1 // Copyright 1995-2016 The OpenSSL Project Authors. All Rights Reserved.
2 //
3 // Licensed under the Apache License, Version 2.0 (the "License");
4 // you may not use this file except in compliance with the License.
5 // You may obtain a copy of the License at
6 //
7 //     https://www.apache.org/licenses/LICENSE-2.0
8 //
9 // Unless required by applicable law or agreed to in writing, software
10 // distributed under the License is distributed on an "AS IS" BASIS,
11 // WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
12 // See the License for the specific language governing permissions and
13 // limitations under the License.
14 
15 #include <openssl/stack.h>
16 
17 #include <assert.h>
18 #include <limits.h>
19 
20 #include <openssl/err.h>
21 #include <openssl/mem.h>
22 
23 #include "../internal.h"
24 
25 
26 struct stack_st {
27   // num contains the number of valid pointers in |data|.
28   size_t num;
29   void **data;
30   // sorted is non-zero if the values pointed to by |data| are in ascending
31   // order, based on |comp|.
32   int sorted;
33   // num_alloc contains the number of pointers allocated in the buffer pointed
34   // to by |data|, which may be larger than |num|.
35   size_t num_alloc;
36   // comp is an optional comparison function.
37   OPENSSL_sk_cmp_func comp;
38 };
39 
40 // kMinSize is the number of pointers that will be initially allocated in a new
41 // stack.
42 static const size_t kMinSize = 4;
43 
OPENSSL_sk_new(OPENSSL_sk_cmp_func comp)44 OPENSSL_STACK *OPENSSL_sk_new(OPENSSL_sk_cmp_func comp) {
45   OPENSSL_STACK *ret =
46       reinterpret_cast<OPENSSL_STACK *>(OPENSSL_zalloc(sizeof(OPENSSL_STACK)));
47   if (ret == NULL) {
48     return NULL;
49   }
50 
51   ret->data =
52       reinterpret_cast<void **>(OPENSSL_calloc(kMinSize, sizeof(void *)));
53   if (ret->data == NULL) {
54     goto err;
55   }
56 
57   ret->comp = comp;
58   ret->num_alloc = kMinSize;
59 
60   return ret;
61 
62 err:
63   OPENSSL_free(ret);
64   return NULL;
65 }
66 
OPENSSL_sk_new_null(void)67 OPENSSL_STACK *OPENSSL_sk_new_null(void) { return OPENSSL_sk_new(NULL); }
68 
OPENSSL_sk_num(const OPENSSL_STACK * sk)69 size_t OPENSSL_sk_num(const OPENSSL_STACK *sk) {
70   if (sk == NULL) {
71     return 0;
72   }
73   return sk->num;
74 }
75 
OPENSSL_sk_zero(OPENSSL_STACK * sk)76 void OPENSSL_sk_zero(OPENSSL_STACK *sk) {
77   if (sk == NULL || sk->num == 0) {
78     return;
79   }
80   OPENSSL_memset(sk->data, 0, sizeof(void *) * sk->num);
81   sk->num = 0;
82   sk->sorted = 0;
83 }
84 
OPENSSL_sk_value(const OPENSSL_STACK * sk,size_t i)85 void *OPENSSL_sk_value(const OPENSSL_STACK *sk, size_t i) {
86   if (!sk || i >= sk->num) {
87     return NULL;
88   }
89   return sk->data[i];
90 }
91 
OPENSSL_sk_set(OPENSSL_STACK * sk,size_t i,void * value)92 void *OPENSSL_sk_set(OPENSSL_STACK *sk, size_t i, void *value) {
93   if (!sk || i >= sk->num) {
94     return NULL;
95   }
96   return sk->data[i] = value;
97 }
98 
OPENSSL_sk_free(OPENSSL_STACK * sk)99 void OPENSSL_sk_free(OPENSSL_STACK *sk) {
100   if (sk == NULL) {
101     return;
102   }
103   OPENSSL_free(sk->data);
104   OPENSSL_free(sk);
105 }
106 
OPENSSL_sk_pop_free_ex(OPENSSL_STACK * sk,OPENSSL_sk_call_free_func call_free_func,OPENSSL_sk_free_func free_func)107 void OPENSSL_sk_pop_free_ex(OPENSSL_STACK *sk,
108                             OPENSSL_sk_call_free_func call_free_func,
109                             OPENSSL_sk_free_func free_func) {
110   if (sk == NULL) {
111     return;
112   }
113 
114   for (size_t i = 0; i < sk->num; i++) {
115     if (sk->data[i] != NULL) {
116       call_free_func(free_func, sk->data[i]);
117     }
118   }
119   OPENSSL_sk_free(sk);
120 }
121 
122 // Historically, |sk_pop_free| called the function as |OPENSSL_sk_free_func|
123 // directly. This is undefined in C. Some callers called |sk_pop_free| directly,
124 // so we must maintain a compatibility version for now.
call_free_func_legacy(OPENSSL_sk_free_func func,void * ptr)125 static void call_free_func_legacy(OPENSSL_sk_free_func func, void *ptr) {
126   func(ptr);
127 }
128 
sk_pop_free(OPENSSL_STACK * sk,OPENSSL_sk_free_func free_func)129 void sk_pop_free(OPENSSL_STACK *sk, OPENSSL_sk_free_func free_func) {
130   OPENSSL_sk_pop_free_ex(sk, call_free_func_legacy, free_func);
131 }
132 
OPENSSL_sk_insert(OPENSSL_STACK * sk,void * p,size_t where)133 size_t OPENSSL_sk_insert(OPENSSL_STACK *sk, void *p, size_t where) {
134   if (sk == NULL) {
135     return 0;
136   }
137 
138   if (sk->num >= INT_MAX) {
139     OPENSSL_PUT_ERROR(CRYPTO, ERR_R_OVERFLOW);
140     return 0;
141   }
142 
143   if (sk->num_alloc <= sk->num + 1) {
144     // Attempt to double the size of the array.
145     size_t new_alloc = sk->num_alloc << 1;
146     size_t alloc_size = new_alloc * sizeof(void *);
147     void **data;
148 
149     // If the doubling overflowed, try to increment.
150     if (new_alloc < sk->num_alloc || alloc_size / sizeof(void *) != new_alloc) {
151       new_alloc = sk->num_alloc + 1;
152       alloc_size = new_alloc * sizeof(void *);
153     }
154 
155     // If the increment also overflowed, fail.
156     if (new_alloc < sk->num_alloc || alloc_size / sizeof(void *) != new_alloc) {
157       return 0;
158     }
159 
160     data = reinterpret_cast<void **>(OPENSSL_realloc(sk->data, alloc_size));
161     if (data == NULL) {
162       return 0;
163     }
164 
165     sk->data = data;
166     sk->num_alloc = new_alloc;
167   }
168 
169   if (where >= sk->num) {
170     sk->data[sk->num] = p;
171   } else {
172     OPENSSL_memmove(&sk->data[where + 1], &sk->data[where],
173                     sizeof(void *) * (sk->num - where));
174     sk->data[where] = p;
175   }
176 
177   sk->num++;
178   sk->sorted = 0;
179 
180   return sk->num;
181 }
182 
OPENSSL_sk_delete(OPENSSL_STACK * sk,size_t where)183 void *OPENSSL_sk_delete(OPENSSL_STACK *sk, size_t where) {
184   void *ret;
185 
186   if (!sk || where >= sk->num) {
187     return NULL;
188   }
189 
190   ret = sk->data[where];
191 
192   if (where != sk->num - 1) {
193     OPENSSL_memmove(&sk->data[where], &sk->data[where + 1],
194                     sizeof(void *) * (sk->num - where - 1));
195   }
196 
197   sk->num--;
198   return ret;
199 }
200 
OPENSSL_sk_delete_ptr(OPENSSL_STACK * sk,const void * p)201 void *OPENSSL_sk_delete_ptr(OPENSSL_STACK *sk, const void *p) {
202   if (sk == NULL) {
203     return NULL;
204   }
205 
206   for (size_t i = 0; i < sk->num; i++) {
207     if (sk->data[i] == p) {
208       return OPENSSL_sk_delete(sk, i);
209     }
210   }
211 
212   return NULL;
213 }
214 
OPENSSL_sk_delete_if(OPENSSL_STACK * sk,OPENSSL_sk_call_delete_if_func call_func,OPENSSL_sk_delete_if_func func,void * data)215 void OPENSSL_sk_delete_if(OPENSSL_STACK *sk,
216                           OPENSSL_sk_call_delete_if_func call_func,
217                           OPENSSL_sk_delete_if_func func, void *data) {
218   if (sk == NULL) {
219     return;
220   }
221 
222   size_t new_num = 0;
223   for (size_t i = 0; i < sk->num; i++) {
224     if (!call_func(func, sk->data[i], data)) {
225       sk->data[new_num] = sk->data[i];
226       new_num++;
227     }
228   }
229   sk->num = new_num;
230 }
231 
OPENSSL_sk_find(const OPENSSL_STACK * sk,size_t * out_index,const void * p,OPENSSL_sk_call_cmp_func call_cmp_func)232 int OPENSSL_sk_find(const OPENSSL_STACK *sk, size_t *out_index, const void *p,
233                     OPENSSL_sk_call_cmp_func call_cmp_func) {
234   if (sk == NULL) {
235     return 0;
236   }
237 
238   if (sk->comp == NULL) {
239     // Use pointer equality when no comparison function has been set.
240     for (size_t i = 0; i < sk->num; i++) {
241       if (sk->data[i] == p) {
242         if (out_index) {
243           *out_index = i;
244         }
245         return 1;
246       }
247     }
248     return 0;
249   }
250 
251   if (p == NULL) {
252     return 0;
253   }
254 
255   if (!OPENSSL_sk_is_sorted(sk)) {
256     for (size_t i = 0; i < sk->num; i++) {
257       if (call_cmp_func(sk->comp, p, sk->data[i]) == 0) {
258         if (out_index) {
259           *out_index = i;
260         }
261         return 1;
262       }
263     }
264     return 0;
265   }
266 
267   // The stack is sorted, so binary search to find the element.
268   //
269   // |lo| and |hi| maintain a half-open interval of where the answer may be. All
270   // indices such that |lo <= idx < hi| are candidates.
271   size_t lo = 0, hi = sk->num;
272   while (lo < hi) {
273     // Bias |mid| towards |lo|. See the |r == 0| case below.
274     size_t mid = lo + (hi - lo - 1) / 2;
275     assert(lo <= mid && mid < hi);
276     int r = call_cmp_func(sk->comp, p, sk->data[mid]);
277     if (r > 0) {
278       lo = mid + 1;  // |mid| is too low.
279     } else if (r < 0) {
280       hi = mid;  // |mid| is too high.
281     } else {
282       // |mid| matches. However, this function returns the earliest match, so we
283       // can only return if the range has size one.
284       if (hi - lo == 1) {
285         if (out_index != NULL) {
286           *out_index = mid;
287         }
288         return 1;
289       }
290       // The sample is biased towards |lo|. |mid| can only be |hi - 1| if
291       // |hi - lo| was one, so this makes forward progress.
292       assert(mid + 1 < hi);
293       hi = mid + 1;
294     }
295   }
296 
297   assert(lo == hi);
298   return 0;  // Not found.
299 }
300 
OPENSSL_sk_shift(OPENSSL_STACK * sk)301 void *OPENSSL_sk_shift(OPENSSL_STACK *sk) {
302   if (sk == NULL) {
303     return NULL;
304   }
305   if (sk->num == 0) {
306     return NULL;
307   }
308   return OPENSSL_sk_delete(sk, 0);
309 }
310 
OPENSSL_sk_push(OPENSSL_STACK * sk,void * p)311 size_t OPENSSL_sk_push(OPENSSL_STACK *sk, void *p) {
312   return OPENSSL_sk_insert(sk, p, sk->num);
313 }
314 
OPENSSL_sk_pop(OPENSSL_STACK * sk)315 void *OPENSSL_sk_pop(OPENSSL_STACK *sk) {
316   if (sk == NULL) {
317     return NULL;
318   }
319   if (sk->num == 0) {
320     return NULL;
321   }
322   return OPENSSL_sk_delete(sk, sk->num - 1);
323 }
324 
OPENSSL_sk_dup(const OPENSSL_STACK * sk)325 OPENSSL_STACK *OPENSSL_sk_dup(const OPENSSL_STACK *sk) {
326   if (sk == NULL) {
327     return NULL;
328   }
329 
330   OPENSSL_STACK *ret =
331       reinterpret_cast<OPENSSL_STACK *>(OPENSSL_zalloc(sizeof(OPENSSL_STACK)));
332   if (ret == NULL) {
333     return NULL;
334   }
335 
336   ret->data = reinterpret_cast<void **>(
337       OPENSSL_memdup(sk->data, sizeof(void *) * sk->num_alloc));
338   if (ret->data == NULL) {
339     goto err;
340   }
341 
342   ret->num = sk->num;
343   ret->sorted = sk->sorted;
344   ret->num_alloc = sk->num_alloc;
345   ret->comp = sk->comp;
346   return ret;
347 
348 err:
349   OPENSSL_sk_free(ret);
350   return NULL;
351 }
352 
parent_idx(size_t idx)353 static size_t parent_idx(size_t idx) {
354   assert(idx > 0);
355   return (idx - 1) / 2;
356 }
357 
left_idx(size_t idx)358 static size_t left_idx(size_t idx) {
359   // The largest possible index is |PTRDIFF_MAX|, not |SIZE_MAX|. If
360   // |ptrdiff_t|, a signed type, is the same size as |size_t|, this cannot
361   // overflow.
362   assert(idx <= PTRDIFF_MAX);
363   static_assert(PTRDIFF_MAX <= (SIZE_MAX - 1) / 2, "2 * idx + 1 may oveflow");
364   return 2 * idx + 1;
365 }
366 
367 // down_heap fixes the subtree rooted at |i|. |i|'s children must each satisfy
368 // the heap property. Only the first |num| elements of |sk| are considered.
down_heap(OPENSSL_STACK * sk,OPENSSL_sk_call_cmp_func call_cmp_func,size_t i,size_t num)369 static void down_heap(OPENSSL_STACK *sk, OPENSSL_sk_call_cmp_func call_cmp_func,
370                       size_t i, size_t num) {
371   assert(i < num && num <= sk->num);
372   for (;;) {
373     size_t left = left_idx(i);
374     if (left >= num) {
375       break;  // No left child.
376     }
377 
378     // Swap |i| with the largest of its children.
379     size_t next = i;
380     if (call_cmp_func(sk->comp, sk->data[next], sk->data[left]) < 0) {
381       next = left;
382     }
383     size_t right = left + 1;  // Cannot overflow because |left < num|.
384     if (right < num &&
385         call_cmp_func(sk->comp, sk->data[next], sk->data[right]) < 0) {
386       next = right;
387     }
388 
389     if (i == next) {
390       break;  // |i| is already larger than its children.
391     }
392 
393     void *tmp = sk->data[i];
394     sk->data[i] = sk->data[next];
395     sk->data[next] = tmp;
396     i = next;
397   }
398 }
399 
OPENSSL_sk_sort(OPENSSL_STACK * sk,OPENSSL_sk_call_cmp_func call_cmp_func)400 void OPENSSL_sk_sort(OPENSSL_STACK *sk,
401                      OPENSSL_sk_call_cmp_func call_cmp_func) {
402   if (sk == NULL || sk->comp == NULL || sk->sorted) {
403     return;
404   }
405 
406   if (sk->num >= 2) {
407     // |qsort| lacks a context parameter in the comparison function for us to
408     // pass in |call_cmp_func| and |sk->comp|. While we could cast |sk->comp| to
409     // the expected type, it is undefined behavior in C can trip sanitizers.
410     // |qsort_r| and |qsort_s| avoid this, but using them is impractical. See
411     // https://stackoverflow.com/a/39561369
412     //
413     // Use our own heap sort instead. This is not performance-sensitive, so we
414     // optimize for simplicity and size. First, build a max-heap in place.
415     for (size_t i = parent_idx(sk->num - 1); i < sk->num; i--) {
416       down_heap(sk, call_cmp_func, i, sk->num);
417     }
418 
419     // Iteratively remove the maximum element to populate the result in reverse.
420     for (size_t i = sk->num - 1; i > 0; i--) {
421       void *tmp = sk->data[0];
422       sk->data[0] = sk->data[i];
423       sk->data[i] = tmp;
424       down_heap(sk, call_cmp_func, 0, i);
425     }
426   }
427   sk->sorted = 1;
428 }
429 
OPENSSL_sk_is_sorted(const OPENSSL_STACK * sk)430 int OPENSSL_sk_is_sorted(const OPENSSL_STACK *sk) {
431   if (!sk) {
432     return 1;
433   }
434   // Zero- and one-element lists are always sorted.
435   return sk->sorted || (sk->comp != NULL && sk->num < 2);
436 }
437 
OPENSSL_sk_set_cmp_func(OPENSSL_STACK * sk,OPENSSL_sk_cmp_func comp)438 OPENSSL_sk_cmp_func OPENSSL_sk_set_cmp_func(OPENSSL_STACK *sk,
439                                             OPENSSL_sk_cmp_func comp) {
440   OPENSSL_sk_cmp_func old = sk->comp;
441 
442   if (sk->comp != comp) {
443     sk->sorted = 0;
444   }
445   sk->comp = comp;
446 
447   return old;
448 }
449 
OPENSSL_sk_deep_copy(const OPENSSL_STACK * sk,OPENSSL_sk_call_copy_func call_copy_func,OPENSSL_sk_copy_func copy_func,OPENSSL_sk_call_free_func call_free_func,OPENSSL_sk_free_func free_func)450 OPENSSL_STACK *OPENSSL_sk_deep_copy(const OPENSSL_STACK *sk,
451                                     OPENSSL_sk_call_copy_func call_copy_func,
452                                     OPENSSL_sk_copy_func copy_func,
453                                     OPENSSL_sk_call_free_func call_free_func,
454                                     OPENSSL_sk_free_func free_func) {
455   OPENSSL_STACK *ret = OPENSSL_sk_dup(sk);
456   if (ret == NULL) {
457     return NULL;
458   }
459 
460   for (size_t i = 0; i < ret->num; i++) {
461     if (ret->data[i] == NULL) {
462       continue;
463     }
464     ret->data[i] = call_copy_func(copy_func, ret->data[i]);
465     if (ret->data[i] == NULL) {
466       for (size_t j = 0; j < i; j++) {
467         if (ret->data[j] != NULL) {
468           call_free_func(free_func, ret->data[j]);
469         }
470       }
471       OPENSSL_sk_free(ret);
472       return NULL;
473     }
474   }
475 
476   return ret;
477 }
478 
sk_new_null(void)479 OPENSSL_STACK *sk_new_null(void) { return OPENSSL_sk_new_null(); }
480 
sk_num(const OPENSSL_STACK * sk)481 size_t sk_num(const OPENSSL_STACK *sk) { return OPENSSL_sk_num(sk); }
482 
sk_value(const OPENSSL_STACK * sk,size_t i)483 void *sk_value(const OPENSSL_STACK *sk, size_t i) {
484   return OPENSSL_sk_value(sk, i);
485 }
486 
sk_free(OPENSSL_STACK * sk)487 void sk_free(OPENSSL_STACK *sk) { OPENSSL_sk_free(sk); }
488 
sk_push(OPENSSL_STACK * sk,void * p)489 size_t sk_push(OPENSSL_STACK *sk, void *p) { return OPENSSL_sk_push(sk, p); }
490 
sk_pop(OPENSSL_STACK * sk)491 void *sk_pop(OPENSSL_STACK *sk) { return OPENSSL_sk_pop(sk); }
492 
sk_pop_free_ex(OPENSSL_STACK * sk,OPENSSL_sk_call_free_func call_free_func,OPENSSL_sk_free_func free_func)493 void sk_pop_free_ex(OPENSSL_STACK *sk, OPENSSL_sk_call_free_func call_free_func,
494                     OPENSSL_sk_free_func free_func) {
495   OPENSSL_sk_pop_free_ex(sk, call_free_func, free_func);
496 }
497