1 // Copyright 1995-2016 The OpenSSL Project Authors. All Rights Reserved.
2 // Copyright (c) 2002, Oracle and/or its affiliates. All rights reserved.
3 //
4 // Licensed under the Apache License, Version 2.0 (the "License");
5 // you may not use this file except in compliance with the License.
6 // You may obtain a copy of the License at
7 //
8 // https://www.apache.org/licenses/LICENSE-2.0
9 //
10 // Unless required by applicable law or agreed to in writing, software
11 // distributed under the License is distributed on an "AS IS" BASIS,
12 // WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
13 // See the License for the specific language governing permissions and
14 // limitations under the License.
15
16 #ifndef OPENSSL_HEADER_BN_H
17 #define OPENSSL_HEADER_BN_H
18
19 #include <openssl/base.h> // IWYU pragma: export
20
21 #include <inttypes.h> // for PRIu64 and friends
22 #include <stdio.h> // for FILE*
23
24 #if defined(__cplusplus)
25 extern "C" {
26 #endif
27
28
29 // BN provides support for working with arbitrary sized integers. For example,
30 // although the largest integer supported by the compiler might be 64 bits, BN
31 // will allow you to work with much larger numbers.
32 //
33 // This library is developed for use inside BoringSSL, and uses implementation
34 // strategies that may not be ideal for other applications. Non-cryptographic
35 // uses should use a more general-purpose integer library, especially if
36 // performance-sensitive.
37 //
38 // Many functions in BN scale quadratically or higher in the bit length of their
39 // input. Callers at this layer are assumed to have capped input sizes within
40 // their performance tolerances.
41
42
43 // BN_ULONG is the native word size when working with big integers.
44 //
45 // Note: on some platforms, inttypes.h does not define print format macros in
46 // C++ unless |__STDC_FORMAT_MACROS| defined. This is due to text in C99 which
47 // was never adopted in any C++ standard and explicitly overruled in C++11. As
48 // this is a public header, bn.h does not define |__STDC_FORMAT_MACROS| itself.
49 // Projects which use |BN_*_FMT*| with outdated C headers may need to define it
50 // externally.
51 #if defined(OPENSSL_64_BIT)
52 typedef uint64_t BN_ULONG;
53 #define BN_BITS2 64
54 #define BN_DEC_FMT1 "%" PRIu64
55 #define BN_HEX_FMT1 "%" PRIx64
56 #define BN_HEX_FMT2 "%016" PRIx64
57 #elif defined(OPENSSL_32_BIT)
58 typedef uint32_t BN_ULONG;
59 #define BN_BITS2 32
60 #define BN_DEC_FMT1 "%" PRIu32
61 #define BN_HEX_FMT1 "%" PRIx32
62 #define BN_HEX_FMT2 "%08" PRIx32
63 #else
64 #error "Must define either OPENSSL_32_BIT or OPENSSL_64_BIT"
65 #endif
66
67
68 // Allocation and freeing.
69
70 // BN_new creates a new, allocated BIGNUM and initialises it.
71 OPENSSL_EXPORT BIGNUM *BN_new(void);
72
73 // BN_init initialises a stack allocated |BIGNUM|.
74 OPENSSL_EXPORT void BN_init(BIGNUM *bn);
75
76 // BN_free frees the data referenced by |bn| and, if |bn| was originally
77 // allocated on the heap, frees |bn| also.
78 OPENSSL_EXPORT void BN_free(BIGNUM *bn);
79
80 // BN_clear_free erases and frees the data referenced by |bn| and, if |bn| was
81 // originally allocated on the heap, frees |bn| also.
82 OPENSSL_EXPORT void BN_clear_free(BIGNUM *bn);
83
84 // BN_dup allocates a new BIGNUM and sets it equal to |src|. It returns the
85 // allocated BIGNUM on success or NULL otherwise.
86 OPENSSL_EXPORT BIGNUM *BN_dup(const BIGNUM *src);
87
88 // BN_copy sets |dest| equal to |src| and returns |dest| or NULL on allocation
89 // failure.
90 OPENSSL_EXPORT BIGNUM *BN_copy(BIGNUM *dest, const BIGNUM *src);
91
92 // BN_clear sets |bn| to zero and erases the old data.
93 OPENSSL_EXPORT void BN_clear(BIGNUM *bn);
94
95 // BN_value_one returns a static BIGNUM with value 1.
96 OPENSSL_EXPORT const BIGNUM *BN_value_one(void);
97
98
99 // Basic functions.
100
101 // BN_num_bits returns the minimum number of bits needed to represent the
102 // absolute value of |bn|.
103 OPENSSL_EXPORT unsigned BN_num_bits(const BIGNUM *bn);
104
105 // BN_num_bytes returns the minimum number of bytes needed to represent the
106 // absolute value of |bn|.
107 //
108 // While |size_t| is the preferred type for byte counts, callers can assume that
109 // |BIGNUM|s are bounded such that this value, and its corresponding bit count,
110 // will always fit in |int|.
111 OPENSSL_EXPORT unsigned BN_num_bytes(const BIGNUM *bn);
112
113 // BN_zero sets |bn| to zero.
114 OPENSSL_EXPORT void BN_zero(BIGNUM *bn);
115
116 // BN_one sets |bn| to one. It returns one on success or zero on allocation
117 // failure.
118 OPENSSL_EXPORT int BN_one(BIGNUM *bn);
119
120 // BN_set_word sets |bn| to |value|. It returns one on success or zero on
121 // allocation failure.
122 OPENSSL_EXPORT int BN_set_word(BIGNUM *bn, BN_ULONG value);
123
124 // BN_set_u64 sets |bn| to |value|. It returns one on success or zero on
125 // allocation failure.
126 OPENSSL_EXPORT int BN_set_u64(BIGNUM *bn, uint64_t value);
127
128 // BN_set_negative sets the sign of |bn|.
129 OPENSSL_EXPORT void BN_set_negative(BIGNUM *bn, int sign);
130
131 // BN_is_negative returns one if |bn| is negative and zero otherwise.
132 OPENSSL_EXPORT int BN_is_negative(const BIGNUM *bn);
133
134
135 // Conversion functions.
136
137 // BN_bin2bn sets |*ret| to the value of |len| bytes from |in|, interpreted as
138 // a big-endian number, and returns |ret|. If |ret| is NULL then a fresh
139 // |BIGNUM| is allocated and returned. It returns NULL on allocation
140 // failure.
141 OPENSSL_EXPORT BIGNUM *BN_bin2bn(const uint8_t *in, size_t len, BIGNUM *ret);
142
143 // BN_bn2bin serialises the absolute value of |in| to |out| as a big-endian
144 // integer, which must have |BN_num_bytes| of space available. It returns the
145 // number of bytes written. Note this function leaks the magnitude of |in|. If
146 // |in| is secret, use |BN_bn2bin_padded| instead.
147 OPENSSL_EXPORT size_t BN_bn2bin(const BIGNUM *in, uint8_t *out);
148
149 // BN_lebin2bn sets |*ret| to the value of |len| bytes from |in|, interpreted as
150 // a little-endian number, and returns |ret|. If |ret| is NULL then a fresh
151 // |BIGNUM| is allocated and returned. It returns NULL on allocation
152 // failure.
153 OPENSSL_EXPORT BIGNUM *BN_lebin2bn(const uint8_t *in, size_t len, BIGNUM *ret);
154
155 // BN_bn2le_padded serialises the absolute value of |in| to |out| as a
156 // little-endian integer, which must have |len| of space available, padding
157 // out the remainder of out with zeros. If |len| is smaller than |BN_num_bytes|,
158 // the function fails and returns 0. Otherwise, it returns 1.
159 OPENSSL_EXPORT int BN_bn2le_padded(uint8_t *out, size_t len, const BIGNUM *in);
160
161 // BN_bn2bin_padded serialises the absolute value of |in| to |out| as a
162 // big-endian integer. The integer is padded with leading zeros up to size
163 // |len|. If |len| is smaller than |BN_num_bytes|, the function fails and
164 // returns 0. Otherwise, it returns 1.
165 OPENSSL_EXPORT int BN_bn2bin_padded(uint8_t *out, size_t len, const BIGNUM *in);
166
167 // BN_bn2cbb_padded behaves like |BN_bn2bin_padded| but writes to a |CBB|.
168 OPENSSL_EXPORT int BN_bn2cbb_padded(CBB *out, size_t len, const BIGNUM *in);
169
170 // BN_bn2hex returns an allocated string that contains a NUL-terminated, hex
171 // representation of |bn|. If |bn| is negative, the first char in the resulting
172 // string will be '-'. Returns NULL on allocation failure.
173 OPENSSL_EXPORT char *BN_bn2hex(const BIGNUM *bn);
174
175 // BN_hex2bn parses the leading hex number from |in|, which may be proceeded by
176 // a '-' to indicate a negative number and may contain trailing, non-hex data.
177 // If |outp| is not NULL, it constructs a BIGNUM equal to the hex number and
178 // stores it in |*outp|. If |*outp| is NULL then it allocates a new BIGNUM and
179 // updates |*outp|. It returns the number of bytes of |in| processed or zero on
180 // error.
181 OPENSSL_EXPORT int BN_hex2bn(BIGNUM **outp, const char *in);
182
183 // BN_bn2dec returns an allocated string that contains a NUL-terminated,
184 // decimal representation of |bn|. If |bn| is negative, the first char in the
185 // resulting string will be '-'. Returns NULL on allocation failure.
186 //
187 // Converting an arbitrarily large integer to decimal is quadratic in the bit
188 // length of |a|. This function assumes the caller has capped the input within
189 // performance tolerances.
190 OPENSSL_EXPORT char *BN_bn2dec(const BIGNUM *a);
191
192 // BN_dec2bn parses the leading decimal number from |in|, which may be
193 // proceeded by a '-' to indicate a negative number and may contain trailing,
194 // non-decimal data. If |outp| is not NULL, it constructs a BIGNUM equal to the
195 // decimal number and stores it in |*outp|. If |*outp| is NULL then it
196 // allocates a new BIGNUM and updates |*outp|. It returns the number of bytes
197 // of |in| processed or zero on error.
198 //
199 // Converting an arbitrarily large integer to decimal is quadratic in the bit
200 // length of |a|. This function assumes the caller has capped the input within
201 // performance tolerances.
202 OPENSSL_EXPORT int BN_dec2bn(BIGNUM **outp, const char *in);
203
204 // BN_asc2bn acts like |BN_dec2bn| or |BN_hex2bn| depending on whether |in|
205 // begins with "0X" or "0x" (indicating hex) or not (indicating decimal). A
206 // leading '-' is still permitted and comes before the optional 0X/0x. It
207 // returns one on success or zero on error.
208 OPENSSL_EXPORT int BN_asc2bn(BIGNUM **outp, const char *in);
209
210 // BN_print writes a hex encoding of |a| to |bio|. It returns one on success
211 // and zero on error.
212 OPENSSL_EXPORT int BN_print(BIO *bio, const BIGNUM *a);
213
214 // BN_print_fp acts like |BIO_print|, but wraps |fp| in a |BIO| first.
215 OPENSSL_EXPORT int BN_print_fp(FILE *fp, const BIGNUM *a);
216
217 // BN_get_word returns the absolute value of |bn| as a single word. If |bn| is
218 // too large to be represented as a single word, the maximum possible value
219 // will be returned.
220 OPENSSL_EXPORT BN_ULONG BN_get_word(const BIGNUM *bn);
221
222 // BN_get_u64 sets |*out| to the absolute value of |bn| as a |uint64_t| and
223 // returns one. If |bn| is too large to be represented as a |uint64_t|, it
224 // returns zero.
225 OPENSSL_EXPORT int BN_get_u64(const BIGNUM *bn, uint64_t *out);
226
227
228 // ASN.1 functions.
229
230 // BN_parse_asn1_unsigned parses a non-negative DER INTEGER from |cbs| writes
231 // the result to |ret|. It returns one on success and zero on failure.
232 OPENSSL_EXPORT int BN_parse_asn1_unsigned(CBS *cbs, BIGNUM *ret);
233
234 // BN_marshal_asn1 marshals |bn| as a non-negative DER INTEGER and appends the
235 // result to |cbb|. It returns one on success and zero on failure.
236 OPENSSL_EXPORT int BN_marshal_asn1(CBB *cbb, const BIGNUM *bn);
237
238
239 // BIGNUM pools.
240 //
241 // Certain BIGNUM operations need to use many temporary variables and
242 // allocating and freeing them can be quite slow. Thus such operations typically
243 // take a |BN_CTX| parameter, which contains a pool of |BIGNUMs|. The |ctx|
244 // argument to a public function may be NULL, in which case a local |BN_CTX|
245 // will be created just for the lifetime of that call.
246 //
247 // A function must call |BN_CTX_start| first. Then, |BN_CTX_get| may be called
248 // repeatedly to obtain temporary |BIGNUM|s. All |BN_CTX_get| calls must be made
249 // before calling any other functions that use the |ctx| as an argument.
250 //
251 // Finally, |BN_CTX_end| must be called before returning from the function.
252 // When |BN_CTX_end| is called, the |BIGNUM| pointers obtained from
253 // |BN_CTX_get| become invalid.
254
255 // BN_CTX_new returns a new, empty BN_CTX or NULL on allocation failure.
256 OPENSSL_EXPORT BN_CTX *BN_CTX_new(void);
257
258 // BN_CTX_free frees all BIGNUMs contained in |ctx| and then frees |ctx|
259 // itself.
260 OPENSSL_EXPORT void BN_CTX_free(BN_CTX *ctx);
261
262 // BN_CTX_start "pushes" a new entry onto the |ctx| stack and allows future
263 // calls to |BN_CTX_get|.
264 OPENSSL_EXPORT void BN_CTX_start(BN_CTX *ctx);
265
266 // BN_CTX_get returns a new |BIGNUM|, or NULL on allocation failure. Once
267 // |BN_CTX_get| has returned NULL, all future calls will also return NULL until
268 // |BN_CTX_end| is called.
269 OPENSSL_EXPORT BIGNUM *BN_CTX_get(BN_CTX *ctx);
270
271 // BN_CTX_end invalidates all |BIGNUM|s returned from |BN_CTX_get| since the
272 // matching |BN_CTX_start| call.
273 OPENSSL_EXPORT void BN_CTX_end(BN_CTX *ctx);
274
275
276 // Simple arithmetic
277
278 // BN_add sets |r| = |a| + |b|, where |r| may be the same pointer as either |a|
279 // or |b|. It returns one on success and zero on allocation failure.
280 OPENSSL_EXPORT int BN_add(BIGNUM *r, const BIGNUM *a, const BIGNUM *b);
281
282 // BN_uadd sets |r| = |a| + |b|, considering only the absolute values of |a| and
283 // |b|. |r| may be the same pointer as either |a| or |b|. It returns one on
284 // success and zero on allocation failure.
285 OPENSSL_EXPORT int BN_uadd(BIGNUM *r, const BIGNUM *a, const BIGNUM *b);
286
287 // BN_add_word adds |w| to |a|. It returns one on success and zero otherwise.
288 OPENSSL_EXPORT int BN_add_word(BIGNUM *a, BN_ULONG w);
289
290 // BN_sub sets |r| = |a| - |b|, where |r| may be the same pointer as either |a|
291 // or |b|. It returns one on success and zero on allocation failure.
292 OPENSSL_EXPORT int BN_sub(BIGNUM *r, const BIGNUM *a, const BIGNUM *b);
293
294 // BN_usub sets |r| = |a| - |b|, considering only the absolute values of |a| and
295 // |b|. The result must be non-negative, i.e. |b| <= |a|. |r| may be the same
296 // pointer as either |a| or |b|. It returns one on success and zero on error.
297 OPENSSL_EXPORT int BN_usub(BIGNUM *r, const BIGNUM *a, const BIGNUM *b);
298
299 // BN_sub_word subtracts |w| from |a|. It returns one on success and zero on
300 // allocation failure.
301 OPENSSL_EXPORT int BN_sub_word(BIGNUM *a, BN_ULONG w);
302
303 // BN_mul sets |r| = |a| * |b|, where |r| may be the same pointer as |a| or
304 // |b|. Returns one on success and zero otherwise.
305 OPENSSL_EXPORT int BN_mul(BIGNUM *r, const BIGNUM *a, const BIGNUM *b,
306 BN_CTX *ctx);
307
308 // BN_mul_word sets |bn| = |bn| * |w|. It returns one on success or zero on
309 // allocation failure.
310 OPENSSL_EXPORT int BN_mul_word(BIGNUM *bn, BN_ULONG w);
311
312 // BN_sqr sets |r| = |a|^2 (i.e. squares), where |r| may be the same pointer as
313 // |a|. Returns one on success and zero otherwise. This is more efficient than
314 // BN_mul(r, a, a, ctx).
315 OPENSSL_EXPORT int BN_sqr(BIGNUM *r, const BIGNUM *a, BN_CTX *ctx);
316
317 // BN_div divides |numerator| by |divisor| and places the result in |quotient|
318 // and the remainder in |rem|. Either of |quotient| or |rem| may be NULL, in
319 // which case the respective value is not returned. It returns one on success or
320 // zero on error. It is an error condition if |divisor| is zero.
321 //
322 // The outputs will be such that |quotient| * |divisor| + |rem| = |numerator|,
323 // with the quotient rounded towards zero. Thus, if |numerator| is negative,
324 // |rem| will be zero or negative. If |divisor| is negative, the sign of
325 // |quotient| will be flipped to compensate but otherwise rounding will be as if
326 // |divisor| were its absolute value.
327 OPENSSL_EXPORT int BN_div(BIGNUM *quotient, BIGNUM *rem,
328 const BIGNUM *numerator, const BIGNUM *divisor,
329 BN_CTX *ctx);
330
331 // BN_div_word sets |numerator| = |numerator|/|divisor| and returns the
332 // remainder or (BN_ULONG)-1 on error.
333 OPENSSL_EXPORT BN_ULONG BN_div_word(BIGNUM *numerator, BN_ULONG divisor);
334
335 // BN_sqrt sets |*out_sqrt| (which may be the same |BIGNUM| as |in|) to the
336 // square root of |in|, using |ctx|. It returns one on success or zero on
337 // error. Negative numbers and non-square numbers will result in an error with
338 // appropriate errors on the error queue.
339 OPENSSL_EXPORT int BN_sqrt(BIGNUM *out_sqrt, const BIGNUM *in, BN_CTX *ctx);
340
341
342 // Comparison functions
343
344 // BN_cmp returns a value less than, equal to or greater than zero if |a| is
345 // less than, equal to or greater than |b|, respectively.
346 OPENSSL_EXPORT int BN_cmp(const BIGNUM *a, const BIGNUM *b);
347
348 // BN_cmp_word is like |BN_cmp| except it takes its second argument as a
349 // |BN_ULONG| instead of a |BIGNUM|.
350 OPENSSL_EXPORT int BN_cmp_word(const BIGNUM *a, BN_ULONG b);
351
352 // BN_ucmp returns a value less than, equal to or greater than zero if the
353 // absolute value of |a| is less than, equal to or greater than the absolute
354 // value of |b|, respectively.
355 OPENSSL_EXPORT int BN_ucmp(const BIGNUM *a, const BIGNUM *b);
356
357 // BN_equal_consttime returns one if |a| is equal to |b|, and zero otherwise.
358 // It takes an amount of time dependent on the sizes of |a| and |b|, but
359 // independent of the contents (including the signs) of |a| and |b|.
360 OPENSSL_EXPORT int BN_equal_consttime(const BIGNUM *a, const BIGNUM *b);
361
362 // BN_abs_is_word returns one if the absolute value of |bn| equals |w| and zero
363 // otherwise.
364 OPENSSL_EXPORT int BN_abs_is_word(const BIGNUM *bn, BN_ULONG w);
365
366 // BN_is_zero returns one if |bn| is zero and zero otherwise.
367 OPENSSL_EXPORT int BN_is_zero(const BIGNUM *bn);
368
369 // BN_is_one returns one if |bn| equals one and zero otherwise.
370 OPENSSL_EXPORT int BN_is_one(const BIGNUM *bn);
371
372 // BN_is_word returns one if |bn| is exactly |w| and zero otherwise.
373 OPENSSL_EXPORT int BN_is_word(const BIGNUM *bn, BN_ULONG w);
374
375 // BN_is_odd returns one if |bn| is odd and zero otherwise.
376 OPENSSL_EXPORT int BN_is_odd(const BIGNUM *bn);
377
378 // BN_is_pow2 returns 1 if |a| is a power of two, and 0 otherwise.
379 OPENSSL_EXPORT int BN_is_pow2(const BIGNUM *a);
380
381
382 // Bitwise operations.
383
384 // BN_lshift sets |r| equal to |a| << n. The |a| and |r| arguments may be the
385 // same |BIGNUM|. It returns one on success and zero on allocation failure.
386 OPENSSL_EXPORT int BN_lshift(BIGNUM *r, const BIGNUM *a, int n);
387
388 // BN_lshift1 sets |r| equal to |a| << 1, where |r| and |a| may be the same
389 // pointer. It returns one on success and zero on allocation failure.
390 OPENSSL_EXPORT int BN_lshift1(BIGNUM *r, const BIGNUM *a);
391
392 // BN_rshift sets |r| equal to |a| >> n, where |r| and |a| may be the same
393 // pointer. It returns one on success and zero on allocation failure.
394 OPENSSL_EXPORT int BN_rshift(BIGNUM *r, const BIGNUM *a, int n);
395
396 // BN_rshift1 sets |r| equal to |a| >> 1, where |r| and |a| may be the same
397 // pointer. It returns one on success and zero on allocation failure.
398 OPENSSL_EXPORT int BN_rshift1(BIGNUM *r, const BIGNUM *a);
399
400 // BN_set_bit sets the |n|th, least-significant bit in |a|. For example, if |a|
401 // is 2 then setting bit zero will make it 3. It returns one on success or zero
402 // on allocation failure.
403 OPENSSL_EXPORT int BN_set_bit(BIGNUM *a, int n);
404
405 // BN_clear_bit clears the |n|th, least-significant bit in |a|. For example, if
406 // |a| is 3, clearing bit zero will make it two. It returns one on success or
407 // zero on allocation failure.
408 OPENSSL_EXPORT int BN_clear_bit(BIGNUM *a, int n);
409
410 // BN_is_bit_set returns one if the |n|th least-significant bit in |a| exists
411 // and is set. Otherwise, it returns zero.
412 OPENSSL_EXPORT int BN_is_bit_set(const BIGNUM *a, int n);
413
414 // BN_mask_bits truncates |a| so that it is only |n| bits long. It returns one
415 // on success or zero if |n| is negative.
416 //
417 // This differs from OpenSSL which additionally returns zero if |a|'s word
418 // length is less than or equal to |n|, rounded down to a number of words. Note
419 // word size is platform-dependent, so this behavior is also difficult to rely
420 // on in OpenSSL and not very useful.
421 OPENSSL_EXPORT int BN_mask_bits(BIGNUM *a, int n);
422
423 // BN_count_low_zero_bits returns the number of low-order zero bits in |bn|, or
424 // the number of factors of two which divide it. It returns zero if |bn| is
425 // zero.
426 OPENSSL_EXPORT int BN_count_low_zero_bits(const BIGNUM *bn);
427
428
429 // Modulo arithmetic.
430
431 // BN_mod_word returns |a| mod |w| or (BN_ULONG)-1 on error.
432 OPENSSL_EXPORT BN_ULONG BN_mod_word(const BIGNUM *a, BN_ULONG w);
433
434 // BN_mod_pow2 sets |r| = |a| mod 2^|e|. It returns 1 on success and
435 // 0 on error.
436 OPENSSL_EXPORT int BN_mod_pow2(BIGNUM *r, const BIGNUM *a, size_t e);
437
438 // BN_nnmod_pow2 sets |r| = |a| mod 2^|e| where |r| is always positive.
439 // It returns 1 on success and 0 on error.
440 OPENSSL_EXPORT int BN_nnmod_pow2(BIGNUM *r, const BIGNUM *a, size_t e);
441
442 // BN_mod is a helper macro that calls |BN_div| and discards the quotient.
443 #define BN_mod(rem, numerator, divisor, ctx) \
444 BN_div(NULL, (rem), (numerator), (divisor), (ctx))
445
446 // BN_nnmod is a non-negative modulo function. It acts like |BN_mod|, but 0 <=
447 // |rem| < |divisor| is always true. It returns one on success and zero on
448 // error.
449 OPENSSL_EXPORT int BN_nnmod(BIGNUM *rem, const BIGNUM *numerator,
450 const BIGNUM *divisor, BN_CTX *ctx);
451
452 // BN_mod_add sets |r| = |a| + |b| mod |m|. It returns one on success and zero
453 // on error.
454 OPENSSL_EXPORT int BN_mod_add(BIGNUM *r, const BIGNUM *a, const BIGNUM *b,
455 const BIGNUM *m, BN_CTX *ctx);
456
457 // BN_mod_add_quick acts like |BN_mod_add| but requires that |a| and |b| be
458 // non-negative and less than |m|.
459 OPENSSL_EXPORT int BN_mod_add_quick(BIGNUM *r, const BIGNUM *a, const BIGNUM *b,
460 const BIGNUM *m);
461
462 // BN_mod_sub sets |r| = |a| - |b| mod |m|. It returns one on success and zero
463 // on error.
464 OPENSSL_EXPORT int BN_mod_sub(BIGNUM *r, const BIGNUM *a, const BIGNUM *b,
465 const BIGNUM *m, BN_CTX *ctx);
466
467 // BN_mod_sub_quick acts like |BN_mod_sub| but requires that |a| and |b| be
468 // non-negative and less than |m|.
469 OPENSSL_EXPORT int BN_mod_sub_quick(BIGNUM *r, const BIGNUM *a, const BIGNUM *b,
470 const BIGNUM *m);
471
472 // BN_mod_mul sets |r| = |a|*|b| mod |m|. It returns one on success and zero
473 // on error.
474 OPENSSL_EXPORT int BN_mod_mul(BIGNUM *r, const BIGNUM *a, const BIGNUM *b,
475 const BIGNUM *m, BN_CTX *ctx);
476
477 // BN_mod_sqr sets |r| = |a|^2 mod |m|. It returns one on success and zero
478 // on error.
479 OPENSSL_EXPORT int BN_mod_sqr(BIGNUM *r, const BIGNUM *a, const BIGNUM *m,
480 BN_CTX *ctx);
481
482 // BN_mod_lshift sets |r| = (|a| << n) mod |m|, where |r| and |a| may be the
483 // same pointer. It returns one on success and zero on error.
484 OPENSSL_EXPORT int BN_mod_lshift(BIGNUM *r, const BIGNUM *a, int n,
485 const BIGNUM *m, BN_CTX *ctx);
486
487 // BN_mod_lshift_quick acts like |BN_mod_lshift| but requires that |a| be
488 // non-negative and less than |m|.
489 OPENSSL_EXPORT int BN_mod_lshift_quick(BIGNUM *r, const BIGNUM *a, int n,
490 const BIGNUM *m);
491
492 // BN_mod_lshift1 sets |r| = (|a| << 1) mod |m|, where |r| and |a| may be the
493 // same pointer. It returns one on success and zero on error.
494 OPENSSL_EXPORT int BN_mod_lshift1(BIGNUM *r, const BIGNUM *a, const BIGNUM *m,
495 BN_CTX *ctx);
496
497 // BN_mod_lshift1_quick acts like |BN_mod_lshift1| but requires that |a| be
498 // non-negative and less than |m|.
499 OPENSSL_EXPORT int BN_mod_lshift1_quick(BIGNUM *r, const BIGNUM *a,
500 const BIGNUM *m);
501
502 // BN_mod_sqrt returns a newly-allocated |BIGNUM|, r, such that
503 // r^2 == a (mod p). It returns NULL on error or if |a| is not a square mod |p|.
504 // In the latter case, it will add |BN_R_NOT_A_SQUARE| to the error queue.
505 // If |a| is a square and |p| > 2, there are two possible square roots. This
506 // function may return either and may even select one non-deterministically.
507 //
508 // This function only works if |p| is a prime. If |p| is composite, it may fail
509 // or return an arbitrary value. Callers should not pass attacker-controlled
510 // values of |p|.
511 OPENSSL_EXPORT BIGNUM *BN_mod_sqrt(BIGNUM *in, const BIGNUM *a, const BIGNUM *p,
512 BN_CTX *ctx);
513
514
515 // Random and prime number generation.
516
517 // The following are values for the |top| parameter of |BN_rand|.
518 #define BN_RAND_TOP_ANY (-1)
519 #define BN_RAND_TOP_ONE 0
520 #define BN_RAND_TOP_TWO 1
521
522 // The following are values for the |bottom| parameter of |BN_rand|.
523 #define BN_RAND_BOTTOM_ANY 0
524 #define BN_RAND_BOTTOM_ODD 1
525
526 // BN_rand sets |rnd| to a random number of length |bits|. It returns one on
527 // success and zero otherwise.
528 //
529 // |top| must be one of the |BN_RAND_TOP_*| values. If |BN_RAND_TOP_ONE|, the
530 // most-significant bit, if any, will be set. If |BN_RAND_TOP_TWO|, the two
531 // most significant bits, if any, will be set. If |BN_RAND_TOP_ANY|, no extra
532 // action will be taken and |BN_num_bits(rnd)| may not equal |bits| if the most
533 // significant bits randomly ended up as zeros.
534 //
535 // |bottom| must be one of the |BN_RAND_BOTTOM_*| values. If
536 // |BN_RAND_BOTTOM_ODD|, the least-significant bit, if any, will be set. If
537 // |BN_RAND_BOTTOM_ANY|, no extra action will be taken.
538 OPENSSL_EXPORT int BN_rand(BIGNUM *rnd, int bits, int top, int bottom);
539
540 // BN_pseudo_rand is an alias for |BN_rand|.
541 OPENSSL_EXPORT int BN_pseudo_rand(BIGNUM *rnd, int bits, int top, int bottom);
542
543 // BN_rand_range is equivalent to |BN_rand_range_ex| with |min_inclusive| set
544 // to zero and |max_exclusive| set to |range|.
545 OPENSSL_EXPORT int BN_rand_range(BIGNUM *rnd, const BIGNUM *range);
546
547 // BN_rand_range_ex sets |rnd| to a random value in
548 // [min_inclusive..max_exclusive). It returns one on success and zero
549 // otherwise.
550 OPENSSL_EXPORT int BN_rand_range_ex(BIGNUM *r, BN_ULONG min_inclusive,
551 const BIGNUM *max_exclusive);
552
553 // BN_pseudo_rand_range is an alias for BN_rand_range.
554 OPENSSL_EXPORT int BN_pseudo_rand_range(BIGNUM *rnd, const BIGNUM *range);
555
556 #define BN_GENCB_GENERATED 0
557 #define BN_GENCB_PRIME_TEST 1
558
559 // bn_gencb_st, or |BN_GENCB|, holds a callback function that is used by
560 // generation functions that can take a very long time to complete. Use
561 // |BN_GENCB_set| to initialise a |BN_GENCB| structure.
562 //
563 // The callback receives the address of that |BN_GENCB| structure as its last
564 // argument and the user is free to put an arbitrary pointer in |arg|. The other
565 // arguments are set as follows:
566 // - event=BN_GENCB_GENERATED, n=i: after generating the i'th possible prime
567 // number.
568 // - event=BN_GENCB_PRIME_TEST, n=-1: when finished trial division primality
569 // checks.
570 // - event=BN_GENCB_PRIME_TEST, n=i: when the i'th primality test has finished.
571 //
572 // The callback can return zero to abort the generation progress or one to
573 // allow it to continue.
574 //
575 // When other code needs to call a BN generation function it will often take a
576 // BN_GENCB argument and may call the function with other argument values.
577 struct bn_gencb_st {
578 void *arg; // callback-specific data
579 int (*callback)(int event, int n, struct bn_gencb_st *);
580 };
581
582 // BN_GENCB_new returns a newly-allocated |BN_GENCB| object, or NULL on
583 // allocation failure. The result must be released with |BN_GENCB_free| when
584 // done.
585 OPENSSL_EXPORT BN_GENCB *BN_GENCB_new(void);
586
587 // BN_GENCB_free releases memory associated with |callback|.
588 OPENSSL_EXPORT void BN_GENCB_free(BN_GENCB *callback);
589
590 // BN_GENCB_set configures |callback| to call |f| and sets |callout->arg| to
591 // |arg|.
592 OPENSSL_EXPORT void BN_GENCB_set(BN_GENCB *callback,
593 int (*f)(int event, int n, BN_GENCB *),
594 void *arg);
595
596 // BN_GENCB_call calls |callback|, if not NULL, and returns the return value of
597 // the callback, or 1 if |callback| is NULL.
598 OPENSSL_EXPORT int BN_GENCB_call(BN_GENCB *callback, int event, int n);
599
600 // BN_GENCB_get_arg returns |callback->arg|.
601 OPENSSL_EXPORT void *BN_GENCB_get_arg(const BN_GENCB *callback);
602
603 // BN_generate_prime_ex sets |ret| to a prime number of |bits| length. If safe
604 // is non-zero then the prime will be such that (ret-1)/2 is also a prime.
605 // (This is needed for Diffie-Hellman groups to ensure that the only subgroups
606 // are of size 2 and (p-1)/2.).
607 //
608 // If |add| is not NULL, the prime will fulfill the condition |ret| % |add| ==
609 // |rem| in order to suit a given generator. (If |rem| is NULL then |ret| %
610 // |add| == 1.)
611 //
612 // If |cb| is not NULL, it will be called during processing to give an
613 // indication of progress. See the comments for |BN_GENCB|. It returns one on
614 // success and zero otherwise.
615 OPENSSL_EXPORT int BN_generate_prime_ex(BIGNUM *ret, int bits, int safe,
616 const BIGNUM *add, const BIGNUM *rem,
617 BN_GENCB *cb);
618
619 // BN_prime_checks_for_validation can be used as the |checks| argument to the
620 // primarily testing functions when validating an externally-supplied candidate
621 // prime. It gives a false positive rate of at most 2^{-128}. (The worst case
622 // false positive rate for a single iteration is 1/4 per
623 // https://eprint.iacr.org/2018/749. (1/4)^64 = 2^{-128}.)
624 #define BN_prime_checks_for_validation 64
625
626 // BN_prime_checks_for_generation can be used as the |checks| argument to the
627 // primality testing functions when generating random primes. It gives a false
628 // positive rate at most the security level of the corresponding RSA key size.
629 //
630 // Note this value only performs enough checks if the candidate prime was
631 // selected randomly. If validating an externally-supplied candidate, especially
632 // one that may be selected adversarially, use |BN_prime_checks_for_validation|
633 // instead.
634 #define BN_prime_checks_for_generation 0
635
636 // bn_primality_result_t enumerates the outcomes of primality-testing.
637 enum bn_primality_result_t {
638 bn_probably_prime,
639 bn_composite,
640 bn_non_prime_power_composite,
641 };
642
643 // BN_enhanced_miller_rabin_primality_test tests whether |w| is probably a prime
644 // number using the Enhanced Miller-Rabin Test (FIPS 186-4 C.3.2) with
645 // |checks| iterations and returns the result in |out_result|. Enhanced
646 // Miller-Rabin tests primality for odd integers greater than 3, returning
647 // |bn_probably_prime| if the number is probably prime,
648 // |bn_non_prime_power_composite| if the number is a composite that is not the
649 // power of a single prime, and |bn_composite| otherwise. It returns one on
650 // success and zero on failure. If |cb| is not NULL, then it is called during
651 // each iteration of the primality test.
652 //
653 // See |BN_prime_checks_for_validation| and |BN_prime_checks_for_generation| for
654 // recommended values of |checks|.
655 OPENSSL_EXPORT int BN_enhanced_miller_rabin_primality_test(
656 enum bn_primality_result_t *out_result, const BIGNUM *w, int checks,
657 BN_CTX *ctx, BN_GENCB *cb);
658
659 // BN_primality_test sets |*is_probably_prime| to one if |candidate| is
660 // probably a prime number by the Miller-Rabin test or zero if it's certainly
661 // not.
662 //
663 // If |do_trial_division| is non-zero then |candidate| will be tested against a
664 // list of small primes before Miller-Rabin tests. The probability of this
665 // function returning a false positive is at most 2^{2*checks}. See
666 // |BN_prime_checks_for_validation| and |BN_prime_checks_for_generation| for
667 // recommended values of |checks|.
668 //
669 // If |cb| is not NULL then it is called during the checking process. See the
670 // comment above |BN_GENCB|.
671 //
672 // The function returns one on success and zero on error.
673 OPENSSL_EXPORT int BN_primality_test(int *is_probably_prime,
674 const BIGNUM *candidate, int checks,
675 BN_CTX *ctx, int do_trial_division,
676 BN_GENCB *cb);
677
678 // BN_is_prime_fasttest_ex returns one if |candidate| is probably a prime
679 // number by the Miller-Rabin test, zero if it's certainly not and -1 on error.
680 //
681 // If |do_trial_division| is non-zero then |candidate| will be tested against a
682 // list of small primes before Miller-Rabin tests. The probability of this
683 // function returning one when |candidate| is composite is at most 2^{2*checks}.
684 // See |BN_prime_checks_for_validation| and |BN_prime_checks_for_generation| for
685 // recommended values of |checks|.
686 //
687 // If |cb| is not NULL then it is called during the checking process. See the
688 // comment above |BN_GENCB|.
689 //
690 // WARNING: deprecated. Use |BN_primality_test|.
691 OPENSSL_EXPORT int BN_is_prime_fasttest_ex(const BIGNUM *candidate, int checks,
692 BN_CTX *ctx, int do_trial_division,
693 BN_GENCB *cb);
694
695 // BN_is_prime_ex acts the same as |BN_is_prime_fasttest_ex| with
696 // |do_trial_division| set to zero.
697 //
698 // WARNING: deprecated: Use |BN_primality_test|.
699 OPENSSL_EXPORT int BN_is_prime_ex(const BIGNUM *candidate, int checks,
700 BN_CTX *ctx, BN_GENCB *cb);
701
702
703 // Number theory functions
704
705 // BN_gcd sets |r| = gcd(|a|, |b|). It returns one on success and zero
706 // otherwise.
707 OPENSSL_EXPORT int BN_gcd(BIGNUM *r, const BIGNUM *a, const BIGNUM *b,
708 BN_CTX *ctx);
709
710 // BN_mod_inverse sets |out| equal to |a|^-1, mod |n|. If |out| is NULL, a
711 // fresh BIGNUM is allocated. It returns the result or NULL on error.
712 //
713 // If |n| is even then the operation is performed using an algorithm that avoids
714 // some branches but which isn't constant-time. This function shouldn't be used
715 // for secret values; use |BN_mod_inverse_blinded| instead. Or, if |n| is
716 // guaranteed to be prime, use
717 // |BN_mod_exp_mont_consttime(out, a, m_minus_2, m, ctx, m_mont)|, taking
718 // advantage of Fermat's Little Theorem.
719 OPENSSL_EXPORT BIGNUM *BN_mod_inverse(BIGNUM *out, const BIGNUM *a,
720 const BIGNUM *n, BN_CTX *ctx);
721
722 // BN_mod_inverse_blinded sets |out| equal to |a|^-1, mod |n|, where |n| is the
723 // Montgomery modulus for |mont|. |a| must be non-negative and must be less
724 // than |n|. |n| must be greater than 1. |a| is blinded (masked by a random
725 // value) to protect it against side-channel attacks. On failure, if the failure
726 // was caused by |a| having no inverse mod |n| then |*out_no_inverse| will be
727 // set to one; otherwise it will be set to zero.
728 //
729 // Note this function may incorrectly report |a| has no inverse if the random
730 // blinding value has no inverse. It should only be used when |n| has few
731 // non-invertible elements, such as an RSA modulus.
732 OPENSSL_EXPORT int BN_mod_inverse_blinded(BIGNUM *out, int *out_no_inverse,
733 const BIGNUM *a,
734 const BN_MONT_CTX *mont, BN_CTX *ctx);
735
736 // BN_mod_inverse_odd sets |out| equal to |a|^-1, mod |n|. |a| must be
737 // non-negative and must be less than |n|. |n| must be odd. This function
738 // shouldn't be used for secret values; use |BN_mod_inverse_blinded| instead.
739 // Or, if |n| is guaranteed to be prime, use
740 // |BN_mod_exp_mont_consttime(out, a, m_minus_2, m, ctx, m_mont)|, taking
741 // advantage of Fermat's Little Theorem. It returns one on success or zero on
742 // failure. On failure, if the failure was caused by |a| having no inverse mod
743 // |n| then |*out_no_inverse| will be set to one; otherwise it will be set to
744 // zero.
745 int BN_mod_inverse_odd(BIGNUM *out, int *out_no_inverse, const BIGNUM *a,
746 const BIGNUM *n, BN_CTX *ctx);
747
748
749 // Montgomery arithmetic.
750
751 // BN_MONT_CTX contains the precomputed values needed to work in a specific
752 // Montgomery domain.
753
754 // BN_MONT_CTX_new_for_modulus returns a fresh |BN_MONT_CTX| given the modulus,
755 // |mod| or NULL on error. Note this function assumes |mod| is public.
756 OPENSSL_EXPORT BN_MONT_CTX *BN_MONT_CTX_new_for_modulus(const BIGNUM *mod,
757 BN_CTX *ctx);
758
759 // BN_MONT_CTX_new_consttime behaves like |BN_MONT_CTX_new_for_modulus| but
760 // treats |mod| as secret.
761 OPENSSL_EXPORT BN_MONT_CTX *BN_MONT_CTX_new_consttime(const BIGNUM *mod,
762 BN_CTX *ctx);
763
764 // BN_MONT_CTX_free frees memory associated with |mont|.
765 OPENSSL_EXPORT void BN_MONT_CTX_free(BN_MONT_CTX *mont);
766
767 // BN_MONT_CTX_copy sets |to| equal to |from|. It returns |to| on success or
768 // NULL on error.
769 OPENSSL_EXPORT BN_MONT_CTX *BN_MONT_CTX_copy(BN_MONT_CTX *to,
770 const BN_MONT_CTX *from);
771
772 // BN_to_montgomery sets |ret| equal to |a| in the Montgomery domain. |a| is
773 // assumed to be in the range [0, n), where |n| is the Montgomery modulus. It
774 // returns one on success or zero on error.
775 OPENSSL_EXPORT int BN_to_montgomery(BIGNUM *ret, const BIGNUM *a,
776 const BN_MONT_CTX *mont, BN_CTX *ctx);
777
778 // BN_from_montgomery sets |ret| equal to |a| * R^-1, i.e. translates values out
779 // of the Montgomery domain. |a| is assumed to be in the range [0, n*R), where
780 // |n| is the Montgomery modulus. Note n < R, so inputs in the range [0, n*n)
781 // are valid. This function returns one on success or zero on error.
782 OPENSSL_EXPORT int BN_from_montgomery(BIGNUM *ret, const BIGNUM *a,
783 const BN_MONT_CTX *mont, BN_CTX *ctx);
784
785 // BN_mod_mul_montgomery set |r| equal to |a| * |b|, in the Montgomery domain.
786 // Both |a| and |b| must already be in the Montgomery domain (by
787 // |BN_to_montgomery|). In particular, |a| and |b| are assumed to be in the
788 // range [0, n), where |n| is the Montgomery modulus. It returns one on success
789 // or zero on error.
790 OPENSSL_EXPORT int BN_mod_mul_montgomery(BIGNUM *r, const BIGNUM *a,
791 const BIGNUM *b,
792 const BN_MONT_CTX *mont, BN_CTX *ctx);
793
794
795 // Exponentiation.
796
797 // BN_exp sets |r| equal to |a|^{|p|}. It does so with a square-and-multiply
798 // algorithm that leaks side-channel information. It returns one on success or
799 // zero otherwise.
800 OPENSSL_EXPORT int BN_exp(BIGNUM *r, const BIGNUM *a, const BIGNUM *p,
801 BN_CTX *ctx);
802
803 // BN_mod_exp sets |r| equal to |a|^{|p|} mod |m|. It does so with the best
804 // algorithm for the values provided. It returns one on success or zero
805 // otherwise. The |BN_mod_exp_mont_consttime| variant must be used if the
806 // exponent is secret.
807 OPENSSL_EXPORT int BN_mod_exp(BIGNUM *r, const BIGNUM *a, const BIGNUM *p,
808 const BIGNUM *m, BN_CTX *ctx);
809
810 // BN_mod_exp_mont behaves like |BN_mod_exp| but treats |a| as secret and
811 // requires 0 <= |a| < |m|.
812 OPENSSL_EXPORT int BN_mod_exp_mont(BIGNUM *r, const BIGNUM *a, const BIGNUM *p,
813 const BIGNUM *m, BN_CTX *ctx,
814 const BN_MONT_CTX *mont);
815
816 // BN_mod_exp_mont_consttime behaves like |BN_mod_exp| but treats |a|, |p|, and
817 // |m| as secret and requires 0 <= |a| < |m|.
818 OPENSSL_EXPORT int BN_mod_exp_mont_consttime(BIGNUM *rr, const BIGNUM *a,
819 const BIGNUM *p, const BIGNUM *m,
820 BN_CTX *ctx,
821 const BN_MONT_CTX *mont);
822
823
824 // Deprecated functions
825
826 // BN_bn2mpi serialises the value of |in| to |out|, using a format that consists
827 // of the number's length in bytes represented as a 4-byte big-endian number,
828 // and the number itself in big-endian format, where the most significant bit
829 // signals a negative number. (The representation of numbers with the MSB set is
830 // prefixed with null byte). |out| must have sufficient space available; to
831 // find the needed amount of space, call the function with |out| set to NULL.
832 OPENSSL_EXPORT size_t BN_bn2mpi(const BIGNUM *in, uint8_t *out);
833
834 // BN_mpi2bn parses |len| bytes from |in| and returns the resulting value. The
835 // bytes at |in| are expected to be in the format emitted by |BN_bn2mpi|.
836 //
837 // If |out| is NULL then a fresh |BIGNUM| is allocated and returned, otherwise
838 // |out| is reused and returned. On error, NULL is returned and the error queue
839 // is updated.
840 OPENSSL_EXPORT BIGNUM *BN_mpi2bn(const uint8_t *in, size_t len, BIGNUM *out);
841
842 // BN_mod_exp_mont_word is like |BN_mod_exp_mont| except that the base |a| is
843 // given as a |BN_ULONG| instead of a |BIGNUM *|. It returns one on success
844 // or zero otherwise.
845 OPENSSL_EXPORT int BN_mod_exp_mont_word(BIGNUM *r, BN_ULONG a, const BIGNUM *p,
846 const BIGNUM *m, BN_CTX *ctx,
847 const BN_MONT_CTX *mont);
848
849 // BN_mod_exp2_mont calculates (a1^p1) * (a2^p2) mod m. It returns 1 on success
850 // or zero otherwise.
851 OPENSSL_EXPORT int BN_mod_exp2_mont(BIGNUM *r, const BIGNUM *a1,
852 const BIGNUM *p1, const BIGNUM *a2,
853 const BIGNUM *p2, const BIGNUM *m,
854 BN_CTX *ctx, const BN_MONT_CTX *mont);
855
856 // BN_MONT_CTX_new returns a fresh |BN_MONT_CTX| or NULL on allocation failure.
857 // Use |BN_MONT_CTX_new_for_modulus| instead.
858 OPENSSL_EXPORT BN_MONT_CTX *BN_MONT_CTX_new(void);
859
860 // BN_MONT_CTX_set sets up a Montgomery context given the modulus, |mod|. It
861 // returns one on success and zero on error. Use |BN_MONT_CTX_new_for_modulus|
862 // instead.
863 OPENSSL_EXPORT int BN_MONT_CTX_set(BN_MONT_CTX *mont, const BIGNUM *mod,
864 BN_CTX *ctx);
865
866 // BN_bn2binpad behaves like |BN_bn2bin_padded|, but it returns |len| on success
867 // and -1 on error.
868 //
869 // Use |BN_bn2bin_padded| instead. It is |size_t|-clean.
870 OPENSSL_EXPORT int BN_bn2binpad(const BIGNUM *in, uint8_t *out, int len);
871
872 // BN_bn2lebinpad behaves like |BN_bn2le_padded|, but it returns |len| on
873 // success and -1 on error.
874 //
875 // Use |BN_bn2le_padded| instead. It is |size_t|-clean.
876 OPENSSL_EXPORT int BN_bn2lebinpad(const BIGNUM *in, uint8_t *out, int len);
877
878 // BN_prime_checks is a deprecated alias for |BN_prime_checks_for_validation|.
879 // Use |BN_prime_checks_for_generation| or |BN_prime_checks_for_validation|
880 // instead. (This defaults to the |_for_validation| value in order to be
881 // conservative.)
882 #define BN_prime_checks BN_prime_checks_for_validation
883
884 // BN_secure_new calls |BN_new|.
885 OPENSSL_EXPORT BIGNUM *BN_secure_new(void);
886
887 // BN_le2bn calls |BN_lebin2bn|.
888 OPENSSL_EXPORT BIGNUM *BN_le2bn(const uint8_t *in, size_t len, BIGNUM *ret);
889
890
891 // Private functions
892
893 struct bignum_st {
894 // d is a pointer to an array of |width| |BN_BITS2|-bit chunks in
895 // little-endian order. This stores the absolute value of the number.
896 BN_ULONG *d;
897 // width is the number of elements of |d| which are valid. This value is not
898 // necessarily minimal; the most-significant words of |d| may be zero.
899 // |width| determines a potentially loose upper-bound on the absolute value
900 // of the |BIGNUM|.
901 //
902 // Functions taking |BIGNUM| inputs must compute the same answer for all
903 // possible widths. |bn_minimal_width|, |bn_set_minimal_width|, and other
904 // helpers may be used to recover the minimal width, provided it is not
905 // secret. If it is secret, use a different algorithm. Functions may output
906 // minimal or non-minimal |BIGNUM|s depending on secrecy requirements, but
907 // those which cause widths to unboundedly grow beyond the minimal value
908 // should be documented such.
909 //
910 // Note this is different from historical |BIGNUM| semantics.
911 int width;
912 // dmax is number of elements of |d| which are allocated.
913 int dmax;
914 // neg is one if the number if negative and zero otherwise.
915 int neg;
916 // flags is a bitmask of |BN_FLG_*| values
917 int flags;
918 };
919
920 OPENSSL_EXPORT unsigned BN_num_bits_word(BN_ULONG l);
921
922 #define BN_FLG_MALLOCED 0x01
923 #define BN_FLG_STATIC_DATA 0x02
924 // |BN_FLG_CONSTTIME| has been removed and intentionally omitted so code relying
925 // on it will not compile. Consumers outside BoringSSL should use the
926 // higher-level cryptographic algorithms exposed by other modules. Consumers
927 // within the library should call the appropriate timing-sensitive algorithm
928 // directly.
929
930
931 #if defined(__cplusplus)
932 } // extern C
933
934 #if !defined(BORINGSSL_NO_CXX)
935 extern "C++" {
936
937 BSSL_NAMESPACE_BEGIN
938
BORINGSSL_MAKE_DELETER(BIGNUM,BN_free)939 BORINGSSL_MAKE_DELETER(BIGNUM, BN_free)
940 BORINGSSL_MAKE_DELETER(BN_CTX, BN_CTX_free)
941 BORINGSSL_MAKE_DELETER(BN_MONT_CTX, BN_MONT_CTX_free)
942
943 class BN_CTXScope {
944 public:
945 BN_CTXScope(BN_CTX *ctx) : ctx_(ctx) { BN_CTX_start(ctx_); }
946 ~BN_CTXScope() { BN_CTX_end(ctx_); }
947
948 private:
949 BN_CTX *ctx_;
950
951 BN_CTXScope(BN_CTXScope &) = delete;
952 BN_CTXScope &operator=(BN_CTXScope &) = delete;
953 };
954
955 BSSL_NAMESPACE_END
956
957 } // extern C++
958 #endif
959
960 #endif
961
962 #define BN_R_ARG2_LT_ARG3 100
963 #define BN_R_BAD_RECIPROCAL 101
964 #define BN_R_BIGNUM_TOO_LONG 102
965 #define BN_R_BITS_TOO_SMALL 103
966 #define BN_R_CALLED_WITH_EVEN_MODULUS 104
967 #define BN_R_DIV_BY_ZERO 105
968 #define BN_R_EXPAND_ON_STATIC_BIGNUM_DATA 106
969 #define BN_R_INPUT_NOT_REDUCED 107
970 #define BN_R_INVALID_RANGE 108
971 #define BN_R_NEGATIVE_NUMBER 109
972 #define BN_R_NOT_A_SQUARE 110
973 #define BN_R_NOT_INITIALIZED 111
974 #define BN_R_NO_INVERSE 112
975 #define BN_R_PRIVATE_KEY_TOO_LARGE 113
976 #define BN_R_P_IS_NOT_PRIME 114
977 #define BN_R_TOO_MANY_ITERATIONS 115
978 #define BN_R_TOO_MANY_TEMPORARY_VARIABLES 116
979 #define BN_R_BAD_ENCODING 117
980 #define BN_R_ENCODE_ERROR 118
981 #define BN_R_INVALID_INPUT 119
982
983 #endif // OPENSSL_HEADER_BN_H
984