1 // Copyright 1995-2016 The OpenSSL Project Authors. All Rights Reserved.
2 //
3 // Licensed under the Apache License, Version 2.0 (the "License");
4 // you may not use this file except in compliance with the License.
5 // You may obtain a copy of the License at
6 //
7 // https://www.apache.org/licenses/LICENSE-2.0
8 //
9 // Unless required by applicable law or agreed to in writing, software
10 // distributed under the License is distributed on an "AS IS" BASIS,
11 // WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
12 // See the License for the specific language governing permissions and
13 // limitations under the License.
14
15 #include <openssl/stack.h>
16
17 #include <assert.h>
18 #include <limits.h>
19
20 #include <openssl/err.h>
21 #include <openssl/mem.h>
22
23 #include "../internal.h"
24
25
26 struct stack_st {
27 // num contains the number of valid pointers in |data|.
28 size_t num;
29 void **data;
30 // sorted is non-zero if the values pointed to by |data| are in ascending
31 // order, based on |comp|.
32 int sorted;
33 // num_alloc contains the number of pointers allocated in the buffer pointed
34 // to by |data|, which may be larger than |num|.
35 size_t num_alloc;
36 // comp is an optional comparison function.
37 OPENSSL_sk_cmp_func comp;
38 };
39
40 // kMinSize is the number of pointers that will be initially allocated in a new
41 // stack.
42 static const size_t kMinSize = 4;
43
OPENSSL_sk_new(OPENSSL_sk_cmp_func comp)44 OPENSSL_STACK *OPENSSL_sk_new(OPENSSL_sk_cmp_func comp) {
45 OPENSSL_STACK *ret =
46 reinterpret_cast<OPENSSL_STACK *>(OPENSSL_zalloc(sizeof(OPENSSL_STACK)));
47 if (ret == NULL) {
48 return NULL;
49 }
50
51 ret->data =
52 reinterpret_cast<void **>(OPENSSL_calloc(kMinSize, sizeof(void *)));
53 if (ret->data == NULL) {
54 goto err;
55 }
56
57 ret->comp = comp;
58 ret->num_alloc = kMinSize;
59
60 return ret;
61
62 err:
63 OPENSSL_free(ret);
64 return NULL;
65 }
66
OPENSSL_sk_new_null(void)67 OPENSSL_STACK *OPENSSL_sk_new_null(void) { return OPENSSL_sk_new(NULL); }
68
OPENSSL_sk_num(const OPENSSL_STACK * sk)69 size_t OPENSSL_sk_num(const OPENSSL_STACK *sk) {
70 if (sk == NULL) {
71 return 0;
72 }
73 return sk->num;
74 }
75
OPENSSL_sk_zero(OPENSSL_STACK * sk)76 void OPENSSL_sk_zero(OPENSSL_STACK *sk) {
77 if (sk == NULL || sk->num == 0) {
78 return;
79 }
80 OPENSSL_memset(sk->data, 0, sizeof(void *) * sk->num);
81 sk->num = 0;
82 sk->sorted = 0;
83 }
84
OPENSSL_sk_value(const OPENSSL_STACK * sk,size_t i)85 void *OPENSSL_sk_value(const OPENSSL_STACK *sk, size_t i) {
86 if (!sk || i >= sk->num) {
87 return NULL;
88 }
89 return sk->data[i];
90 }
91
OPENSSL_sk_set(OPENSSL_STACK * sk,size_t i,void * value)92 void *OPENSSL_sk_set(OPENSSL_STACK *sk, size_t i, void *value) {
93 if (!sk || i >= sk->num) {
94 return NULL;
95 }
96 return sk->data[i] = value;
97 }
98
OPENSSL_sk_free(OPENSSL_STACK * sk)99 void OPENSSL_sk_free(OPENSSL_STACK *sk) {
100 if (sk == NULL) {
101 return;
102 }
103 OPENSSL_free(sk->data);
104 OPENSSL_free(sk);
105 }
106
OPENSSL_sk_pop_free_ex(OPENSSL_STACK * sk,OPENSSL_sk_call_free_func call_free_func,OPENSSL_sk_free_func free_func)107 void OPENSSL_sk_pop_free_ex(OPENSSL_STACK *sk,
108 OPENSSL_sk_call_free_func call_free_func,
109 OPENSSL_sk_free_func free_func) {
110 if (sk == NULL) {
111 return;
112 }
113
114 for (size_t i = 0; i < sk->num; i++) {
115 if (sk->data[i] != NULL) {
116 call_free_func(free_func, sk->data[i]);
117 }
118 }
119 OPENSSL_sk_free(sk);
120 }
121
122 // Historically, |sk_pop_free| called the function as |OPENSSL_sk_free_func|
123 // directly. This is undefined in C. Some callers called |sk_pop_free| directly,
124 // so we must maintain a compatibility version for now.
call_free_func_legacy(OPENSSL_sk_free_func func,void * ptr)125 static void call_free_func_legacy(OPENSSL_sk_free_func func, void *ptr) {
126 func(ptr);
127 }
128
sk_pop_free(OPENSSL_STACK * sk,OPENSSL_sk_free_func free_func)129 void sk_pop_free(OPENSSL_STACK *sk, OPENSSL_sk_free_func free_func) {
130 OPENSSL_sk_pop_free_ex(sk, call_free_func_legacy, free_func);
131 }
132
OPENSSL_sk_insert(OPENSSL_STACK * sk,void * p,size_t where)133 size_t OPENSSL_sk_insert(OPENSSL_STACK *sk, void *p, size_t where) {
134 if (sk == NULL) {
135 return 0;
136 }
137
138 if (sk->num >= INT_MAX) {
139 OPENSSL_PUT_ERROR(CRYPTO, ERR_R_OVERFLOW);
140 return 0;
141 }
142
143 if (sk->num_alloc <= sk->num + 1) {
144 // Attempt to double the size of the array.
145 size_t new_alloc = sk->num_alloc << 1;
146 size_t alloc_size = new_alloc * sizeof(void *);
147 void **data;
148
149 // If the doubling overflowed, try to increment.
150 if (new_alloc < sk->num_alloc || alloc_size / sizeof(void *) != new_alloc) {
151 new_alloc = sk->num_alloc + 1;
152 alloc_size = new_alloc * sizeof(void *);
153 }
154
155 // If the increment also overflowed, fail.
156 if (new_alloc < sk->num_alloc || alloc_size / sizeof(void *) != new_alloc) {
157 return 0;
158 }
159
160 data = reinterpret_cast<void **>(OPENSSL_realloc(sk->data, alloc_size));
161 if (data == NULL) {
162 return 0;
163 }
164
165 sk->data = data;
166 sk->num_alloc = new_alloc;
167 }
168
169 if (where >= sk->num) {
170 sk->data[sk->num] = p;
171 } else {
172 OPENSSL_memmove(&sk->data[where + 1], &sk->data[where],
173 sizeof(void *) * (sk->num - where));
174 sk->data[where] = p;
175 }
176
177 sk->num++;
178 sk->sorted = 0;
179
180 return sk->num;
181 }
182
OPENSSL_sk_delete(OPENSSL_STACK * sk,size_t where)183 void *OPENSSL_sk_delete(OPENSSL_STACK *sk, size_t where) {
184 void *ret;
185
186 if (!sk || where >= sk->num) {
187 return NULL;
188 }
189
190 ret = sk->data[where];
191
192 if (where != sk->num - 1) {
193 OPENSSL_memmove(&sk->data[where], &sk->data[where + 1],
194 sizeof(void *) * (sk->num - where - 1));
195 }
196
197 sk->num--;
198 return ret;
199 }
200
OPENSSL_sk_delete_ptr(OPENSSL_STACK * sk,const void * p)201 void *OPENSSL_sk_delete_ptr(OPENSSL_STACK *sk, const void *p) {
202 if (sk == NULL) {
203 return NULL;
204 }
205
206 for (size_t i = 0; i < sk->num; i++) {
207 if (sk->data[i] == p) {
208 return OPENSSL_sk_delete(sk, i);
209 }
210 }
211
212 return NULL;
213 }
214
OPENSSL_sk_delete_if(OPENSSL_STACK * sk,OPENSSL_sk_call_delete_if_func call_func,OPENSSL_sk_delete_if_func func,void * data)215 void OPENSSL_sk_delete_if(OPENSSL_STACK *sk,
216 OPENSSL_sk_call_delete_if_func call_func,
217 OPENSSL_sk_delete_if_func func, void *data) {
218 if (sk == NULL) {
219 return;
220 }
221
222 size_t new_num = 0;
223 for (size_t i = 0; i < sk->num; i++) {
224 if (!call_func(func, sk->data[i], data)) {
225 sk->data[new_num] = sk->data[i];
226 new_num++;
227 }
228 }
229 sk->num = new_num;
230 }
231
OPENSSL_sk_find(const OPENSSL_STACK * sk,size_t * out_index,const void * p,OPENSSL_sk_call_cmp_func call_cmp_func)232 int OPENSSL_sk_find(const OPENSSL_STACK *sk, size_t *out_index, const void *p,
233 OPENSSL_sk_call_cmp_func call_cmp_func) {
234 if (sk == NULL) {
235 return 0;
236 }
237
238 if (sk->comp == NULL) {
239 // Use pointer equality when no comparison function has been set.
240 for (size_t i = 0; i < sk->num; i++) {
241 if (sk->data[i] == p) {
242 if (out_index) {
243 *out_index = i;
244 }
245 return 1;
246 }
247 }
248 return 0;
249 }
250
251 if (p == NULL) {
252 return 0;
253 }
254
255 if (!OPENSSL_sk_is_sorted(sk)) {
256 for (size_t i = 0; i < sk->num; i++) {
257 if (call_cmp_func(sk->comp, p, sk->data[i]) == 0) {
258 if (out_index) {
259 *out_index = i;
260 }
261 return 1;
262 }
263 }
264 return 0;
265 }
266
267 // The stack is sorted, so binary search to find the element.
268 //
269 // |lo| and |hi| maintain a half-open interval of where the answer may be. All
270 // indices such that |lo <= idx < hi| are candidates.
271 size_t lo = 0, hi = sk->num;
272 while (lo < hi) {
273 // Bias |mid| towards |lo|. See the |r == 0| case below.
274 size_t mid = lo + (hi - lo - 1) / 2;
275 assert(lo <= mid && mid < hi);
276 int r = call_cmp_func(sk->comp, p, sk->data[mid]);
277 if (r > 0) {
278 lo = mid + 1; // |mid| is too low.
279 } else if (r < 0) {
280 hi = mid; // |mid| is too high.
281 } else {
282 // |mid| matches. However, this function returns the earliest match, so we
283 // can only return if the range has size one.
284 if (hi - lo == 1) {
285 if (out_index != NULL) {
286 *out_index = mid;
287 }
288 return 1;
289 }
290 // The sample is biased towards |lo|. |mid| can only be |hi - 1| if
291 // |hi - lo| was one, so this makes forward progress.
292 assert(mid + 1 < hi);
293 hi = mid + 1;
294 }
295 }
296
297 assert(lo == hi);
298 return 0; // Not found.
299 }
300
OPENSSL_sk_shift(OPENSSL_STACK * sk)301 void *OPENSSL_sk_shift(OPENSSL_STACK *sk) {
302 if (sk == NULL) {
303 return NULL;
304 }
305 if (sk->num == 0) {
306 return NULL;
307 }
308 return OPENSSL_sk_delete(sk, 0);
309 }
310
OPENSSL_sk_push(OPENSSL_STACK * sk,void * p)311 size_t OPENSSL_sk_push(OPENSSL_STACK *sk, void *p) {
312 return OPENSSL_sk_insert(sk, p, sk->num);
313 }
314
OPENSSL_sk_pop(OPENSSL_STACK * sk)315 void *OPENSSL_sk_pop(OPENSSL_STACK *sk) {
316 if (sk == NULL) {
317 return NULL;
318 }
319 if (sk->num == 0) {
320 return NULL;
321 }
322 return OPENSSL_sk_delete(sk, sk->num - 1);
323 }
324
OPENSSL_sk_dup(const OPENSSL_STACK * sk)325 OPENSSL_STACK *OPENSSL_sk_dup(const OPENSSL_STACK *sk) {
326 if (sk == NULL) {
327 return NULL;
328 }
329
330 OPENSSL_STACK *ret =
331 reinterpret_cast<OPENSSL_STACK *>(OPENSSL_zalloc(sizeof(OPENSSL_STACK)));
332 if (ret == NULL) {
333 return NULL;
334 }
335
336 ret->data = reinterpret_cast<void **>(
337 OPENSSL_memdup(sk->data, sizeof(void *) * sk->num_alloc));
338 if (ret->data == NULL) {
339 goto err;
340 }
341
342 ret->num = sk->num;
343 ret->sorted = sk->sorted;
344 ret->num_alloc = sk->num_alloc;
345 ret->comp = sk->comp;
346 return ret;
347
348 err:
349 OPENSSL_sk_free(ret);
350 return NULL;
351 }
352
parent_idx(size_t idx)353 static size_t parent_idx(size_t idx) {
354 assert(idx > 0);
355 return (idx - 1) / 2;
356 }
357
left_idx(size_t idx)358 static size_t left_idx(size_t idx) {
359 // The largest possible index is |PTRDIFF_MAX|, not |SIZE_MAX|. If
360 // |ptrdiff_t|, a signed type, is the same size as |size_t|, this cannot
361 // overflow.
362 assert(idx <= PTRDIFF_MAX);
363 static_assert(PTRDIFF_MAX <= (SIZE_MAX - 1) / 2, "2 * idx + 1 may oveflow");
364 return 2 * idx + 1;
365 }
366
367 // down_heap fixes the subtree rooted at |i|. |i|'s children must each satisfy
368 // the heap property. Only the first |num| elements of |sk| are considered.
down_heap(OPENSSL_STACK * sk,OPENSSL_sk_call_cmp_func call_cmp_func,size_t i,size_t num)369 static void down_heap(OPENSSL_STACK *sk, OPENSSL_sk_call_cmp_func call_cmp_func,
370 size_t i, size_t num) {
371 assert(i < num && num <= sk->num);
372 for (;;) {
373 size_t left = left_idx(i);
374 if (left >= num) {
375 break; // No left child.
376 }
377
378 // Swap |i| with the largest of its children.
379 size_t next = i;
380 if (call_cmp_func(sk->comp, sk->data[next], sk->data[left]) < 0) {
381 next = left;
382 }
383 size_t right = left + 1; // Cannot overflow because |left < num|.
384 if (right < num &&
385 call_cmp_func(sk->comp, sk->data[next], sk->data[right]) < 0) {
386 next = right;
387 }
388
389 if (i == next) {
390 break; // |i| is already larger than its children.
391 }
392
393 void *tmp = sk->data[i];
394 sk->data[i] = sk->data[next];
395 sk->data[next] = tmp;
396 i = next;
397 }
398 }
399
OPENSSL_sk_sort(OPENSSL_STACK * sk,OPENSSL_sk_call_cmp_func call_cmp_func)400 void OPENSSL_sk_sort(OPENSSL_STACK *sk,
401 OPENSSL_sk_call_cmp_func call_cmp_func) {
402 if (sk == NULL || sk->comp == NULL || sk->sorted) {
403 return;
404 }
405
406 if (sk->num >= 2) {
407 // |qsort| lacks a context parameter in the comparison function for us to
408 // pass in |call_cmp_func| and |sk->comp|. While we could cast |sk->comp| to
409 // the expected type, it is undefined behavior in C can trip sanitizers.
410 // |qsort_r| and |qsort_s| avoid this, but using them is impractical. See
411 // https://stackoverflow.com/a/39561369
412 //
413 // Use our own heap sort instead. This is not performance-sensitive, so we
414 // optimize for simplicity and size. First, build a max-heap in place.
415 for (size_t i = parent_idx(sk->num - 1); i < sk->num; i--) {
416 down_heap(sk, call_cmp_func, i, sk->num);
417 }
418
419 // Iteratively remove the maximum element to populate the result in reverse.
420 for (size_t i = sk->num - 1; i > 0; i--) {
421 void *tmp = sk->data[0];
422 sk->data[0] = sk->data[i];
423 sk->data[i] = tmp;
424 down_heap(sk, call_cmp_func, 0, i);
425 }
426 }
427 sk->sorted = 1;
428 }
429
OPENSSL_sk_is_sorted(const OPENSSL_STACK * sk)430 int OPENSSL_sk_is_sorted(const OPENSSL_STACK *sk) {
431 if (!sk) {
432 return 1;
433 }
434 // Zero- and one-element lists are always sorted.
435 return sk->sorted || (sk->comp != NULL && sk->num < 2);
436 }
437
OPENSSL_sk_set_cmp_func(OPENSSL_STACK * sk,OPENSSL_sk_cmp_func comp)438 OPENSSL_sk_cmp_func OPENSSL_sk_set_cmp_func(OPENSSL_STACK *sk,
439 OPENSSL_sk_cmp_func comp) {
440 OPENSSL_sk_cmp_func old = sk->comp;
441
442 if (sk->comp != comp) {
443 sk->sorted = 0;
444 }
445 sk->comp = comp;
446
447 return old;
448 }
449
OPENSSL_sk_deep_copy(const OPENSSL_STACK * sk,OPENSSL_sk_call_copy_func call_copy_func,OPENSSL_sk_copy_func copy_func,OPENSSL_sk_call_free_func call_free_func,OPENSSL_sk_free_func free_func)450 OPENSSL_STACK *OPENSSL_sk_deep_copy(const OPENSSL_STACK *sk,
451 OPENSSL_sk_call_copy_func call_copy_func,
452 OPENSSL_sk_copy_func copy_func,
453 OPENSSL_sk_call_free_func call_free_func,
454 OPENSSL_sk_free_func free_func) {
455 OPENSSL_STACK *ret = OPENSSL_sk_dup(sk);
456 if (ret == NULL) {
457 return NULL;
458 }
459
460 for (size_t i = 0; i < ret->num; i++) {
461 if (ret->data[i] == NULL) {
462 continue;
463 }
464 ret->data[i] = call_copy_func(copy_func, ret->data[i]);
465 if (ret->data[i] == NULL) {
466 for (size_t j = 0; j < i; j++) {
467 if (ret->data[j] != NULL) {
468 call_free_func(free_func, ret->data[j]);
469 }
470 }
471 OPENSSL_sk_free(ret);
472 return NULL;
473 }
474 }
475
476 return ret;
477 }
478
sk_new_null(void)479 OPENSSL_STACK *sk_new_null(void) { return OPENSSL_sk_new_null(); }
480
sk_num(const OPENSSL_STACK * sk)481 size_t sk_num(const OPENSSL_STACK *sk) { return OPENSSL_sk_num(sk); }
482
sk_value(const OPENSSL_STACK * sk,size_t i)483 void *sk_value(const OPENSSL_STACK *sk, size_t i) {
484 return OPENSSL_sk_value(sk, i);
485 }
486
sk_free(OPENSSL_STACK * sk)487 void sk_free(OPENSSL_STACK *sk) { OPENSSL_sk_free(sk); }
488
sk_push(OPENSSL_STACK * sk,void * p)489 size_t sk_push(OPENSSL_STACK *sk, void *p) { return OPENSSL_sk_push(sk, p); }
490
sk_pop(OPENSSL_STACK * sk)491 void *sk_pop(OPENSSL_STACK *sk) { return OPENSSL_sk_pop(sk); }
492
sk_pop_free_ex(OPENSSL_STACK * sk,OPENSSL_sk_call_free_func call_free_func,OPENSSL_sk_free_func free_func)493 void sk_pop_free_ex(OPENSSL_STACK *sk, OPENSSL_sk_call_free_func call_free_func,
494 OPENSSL_sk_free_func free_func) {
495 OPENSSL_sk_pop_free_ex(sk, call_free_func, free_func);
496 }
497