1// Copyright 2004-2016 The OpenSSL Project Authors. All Rights Reserved.
2//
3// Licensed under the Apache License, Version 2.0 (the "License");
4// you may not use this file except in compliance with the License.
5// You may obtain a copy of the License at
6//
7//     https://www.apache.org/licenses/LICENSE-2.0
8//
9// Unless required by applicable law or agreed to in writing, software
10// distributed under the License is distributed on an "AS IS" BASIS,
11// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
12// See the License for the specific language governing permissions and
13// limitations under the License.
14
15#include <string.h>
16
17#include <openssl/mem.h>
18
19#include "../../internal.h"
20#include "../bcm_interface.h"
21#include "../service_indicator/internal.h"
22#include "internal.h"
23
24
25// The 32-bit hash algorithms share a common byte-order neutral collector and
26// padding function implementations that operate on unaligned data,
27// ../digest/md32_common.h. SHA-512 is the only 64-bit hash algorithm, as of
28// this writing, so there is no need for a common collector/padding
29// implementation yet.
30
31static void sha512_final_impl(uint8_t *out, size_t md_len, SHA512_CTX *sha);
32
33bcm_infallible BCM_sha384_init(SHA512_CTX *sha) {
34  sha->h[0] = UINT64_C(0xcbbb9d5dc1059ed8);
35  sha->h[1] = UINT64_C(0x629a292a367cd507);
36  sha->h[2] = UINT64_C(0x9159015a3070dd17);
37  sha->h[3] = UINT64_C(0x152fecd8f70e5939);
38  sha->h[4] = UINT64_C(0x67332667ffc00b31);
39  sha->h[5] = UINT64_C(0x8eb44a8768581511);
40  sha->h[6] = UINT64_C(0xdb0c2e0d64f98fa7);
41  sha->h[7] = UINT64_C(0x47b5481dbefa4fa4);
42
43  sha->bytes_so_far_low = 0;
44  sha->bytes_so_far_high = 0;
45  sha->num = 0;
46  sha->md_len = BCM_SHA384_DIGEST_LENGTH;
47  return bcm_infallible::approved;
48}
49
50
51bcm_infallible BCM_sha512_init(SHA512_CTX *sha) {
52  sha->h[0] = UINT64_C(0x6a09e667f3bcc908);
53  sha->h[1] = UINT64_C(0xbb67ae8584caa73b);
54  sha->h[2] = UINT64_C(0x3c6ef372fe94f82b);
55  sha->h[3] = UINT64_C(0xa54ff53a5f1d36f1);
56  sha->h[4] = UINT64_C(0x510e527fade682d1);
57  sha->h[5] = UINT64_C(0x9b05688c2b3e6c1f);
58  sha->h[6] = UINT64_C(0x1f83d9abfb41bd6b);
59  sha->h[7] = UINT64_C(0x5be0cd19137e2179);
60
61  sha->bytes_so_far_low = 0;
62  sha->bytes_so_far_high = 0;
63  sha->num = 0;
64  sha->md_len = BCM_SHA512_DIGEST_LENGTH;
65  return bcm_infallible::approved;
66}
67
68bcm_infallible BCM_sha512_256_init(SHA512_CTX *sha) {
69  sha->h[0] = UINT64_C(0x22312194fc2bf72c);
70  sha->h[1] = UINT64_C(0x9f555fa3c84c64c2);
71  sha->h[2] = UINT64_C(0x2393b86b6f53b151);
72  sha->h[3] = UINT64_C(0x963877195940eabd);
73  sha->h[4] = UINT64_C(0x96283ee2a88effe3);
74  sha->h[5] = UINT64_C(0xbe5e1e2553863992);
75  sha->h[6] = UINT64_C(0x2b0199fc2c85b8aa);
76  sha->h[7] = UINT64_C(0x0eb72ddc81c52ca2);
77
78  sha->bytes_so_far_low = 0;
79  sha->bytes_so_far_high = 0;
80  sha->num = 0;
81  sha->md_len = BCM_SHA512_256_DIGEST_LENGTH;
82  return bcm_infallible::approved;
83}
84
85#if !defined(SHA512_ASM)
86static void sha512_block_data_order(uint64_t state[8], const uint8_t *in,
87                                    size_t num_blocks);
88#endif
89
90
91bcm_infallible BCM_sha384_final(uint8_t out[BCM_SHA384_DIGEST_LENGTH],
92                                SHA512_CTX *sha) {
93  // This function must be paired with |BCM_sha384_init|, which sets
94  // |sha->md_len| to |BCM_SHA384_DIGEST_LENGTH|.
95  assert(sha->md_len == BCM_SHA384_DIGEST_LENGTH);
96  sha512_final_impl(out, BCM_SHA384_DIGEST_LENGTH, sha);
97  return bcm_infallible::approved;
98}
99
100bcm_infallible BCM_sha384_update(SHA512_CTX *sha, const void *data,
101                                 size_t len) {
102  return BCM_sha512_update(sha, data, len);
103}
104
105bcm_infallible BCM_sha512_256_update(SHA512_CTX *sha, const void *data,
106                                     size_t len) {
107  return BCM_sha512_update(sha, data, len);
108}
109
110bcm_infallible BCM_sha512_256_final(uint8_t out[BCM_SHA512_256_DIGEST_LENGTH],
111                                    SHA512_CTX *sha) {
112  // This function must be paired with |BCM_sha512_256_init|, which sets
113  // |sha->md_len| to |BCM_SHA512_256_DIGEST_LENGTH|.
114  assert(sha->md_len == BCM_SHA512_256_DIGEST_LENGTH);
115  sha512_final_impl(out, BCM_SHA512_256_DIGEST_LENGTH, sha);
116  return bcm_infallible::approved;
117}
118
119bcm_infallible BCM_sha512_transform(SHA512_CTX *c,
120                                    const uint8_t block[SHA512_CBLOCK]) {
121  sha512_block_data_order(c->h, block, 1);
122  return bcm_infallible::approved;
123}
124
125bcm_infallible BCM_sha512_update(SHA512_CTX *c, const void *in_data,
126                                 size_t len) {
127  uint8_t *p = c->p;
128  const uint8_t *data = reinterpret_cast<const uint8_t *>(in_data);
129
130  if (len == 0) {
131    return bcm_infallible::approved;
132  }
133
134  c->bytes_so_far_low += len;
135  if (c->bytes_so_far_low < len) {
136    c->bytes_so_far_high++;
137  }
138
139  if (c->num != 0) {
140    size_t n = sizeof(c->p) - c->num;
141
142    if (len < n) {
143      OPENSSL_memcpy(p + c->num, data, len);
144      c->num += (unsigned int)len;
145      return bcm_infallible::approved;
146    } else {
147      OPENSSL_memcpy(p + c->num, data, n), c->num = 0;
148      len -= n;
149      data += n;
150      sha512_block_data_order(c->h, p, 1);
151    }
152  }
153
154  if (len >= sizeof(c->p)) {
155    sha512_block_data_order(c->h, data, len / sizeof(c->p));
156    data += len;
157    len %= sizeof(c->p);
158    data -= len;
159  }
160
161  if (len != 0) {
162    OPENSSL_memcpy(p, data, len);
163    c->num = (int)len;
164  }
165
166  return bcm_infallible::approved;
167}
168
169bcm_infallible BCM_sha512_final(uint8_t out[BCM_SHA512_DIGEST_LENGTH],
170                                SHA512_CTX *sha) {
171  // Ideally we would assert |sha->md_len| is |BCM_SHA512_DIGEST_LENGTH| to
172  // match the size hint, but calling code often pairs |BCM_sha384_init| with
173  // |BCM_sha512_final| and expects |sha->md_len| to carry the size over.
174  //
175  // TODO(davidben): Add an assert and fix code to match them up.
176  sha512_final_impl(out, sha->md_len, sha);
177  return bcm_infallible::approved;
178}
179
180static void sha512_final_impl(uint8_t *out, size_t md_len, SHA512_CTX *sha) {
181  uint8_t *p = sha->p;
182  size_t n = sha->num;
183
184  p[n] = 0x80;  // There always is a room for one
185  n++;
186  if (n > (sizeof(sha->p) - 16)) {
187    OPENSSL_memset(p + n, 0, sizeof(sha->p) - n);
188    n = 0;
189    sha512_block_data_order(sha->h, p, 1);
190  }
191
192  OPENSSL_memset(p + n, 0, sizeof(sha->p) - 16 - n);
193  const uint64_t Nh = (uint64_t{sha->bytes_so_far_high} << 3) |
194                      (sha->bytes_so_far_low >> (64 - 3));
195  const uint64_t Nl = sha->bytes_so_far_low << 3;
196  CRYPTO_store_u64_be(p + sizeof(sha->p) - 16, Nh);
197  CRYPTO_store_u64_be(p + sizeof(sha->p) - 8, Nl);
198
199  sha512_block_data_order(sha->h, p, 1);
200
201  assert(md_len % 8 == 0);
202  const size_t out_words = md_len / 8;
203  for (size_t i = 0; i < out_words; i++) {
204    CRYPTO_store_u64_be(out, sha->h[i]);
205    out += 8;
206  }
207
208  FIPS_service_indicator_update_state();
209}
210
211#if !defined(SHA512_ASM)
212
213#if !defined(SHA512_ASM_NOHW)
214static const uint64_t K512[80] = {
215    UINT64_C(0x428a2f98d728ae22), UINT64_C(0x7137449123ef65cd),
216    UINT64_C(0xb5c0fbcfec4d3b2f), UINT64_C(0xe9b5dba58189dbbc),
217    UINT64_C(0x3956c25bf348b538), UINT64_C(0x59f111f1b605d019),
218    UINT64_C(0x923f82a4af194f9b), UINT64_C(0xab1c5ed5da6d8118),
219    UINT64_C(0xd807aa98a3030242), UINT64_C(0x12835b0145706fbe),
220    UINT64_C(0x243185be4ee4b28c), UINT64_C(0x550c7dc3d5ffb4e2),
221    UINT64_C(0x72be5d74f27b896f), UINT64_C(0x80deb1fe3b1696b1),
222    UINT64_C(0x9bdc06a725c71235), UINT64_C(0xc19bf174cf692694),
223    UINT64_C(0xe49b69c19ef14ad2), UINT64_C(0xefbe4786384f25e3),
224    UINT64_C(0x0fc19dc68b8cd5b5), UINT64_C(0x240ca1cc77ac9c65),
225    UINT64_C(0x2de92c6f592b0275), UINT64_C(0x4a7484aa6ea6e483),
226    UINT64_C(0x5cb0a9dcbd41fbd4), UINT64_C(0x76f988da831153b5),
227    UINT64_C(0x983e5152ee66dfab), UINT64_C(0xa831c66d2db43210),
228    UINT64_C(0xb00327c898fb213f), UINT64_C(0xbf597fc7beef0ee4),
229    UINT64_C(0xc6e00bf33da88fc2), UINT64_C(0xd5a79147930aa725),
230    UINT64_C(0x06ca6351e003826f), UINT64_C(0x142929670a0e6e70),
231    UINT64_C(0x27b70a8546d22ffc), UINT64_C(0x2e1b21385c26c926),
232    UINT64_C(0x4d2c6dfc5ac42aed), UINT64_C(0x53380d139d95b3df),
233    UINT64_C(0x650a73548baf63de), UINT64_C(0x766a0abb3c77b2a8),
234    UINT64_C(0x81c2c92e47edaee6), UINT64_C(0x92722c851482353b),
235    UINT64_C(0xa2bfe8a14cf10364), UINT64_C(0xa81a664bbc423001),
236    UINT64_C(0xc24b8b70d0f89791), UINT64_C(0xc76c51a30654be30),
237    UINT64_C(0xd192e819d6ef5218), UINT64_C(0xd69906245565a910),
238    UINT64_C(0xf40e35855771202a), UINT64_C(0x106aa07032bbd1b8),
239    UINT64_C(0x19a4c116b8d2d0c8), UINT64_C(0x1e376c085141ab53),
240    UINT64_C(0x2748774cdf8eeb99), UINT64_C(0x34b0bcb5e19b48a8),
241    UINT64_C(0x391c0cb3c5c95a63), UINT64_C(0x4ed8aa4ae3418acb),
242    UINT64_C(0x5b9cca4f7763e373), UINT64_C(0x682e6ff3d6b2b8a3),
243    UINT64_C(0x748f82ee5defb2fc), UINT64_C(0x78a5636f43172f60),
244    UINT64_C(0x84c87814a1f0ab72), UINT64_C(0x8cc702081a6439ec),
245    UINT64_C(0x90befffa23631e28), UINT64_C(0xa4506cebde82bde9),
246    UINT64_C(0xbef9a3f7b2c67915), UINT64_C(0xc67178f2e372532b),
247    UINT64_C(0xca273eceea26619c), UINT64_C(0xd186b8c721c0c207),
248    UINT64_C(0xeada7dd6cde0eb1e), UINT64_C(0xf57d4f7fee6ed178),
249    UINT64_C(0x06f067aa72176fba), UINT64_C(0x0a637dc5a2c898a6),
250    UINT64_C(0x113f9804bef90dae), UINT64_C(0x1b710b35131c471b),
251    UINT64_C(0x28db77f523047d84), UINT64_C(0x32caab7b40c72493),
252    UINT64_C(0x3c9ebe0a15c9bebc), UINT64_C(0x431d67c49c100d4c),
253    UINT64_C(0x4cc5d4becb3e42b6), UINT64_C(0x597f299cfc657e2a),
254    UINT64_C(0x5fcb6fab3ad6faec), UINT64_C(0x6c44198c4a475817),
255};
256
257#define Sigma0(x)                                        \
258  (CRYPTO_rotr_u64((x), 28) ^ CRYPTO_rotr_u64((x), 34) ^ \
259   CRYPTO_rotr_u64((x), 39))
260#define Sigma1(x)                                        \
261  (CRYPTO_rotr_u64((x), 14) ^ CRYPTO_rotr_u64((x), 18) ^ \
262   CRYPTO_rotr_u64((x), 41))
263#define sigma0(x) \
264  (CRYPTO_rotr_u64((x), 1) ^ CRYPTO_rotr_u64((x), 8) ^ ((x) >> 7))
265#define sigma1(x) \
266  (CRYPTO_rotr_u64((x), 19) ^ CRYPTO_rotr_u64((x), 61) ^ ((x) >> 6))
267
268#define Ch(x, y, z) (((x) & (y)) ^ ((~(x)) & (z)))
269#define Maj(x, y, z) (((x) & (y)) ^ ((x) & (z)) ^ ((y) & (z)))
270
271
272#if defined(__i386) || defined(__i386__) || defined(_M_IX86)
273// This code should give better results on 32-bit CPU with less than
274// ~24 registers, both size and performance wise...
275static void sha512_block_data_order_nohw(uint64_t state[8], const uint8_t *in,
276                                         size_t num) {
277  uint64_t A, E, T;
278  uint64_t X[9 + 80], *F;
279  int i;
280
281  while (num--) {
282    F = X + 80;
283    A = state[0];
284    F[1] = state[1];
285    F[2] = state[2];
286    F[3] = state[3];
287    E = state[4];
288    F[5] = state[5];
289    F[6] = state[6];
290    F[7] = state[7];
291
292    for (i = 0; i < 16; i++, F--) {
293      T = CRYPTO_load_u64_be(in + i * 8);
294      F[0] = A;
295      F[4] = E;
296      F[8] = T;
297      T += F[7] + Sigma1(E) + Ch(E, F[5], F[6]) + K512[i];
298      E = F[3] + T;
299      A = T + Sigma0(A) + Maj(A, F[1], F[2]);
300    }
301
302    for (; i < 80; i++, F--) {
303      T = sigma0(F[8 + 16 - 1]);
304      T += sigma1(F[8 + 16 - 14]);
305      T += F[8 + 16] + F[8 + 16 - 9];
306
307      F[0] = A;
308      F[4] = E;
309      F[8] = T;
310      T += F[7] + Sigma1(E) + Ch(E, F[5], F[6]) + K512[i];
311      E = F[3] + T;
312      A = T + Sigma0(A) + Maj(A, F[1], F[2]);
313    }
314
315    state[0] += A;
316    state[1] += F[1];
317    state[2] += F[2];
318    state[3] += F[3];
319    state[4] += E;
320    state[5] += F[5];
321    state[6] += F[6];
322    state[7] += F[7];
323
324    in += 16 * 8;
325  }
326}
327
328#else
329
330#define ROUND_00_15(i, a, b, c, d, e, f, g, h)   \
331  do {                                           \
332    T1 += h + Sigma1(e) + Ch(e, f, g) + K512[i]; \
333    h = Sigma0(a) + Maj(a, b, c);                \
334    d += T1;                                     \
335    h += T1;                                     \
336  } while (0)
337
338#define ROUND_16_80(i, j, a, b, c, d, e, f, g, h, X)   \
339  do {                                                 \
340    s0 = X[(j + 1) & 0x0f];                            \
341    s0 = sigma0(s0);                                   \
342    s1 = X[(j + 14) & 0x0f];                           \
343    s1 = sigma1(s1);                                   \
344    T1 = X[(j) & 0x0f] += s0 + s1 + X[(j + 9) & 0x0f]; \
345    ROUND_00_15(i + j, a, b, c, d, e, f, g, h);        \
346  } while (0)
347
348static void sha512_block_data_order_nohw(uint64_t state[8], const uint8_t *in,
349                                         size_t num) {
350  uint64_t a, b, c, d, e, f, g, h, s0, s1, T1;
351  uint64_t X[16];
352  int i;
353
354  while (num--) {
355    a = state[0];
356    b = state[1];
357    c = state[2];
358    d = state[3];
359    e = state[4];
360    f = state[5];
361    g = state[6];
362    h = state[7];
363
364    T1 = X[0] = CRYPTO_load_u64_be(in);
365    ROUND_00_15(0, a, b, c, d, e, f, g, h);
366    T1 = X[1] = CRYPTO_load_u64_be(in + 8);
367    ROUND_00_15(1, h, a, b, c, d, e, f, g);
368    T1 = X[2] = CRYPTO_load_u64_be(in + 2 * 8);
369    ROUND_00_15(2, g, h, a, b, c, d, e, f);
370    T1 = X[3] = CRYPTO_load_u64_be(in + 3 * 8);
371    ROUND_00_15(3, f, g, h, a, b, c, d, e);
372    T1 = X[4] = CRYPTO_load_u64_be(in + 4 * 8);
373    ROUND_00_15(4, e, f, g, h, a, b, c, d);
374    T1 = X[5] = CRYPTO_load_u64_be(in + 5 * 8);
375    ROUND_00_15(5, d, e, f, g, h, a, b, c);
376    T1 = X[6] = CRYPTO_load_u64_be(in + 6 * 8);
377    ROUND_00_15(6, c, d, e, f, g, h, a, b);
378    T1 = X[7] = CRYPTO_load_u64_be(in + 7 * 8);
379    ROUND_00_15(7, b, c, d, e, f, g, h, a);
380    T1 = X[8] = CRYPTO_load_u64_be(in + 8 * 8);
381    ROUND_00_15(8, a, b, c, d, e, f, g, h);
382    T1 = X[9] = CRYPTO_load_u64_be(in + 9 * 8);
383    ROUND_00_15(9, h, a, b, c, d, e, f, g);
384    T1 = X[10] = CRYPTO_load_u64_be(in + 10 * 8);
385    ROUND_00_15(10, g, h, a, b, c, d, e, f);
386    T1 = X[11] = CRYPTO_load_u64_be(in + 11 * 8);
387    ROUND_00_15(11, f, g, h, a, b, c, d, e);
388    T1 = X[12] = CRYPTO_load_u64_be(in + 12 * 8);
389    ROUND_00_15(12, e, f, g, h, a, b, c, d);
390    T1 = X[13] = CRYPTO_load_u64_be(in + 13 * 8);
391    ROUND_00_15(13, d, e, f, g, h, a, b, c);
392    T1 = X[14] = CRYPTO_load_u64_be(in + 14 * 8);
393    ROUND_00_15(14, c, d, e, f, g, h, a, b);
394    T1 = X[15] = CRYPTO_load_u64_be(in + 15 * 8);
395    ROUND_00_15(15, b, c, d, e, f, g, h, a);
396
397    for (i = 16; i < 80; i += 16) {
398      ROUND_16_80(i, 0, a, b, c, d, e, f, g, h, X);
399      ROUND_16_80(i, 1, h, a, b, c, d, e, f, g, X);
400      ROUND_16_80(i, 2, g, h, a, b, c, d, e, f, X);
401      ROUND_16_80(i, 3, f, g, h, a, b, c, d, e, X);
402      ROUND_16_80(i, 4, e, f, g, h, a, b, c, d, X);
403      ROUND_16_80(i, 5, d, e, f, g, h, a, b, c, X);
404      ROUND_16_80(i, 6, c, d, e, f, g, h, a, b, X);
405      ROUND_16_80(i, 7, b, c, d, e, f, g, h, a, X);
406      ROUND_16_80(i, 8, a, b, c, d, e, f, g, h, X);
407      ROUND_16_80(i, 9, h, a, b, c, d, e, f, g, X);
408      ROUND_16_80(i, 10, g, h, a, b, c, d, e, f, X);
409      ROUND_16_80(i, 11, f, g, h, a, b, c, d, e, X);
410      ROUND_16_80(i, 12, e, f, g, h, a, b, c, d, X);
411      ROUND_16_80(i, 13, d, e, f, g, h, a, b, c, X);
412      ROUND_16_80(i, 14, c, d, e, f, g, h, a, b, X);
413      ROUND_16_80(i, 15, b, c, d, e, f, g, h, a, X);
414    }
415
416    state[0] += a;
417    state[1] += b;
418    state[2] += c;
419    state[3] += d;
420    state[4] += e;
421    state[5] += f;
422    state[6] += g;
423    state[7] += h;
424
425    in += 16 * 8;
426  }
427}
428
429#endif
430
431#endif  // !SHA512_ASM_NOHW
432
433static void sha512_block_data_order(uint64_t state[8], const uint8_t *data,
434                                    size_t num) {
435#if defined(SHA512_ASM_HW)
436  if (sha512_hw_capable()) {
437    sha512_block_data_order_hw(state, data, num);
438    return;
439  }
440#endif
441#if defined(SHA512_ASM_AVX)
442  if (sha512_avx_capable()) {
443    sha512_block_data_order_avx(state, data, num);
444    return;
445  }
446#endif
447#if defined(SHA512_ASM_SSSE3)
448  if (sha512_ssse3_capable()) {
449    sha512_block_data_order_ssse3(state, data, num);
450    return;
451  }
452#endif
453#if defined(SHA512_ASM_NEON)
454  if (CRYPTO_is_NEON_capable()) {
455    sha512_block_data_order_neon(state, data, num);
456    return;
457  }
458#endif
459  sha512_block_data_order_nohw(state, data, num);
460}
461
462#endif  // !SHA512_ASM
463
464#undef Sigma0
465#undef Sigma1
466#undef sigma0
467#undef sigma1
468#undef Ch
469#undef Maj
470#undef ROUND_00_15
471#undef ROUND_16_80
472