcm_tls12_seal_scatter( 1059 const EVP_AEAD_CTX *ctx, uint8_t *out, uint8_t *out_tag, 1060 size_t *out_tag_len, size_t max_out_tag_len, const uint8_t *nonce, 1061 size_t nonce_len, const uint8_t *in, size_t in_len, const uint8_t *extra_in, 1062 size_t extra_in_len, const uint8_t *ad, size_t ad_len) { 1063 struct aead_aes_gcm_tls12_ctx *gcm_ctx = 1064 (struct aead_aes_gcm_tls12_ctx *)&ctx->state; 1065 1066 if (nonce_len != AES_GCM_NONCE_LENGTH) { 1067 OPENSSL_PUT_ERROR(CIPHER, CIPHER_R_UNSUPPORTED_NONCE_SIZE); 1068 return 0; 1069 } 1070 1071 // The given nonces must be strictly monotonically increasing. 1072 uint64_t given_counter = 1073 CRYPTO_load_u64_be(nonce + nonce_len - sizeof(uint64_t)); 1074 if (given_counter == UINT64_MAX || given_counter < gcm_ctx->min_next_nonce) { 1075 OPENSSL_PUT_ERROR(CIPHER, CIPHER_R_INVALID_NONCE); 1076 return 0; 1077 } 1078 1079 gcm_ctx->min_next_nonce = given_counter + 1; 1080 1081 if (!aead_aes_gcm_seal_scatter(ctx, out, out_tag, out_tag_len, 1082 max_out_tag_len, nonce, nonce_len, in, in_len, 1083 extra_in, extra_in_len, ad, ad_len)) { 1084 return 0; 1085 } 1086 1087 AEAD_GCM_verify_service_indicator(ctx); 1088 return 1; 1089} 1090 1091DEFINE_METHOD_FUNCTION(EVP_AEAD, EVP_aead_aes_128_gcm_tls12) { 1092 memset(out, 0, sizeof(EVP_AEAD)); 1093 1094 out->key_len = 16; 1095 out->nonce_len = AES_GCM_NONCE_LENGTH; 1096 out->overhead = EVP_AEAD_AES_GCM_TAG_LEN; 1097 out->max_tag_len = EVP_AEAD_AES_GCM_TAG_LEN; 1098 out->seal_scatter_supports_extra_in = 1; 1099 1100 out->init = aead_aes_gcm_tls12_init; 1101 out->cleanup = aead_aes_gcm_cleanup; 1102 out->seal_scatter = aead_aes_gcm_tls12_seal_scatter; 1103 out->open_gather = aead_aes_gcm_open_gather; 1104} 1105 1106DEFINE_METHOD_FUNCTION(EVP_AEAD, EVP_aead_aes_256_gcm_tls12) { 1107 memset(out, 0, sizeof(EVP_AEAD)); 1108 1109 out->key_len = 32; 1110 out->nonce_len = AES_GCM_NONCE_LENGTH; 1111 out->overhead = EVP_AEAD_AES_GCM_TAG_LEN; 1112 out->max_tag_len = EVP_AEAD_AES_GCM_TAG_LEN; 1113 out->seal_scatter_supports_extra_in = 1; 1114 1115 out->init = aead_aes_gcm_tls12_init; 1116 out->cleanup = aead_aes_gcm_cleanup; 1117 out->seal_scatter = aead_aes_gcm_tls12_seal_scatter; 1118 out->open_gather = aead_aes_gcm_open_gather; 1119} 1120 1121namespace { 1122struct aead_aes_gcm_tls13_ctx { 1123 struct aead_aes_gcm_ctx gcm_ctx; 1124 uint64_t min_next_nonce; 1125 uint64_t mask; 1126}; 1127} // namespace 1128 1129static_assert(sizeof(((EVP_AEAD_CTX *)NULL)->state) >= 1130 sizeof(struct aead_aes_gcm_tls13_ctx), 1131 "AEAD state is too small"); 1132static_assert(alignof(union evp_aead_ctx_st_state) >= 1133 alignof(struct aead_aes_gcm_tls13_ctx), 1134 "AEAD state has insufficient alignment"); 1135 1136static int aead_aes_gcm_tls13_init(EVP_AEAD_CTX *ctx, const uint8_t *key, 1137 size_t key_len, size_t requested_tag_len) { 1138 struct aead_aes_gcm_tls13_ctx *gcm_ctx = 1139 (struct aead_aes_gcm_tls13_ctx *)&ctx->state; 1140 1141 gcm_ctx->min_next_nonce = 0; 1142 1143 size_t actual_tag_len; 1144 if (!aead_aes_gcm_init_impl(&gcm_ctx->gcm_ctx, &actual_tag_len, key, key_len, 1145 requested_tag_len)) { 1146 return 0; 1147 } 1148 1149 ctx->tag_len = actual_tag_len; 1150 return 1; 1151} 1152 1153static int aead_aes_gcm_tls13_seal_scatter( 1154 const EVP_AEAD_CTX *ctx, uint8_t *out, uint8_t *out_tag, 1155 size_t *out_tag_len, size_t max_out_tag_len, const uint8_t *nonce, 1156 size_t nonce_len, const uint8_t *in, size_t in_len, const uint8_t *extra_in, 1157 size_t extra_in_len, const uint8_t *ad, size_t ad_len) { 1158 struct aead_aes_gcm_tls13_ctx *gcm_ctx = 1159 (struct aead_aes_gcm_tls13_ctx *)&ctx->state; 1160 1161 if (nonce_len != AES_GCM_NONCE_LENGTH) { 1162 OPENSSL_PUT_ERROR(CIPHER, CIPHER_R_UNSUPPORTED_NONCE_SIZE); 1163 return 0; 1164 } 1165 1166 // The given nonces must be strictly monotonically increasing. See 1167 // https://tools.ietf.org/html/rfc8446#section-5.3 for details of the TLS 1.3 1168 // nonce construction. 1169 uint64_t given_counter = 1170 CRYPTO_load_u64_be(nonce + nonce_len - sizeof(uint64_t)); 1171 1172 if (gcm_ctx->min_next_nonce == 0) { 1173 // In the first call the sequence number will be zero and therefore the 1174 // given nonce will be 0 ^ mask = mask. 1175 gcm_ctx->mask = given_counter; 1176 gcm_ctx->min_next_nonce = 1; 1177 } else { 1178 given_counter ^= gcm_ctx->mask; 1179 if (given_counter == UINT64_MAX || 1180 given_counter < gcm_ctx->min_next_nonce) { 1181 OPENSSL_PUT_ERROR(CIPHER, CIPHER_R_INVALID_NONCE); 1182 return 0; 1183 } 1184 gcm_ctx->min_next_nonce = given_counter + 1; 1185 } 1186 1187 if (!aead_aes_gcm_seal_scatter(ctx, out, out_tag, out_tag_len, 1188 max_out_tag_len, nonce, nonce_len, in, in_len, 1189 extra_in, extra_in_len, ad, ad_len)) { 1190 return 0; 1191 } 1192 1193 AEAD_GCM_verify_service_indicator(ctx); 1194 return 1; 1195} 1196 1197DEFINE_METHOD_FUNCTION(EVP_AEAD, EVP_aead_aes_128_gcm_tls13) { 1198 memset(out, 0, sizeof(EVP_AEAD)); 1199 1200 out->key_len = 16; 1201 out->nonce_len = AES_GCM_NONCE_LENGTH; 1202 out->overhead = EVP_AEAD_AES_GCM_TAG_LEN; 1203 out->max_tag_len = EVP_AEAD_AES_GCM_TAG_LEN; 1204 out->seal_scatter_supports_extra_in = 1; 1205 1206 out->init = aead_aes_gcm_tls13_init; 1207 out->cleanup = aead_aes_gcm_cleanup; 1208 out->seal_scatter = aead_aes_gcm_tls13_seal_scatter; 1209 out->open_gather = aead_aes_gcm_open_gather; 1210} 1211 1212DEFINE_METHOD_FUNCTION(EVP_AEAD, EVP_aead_aes_256_gcm_tls13) { 1213 memset(out, 0, sizeof(EVP_AEAD)); 1214 1215 out->key_len = 32; 1216 out->nonce_len = AES_GCM_NONCE_LENGTH; 1217 out->overhead = EVP_AEAD_AES_GCM_TAG_LEN; 1218 out->max_tag_len = EVP_AEAD_AES_GCM_TAG_LEN; 1219 out->seal_scatter_supports_extra_in = 1; 1220 1221 out->init = aead_aes_gcm_tls13_init; 1222 out->cleanup = aead_aes_gcm_cleanup; 1223 out->seal_scatter = aead_aes_gcm_tls13_seal_scatter; 1224 out->open_gather = aead_aes_gcm_open_gather; 1225} 1226 1227int EVP_has_aes_hardware(void) { 1228#if defined(OPENSSL_X86) || defined(OPENSSL_X86_64) 1229 return hwaes_capable() && crypto_gcm_clmul_enabled(); 1230#elif defined(OPENSSL_ARM) || defined(OPENSSL_AARCH64) 1231 return hwaes_capable() && CRYPTO_is_ARMv8_PMULL_capable(); 1232#else 1233 return 0; 1234#endif 1235} 1236