1 // Copyright 2018 The BoringSSL Authors
2 //
3 // Licensed under the Apache License, Version 2.0 (the "License");
4 // you may not use this file except in compliance with the License.
5 // You may obtain a copy of the License at
6 //
7 // https://www.apache.org/licenses/LICENSE-2.0
8 //
9 // Unless required by applicable law or agreed to in writing, software
10 // distributed under the License is distributed on an "AS IS" BASIS,
11 // WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
12 // See the License for the specific language governing permissions and
13 // limitations under the License.
14
15 #include "handshake_util.h"
16
17 #include <assert.h>
18 #if defined(HANDSHAKER_SUPPORTED)
19 #include <errno.h>
20 #include <fcntl.h>
21 #include <spawn.h>
22 #include <sys/socket.h>
23 #include <sys/stat.h>
24 #include <sys/types.h>
25 #include <sys/wait.h>
26 #include <unistd.h>
27 #endif
28
29 #include <functional>
30 #include <map>
31 #include <vector>
32
33 #include "async_bio.h"
34 #include "packeted_bio.h"
35 #include "test_config.h"
36 #include "test_state.h"
37
38 #include <openssl/bytestring.h>
39 #include <openssl/ssl.h>
40
41 using namespace bssl;
42
RetryAsync(SSL * ssl,int ret)43 bool RetryAsync(SSL *ssl, int ret) {
44 const TestConfig *config = GetTestConfig(ssl);
45 TestState *test_state = GetTestState(ssl);
46 if (ret >= 0) {
47 return false;
48 }
49
50 int ssl_err = SSL_get_error(ssl, ret);
51 if (ssl_err == SSL_ERROR_WANT_RENEGOTIATE && config->renegotiate_explicit) {
52 test_state->explicit_renegotiates++;
53 return SSL_renegotiate(ssl);
54 }
55
56 if (test_state->quic_transport && ssl_err == SSL_ERROR_WANT_READ) {
57 return test_state->quic_transport->ReadHandshake();
58 }
59
60 if (!config->async) {
61 // Only asynchronous tests should trigger other retries.
62 return false;
63 }
64
65 if (test_state->packeted_bio != nullptr &&
66 PacketedBioAdvanceClock(test_state->packeted_bio)) {
67 int timeout_ret = DTLSv1_handle_timeout(ssl);
68 if (timeout_ret >= 0) {
69 return true;
70 }
71 ssl_err = SSL_get_error(ssl, timeout_ret);
72 }
73
74 // See if we needed to read or write more. If so, allow one byte through on
75 // the appropriate end to maximally stress the state machine.
76 switch (ssl_err) {
77 case SSL_ERROR_WANT_READ:
78 AsyncBioAllowRead(test_state->async_bio, 1);
79 return true;
80 case SSL_ERROR_WANT_WRITE:
81 AsyncBioAllowWrite(test_state->async_bio, 1);
82 return true;
83 case SSL_ERROR_WANT_X509_LOOKUP:
84 test_state->cert_ready = true;
85 return true;
86 case SSL_ERROR_PENDING_SESSION:
87 test_state->session = std::move(test_state->pending_session);
88 return true;
89 case SSL_ERROR_PENDING_CERTIFICATE:
90 test_state->early_callback_ready = true;
91 return true;
92 case SSL_ERROR_WANT_PRIVATE_KEY_OPERATION:
93 test_state->private_key_retries++;
94 if (config->private_key_delay_ms != 0 &&
95 test_state->private_key_retries == 1) {
96 // The first time around, simulate the private key operation taking a
97 // long time to run.
98 if (test_state->packeted_bio == nullptr) {
99 fprintf(stderr, "-private-key-delay-ms requires DTLS.\n");
100 return false;
101 }
102 timeval *clock = PacketedBioGetClock(test_state->packeted_bio);
103 clock->tv_sec += config->private_key_delay_ms / 1000;
104 clock->tv_usec += config->private_key_delay_ms * 1000;
105 if (clock->tv_usec >= 1000000) {
106 clock->tv_usec -= 1000000;
107 clock->tv_sec++;
108 }
109 int timeout_ret = DTLSv1_handle_timeout(ssl);
110 if (timeout_ret < 0) {
111 if (SSL_get_error(ssl, timeout_ret) == SSL_ERROR_WANT_WRITE) {
112 AsyncBioAllowWrite(test_state->async_bio, 1);
113 return true;
114 }
115 return false;
116 }
117 }
118 return true;
119 case SSL_ERROR_WANT_CERTIFICATE_VERIFY:
120 test_state->custom_verify_ready = true;
121 return true;
122 case SSL_ERROR_PENDING_TICKET:
123 test_state->async_ticket_decrypt_ready = true;
124 return true;
125 default:
126 return false;
127 }
128 }
129
CheckIdempotentError(const char * name,SSL * ssl,std::function<int ()> func)130 int CheckIdempotentError(const char *name, SSL *ssl,
131 std::function<int()> func) {
132 int ret = func();
133 int ssl_err = SSL_get_error(ssl, ret);
134 uint32_t err = ERR_peek_error();
135 if (ssl_err == SSL_ERROR_SSL || ssl_err == SSL_ERROR_ZERO_RETURN) {
136 int ret2 = func();
137 int ssl_err2 = SSL_get_error(ssl, ret2);
138 uint32_t err2 = ERR_peek_error();
139 if (ret != ret2 || ssl_err != ssl_err2 || err != err2) {
140 fprintf(stderr, "Repeating %s did not replay the error.\n", name);
141 char buf[256];
142 ERR_error_string_n(err, buf, sizeof(buf));
143 fprintf(stderr, "Wanted: %d %d %s\n", ret, ssl_err, buf);
144 ERR_error_string_n(err2, buf, sizeof(buf));
145 fprintf(stderr, "Got: %d %d %s\n", ret2, ssl_err2, buf);
146 // runner treats exit code 90 as always failing. Otherwise, it may
147 // accidentally consider the result an expected protocol failure.
148 exit(90);
149 }
150 }
151 return ret;
152 }
153
154 #if defined(HANDSHAKER_SUPPORTED)
155
156 // MoveBIOs moves the |BIO|s of |src| to |dst|. It is used for handoff.
MoveBIOs(SSL * dest,SSL * src)157 static void MoveBIOs(SSL *dest, SSL *src) {
158 BIO *rbio = SSL_get_rbio(src);
159 BIO_up_ref(rbio);
160 SSL_set0_rbio(dest, rbio);
161
162 BIO *wbio = SSL_get_wbio(src);
163 BIO_up_ref(wbio);
164 SSL_set0_wbio(dest, wbio);
165
166 SSL_set0_rbio(src, nullptr);
167 SSL_set0_wbio(src, nullptr);
168 }
169
HandoffReady(SSL * ssl,int ret)170 static bool HandoffReady(SSL *ssl, int ret) {
171 return ret < 0 && SSL_get_error(ssl, ret) == SSL_ERROR_HANDOFF;
172 }
173
read_eintr(int fd,void * out,size_t len)174 static ssize_t read_eintr(int fd, void *out, size_t len) {
175 ssize_t ret;
176 do {
177 ret = read(fd, out, len);
178 } while (ret < 0 && errno == EINTR);
179 return ret;
180 }
181
write_eintr(int fd,const void * in,size_t len)182 static ssize_t write_eintr(int fd, const void *in, size_t len) {
183 ssize_t ret;
184 do {
185 ret = write(fd, in, len);
186 } while (ret < 0 && errno == EINTR);
187 return ret;
188 }
189
waitpid_eintr(pid_t pid,int * wstatus,int options)190 static ssize_t waitpid_eintr(pid_t pid, int *wstatus, int options) {
191 pid_t ret;
192 do {
193 ret = waitpid(pid, wstatus, options);
194 } while (ret < 0 && errno == EINTR);
195 return ret;
196 }
197
198 // Proxy relays data between |socket|, which is connected to the client, and the
199 // handshaker, which is connected to the numerically specified file descriptors,
200 // until the handshaker returns control.
Proxy(BIO * socket,bool async,int control,int rfd,int wfd)201 static bool Proxy(BIO *socket, bool async, int control, int rfd, int wfd) {
202 for (;;) {
203 fd_set rfds;
204 FD_ZERO(&rfds);
205 FD_SET(wfd, &rfds);
206 FD_SET(control, &rfds);
207 int fd_max = wfd > control ? wfd : control;
208 if (select(fd_max + 1, &rfds, nullptr, nullptr, nullptr) == -1) {
209 perror("select");
210 return false;
211 }
212
213 char buf[64];
214 ssize_t bytes;
215 if (FD_ISSET(wfd, &rfds) &&
216 (bytes = read_eintr(wfd, buf, sizeof(buf))) > 0) {
217 char *b = buf;
218 while (bytes) {
219 int written = BIO_write(socket, b, bytes);
220 if (!written) {
221 fprintf(stderr, "BIO_write wrote nothing\n");
222 return false;
223 }
224 if (written < 0) {
225 if (async) {
226 AsyncBioAllowWrite(socket, 1);
227 continue;
228 }
229 fprintf(stderr, "BIO_write failed\n");
230 return false;
231 }
232 b += written;
233 bytes -= written;
234 }
235 // Flush all pending data from the handshaker to the client before
236 // considering control messages.
237 continue;
238 }
239
240 if (!FD_ISSET(control, &rfds)) {
241 continue;
242 }
243
244 char msg;
245 if (read_eintr(control, &msg, 1) != 1) {
246 perror("read");
247 return false;
248 }
249 switch (msg) {
250 case kControlMsgDone:
251 return true;
252 case kControlMsgError:
253 return false;
254 case kControlMsgWantRead:
255 break;
256 default:
257 fprintf(stderr, "Unknown control message from handshaker: %c\n", msg);
258 return false;
259 }
260
261 auto proxy_data = [&](uint8_t *out, size_t len) -> bool {
262 if (async) {
263 AsyncBioAllowRead(socket, len);
264 }
265
266 while (len > 0) {
267 int bytes_read = BIO_read(socket, out, len);
268 if (bytes_read < 1) {
269 fprintf(stderr, "BIO_read failed\n");
270 return false;
271 }
272
273 ssize_t bytes_written = write_eintr(rfd, out, bytes_read);
274 if (bytes_written == -1) {
275 perror("write");
276 return false;
277 }
278 if (bytes_written != bytes_read) {
279 fprintf(stderr, "short write (%zd of %d bytes)\n", bytes_written,
280 bytes_read);
281 return false;
282 }
283
284 len -= bytes_read;
285 out += bytes_read;
286 }
287 return true;
288 };
289
290 // Process one SSL record at a time. That way, we don't send the handshaker
291 // anything it doesn't want to process, e.g. early data.
292 uint8_t header[SSL3_RT_HEADER_LENGTH];
293 if (!proxy_data(header, sizeof(header))) {
294 return false;
295 }
296 if (header[1] != 3) {
297 fprintf(stderr, "bad header\n");
298 return false;
299 }
300 size_t remaining = (header[3] << 8) + header[4];
301 while (remaining > 0) {
302 uint8_t readbuf[64];
303 size_t len = remaining > sizeof(readbuf) ? sizeof(readbuf) : remaining;
304 if (!proxy_data(readbuf, len)) {
305 return false;
306 }
307 remaining -= len;
308 }
309
310 // The handshaker blocks on the control channel, so we have to signal
311 // it that the data have been written.
312 msg = kControlMsgWriteCompleted;
313 if (write_eintr(control, &msg, 1) != 1) {
314 perror("write");
315 return false;
316 }
317 }
318 }
319
320 class ScopedFD {
321 public:
ScopedFD()322 ScopedFD() : fd_(-1) {}
ScopedFD(int fd)323 explicit ScopedFD(int fd) : fd_(fd) {}
~ScopedFD()324 ~ScopedFD() { Reset(); }
325
ScopedFD(ScopedFD && other)326 ScopedFD(ScopedFD &&other) { *this = std::move(other); }
operator =(ScopedFD && other)327 ScopedFD &operator=(ScopedFD &&other) {
328 Reset(other.fd_);
329 other.fd_ = -1;
330 return *this;
331 }
332
fd() const333 int fd() const { return fd_; }
334
Reset(int fd=-1)335 void Reset(int fd = -1) {
336 if (fd_ >= 0) {
337 close(fd_);
338 }
339 fd_ = fd;
340 }
341
342 private:
343 int fd_;
344 };
345
346 class ScopedProcess {
347 public:
ScopedProcess()348 ScopedProcess() : pid_(-1) {}
~ScopedProcess()349 ~ScopedProcess() { Reset(); }
350
ScopedProcess(ScopedProcess && other)351 ScopedProcess(ScopedProcess &&other) { *this = std::move(other); }
operator =(ScopedProcess && other)352 ScopedProcess &operator=(ScopedProcess &&other) {
353 Reset(other.pid_);
354 other.pid_ = -1;
355 return *this;
356 }
357
pid() const358 pid_t pid() const { return pid_; }
359
Reset(pid_t pid=-1)360 void Reset(pid_t pid = -1) {
361 if (pid_ >= 0) {
362 kill(pid_, SIGTERM);
363 int unused;
364 Wait(&unused);
365 }
366 pid_ = pid;
367 }
368
Wait(int * out_status)369 bool Wait(int *out_status) {
370 if (pid_ < 0) {
371 return false;
372 }
373 if (waitpid_eintr(pid_, out_status, 0) != pid_) {
374 return false;
375 }
376 pid_ = -1;
377 return true;
378 }
379
380 private:
381 pid_t pid_;
382 };
383
384 class FileActionsDestroyer {
385 public:
FileActionsDestroyer(posix_spawn_file_actions_t * actions)386 explicit FileActionsDestroyer(posix_spawn_file_actions_t *actions)
387 : actions_(actions) {}
~FileActionsDestroyer()388 ~FileActionsDestroyer() { posix_spawn_file_actions_destroy(actions_); }
389 FileActionsDestroyer(const FileActionsDestroyer &) = delete;
390 FileActionsDestroyer &operator=(const FileActionsDestroyer &) = delete;
391
392 private:
393 posix_spawn_file_actions_t *actions_;
394 };
395
396 // StartHandshaker starts the handshaker process and, on success, returns a
397 // handle to the process in |*out|. It sets |*out_control| to a control pipe to
398 // the process. |map_fds| maps from desired fd number in the child process to
399 // the source fd in the calling process. |close_fds| is the list of additional
400 // fds to close, which may overlap with |map_fds|. Other than stdin, stdout, and
401 // stderr, the status of fds not listed in either set is undefined.
StartHandshaker(ScopedProcess * out,ScopedFD * out_control,const TestConfig * config,bool is_resume,std::map<int,int> map_fds,std::vector<int> close_fds)402 static bool StartHandshaker(ScopedProcess *out, ScopedFD *out_control,
403 const TestConfig *config, bool is_resume,
404 std::map<int, int> map_fds,
405 std::vector<int> close_fds) {
406 if (config->handshaker_path.empty()) {
407 fprintf(stderr, "no -handshaker-path specified\n");
408 return false;
409 }
410 struct stat dummy;
411 if (stat(config->handshaker_path.c_str(), &dummy) == -1) {
412 perror(config->handshaker_path.c_str());
413 return false;
414 }
415
416 std::vector<const char *> args;
417 args.push_back(config->handshaker_path.c_str());
418 static const char kResumeFlag[] = "-handshaker-resume";
419 if (is_resume) {
420 args.push_back(kResumeFlag);
421 }
422 // config->handshaker_args omits argv[0].
423 for (const char *arg : config->handshaker_args) {
424 args.push_back(arg);
425 }
426 args.push_back(nullptr);
427
428 // A datagram socket guarantees that writes are all-or-nothing.
429 int control[2];
430 if (socketpair(AF_LOCAL, SOCK_DGRAM, 0, control) != 0) {
431 perror("socketpair");
432 return false;
433 }
434 ScopedFD scoped_control0(control[0]), scoped_control1(control[1]);
435 close_fds.push_back(control[0]);
436 map_fds[kFdControl] = control[1];
437
438 posix_spawn_file_actions_t actions;
439 if (posix_spawn_file_actions_init(&actions) != 0) {
440 return false;
441 }
442 FileActionsDestroyer actions_destroyer(&actions);
443 for (int fd : close_fds) {
444 if (posix_spawn_file_actions_addclose(&actions, fd) != 0) {
445 return false;
446 }
447 }
448 if (!map_fds.empty()) {
449 int max_fd = STDERR_FILENO;
450 for (const auto &pair : map_fds) {
451 max_fd = std::max(max_fd, pair.first);
452 max_fd = std::max(max_fd, pair.second);
453 }
454 // |map_fds| may contain cycles, so make a copy of all the source fds.
455 // |posix_spawn| can only use |dup2|, not |dup|, so we assume |max_fd| is
456 // the last fd we care about inheriting. |temp_fds| maps from fd number in
457 // the parent process to a temporary fd number in the child process.
458 std::map<int, int> temp_fds;
459 int next_fd = max_fd + 1;
460 for (const auto &pair : map_fds) {
461 if (temp_fds.count(pair.second)) {
462 continue;
463 }
464 temp_fds[pair.second] = next_fd;
465 if (posix_spawn_file_actions_adddup2(&actions, pair.second, next_fd) !=
466 0 ||
467 posix_spawn_file_actions_addclose(&actions, pair.second) != 0) {
468 return false;
469 }
470 next_fd++;
471 }
472 for (const auto &pair : map_fds) {
473 if (posix_spawn_file_actions_adddup2(&actions, temp_fds[pair.second],
474 pair.first) != 0) {
475 return false;
476 }
477 }
478 // Clean up temporary fds.
479 for (int fd = max_fd + 1; fd < next_fd; fd++) {
480 if (posix_spawn_file_actions_addclose(&actions, fd) != 0) {
481 return false;
482 }
483 }
484 }
485
486 fflush(stdout);
487 fflush(stderr);
488
489 // MSan doesn't know that |posix_spawn| initializes its output, so initialize
490 // it to -1.
491 pid_t pid = -1;
492 if (posix_spawn(&pid, args[0], &actions, nullptr,
493 const_cast<char *const *>(args.data()), environ) != 0) {
494 return false;
495 }
496
497 out->Reset(pid);
498 *out_control = std::move(scoped_control0);
499 return true;
500 }
501
502 // RunHandshaker forks and execs the handshaker binary, handing off |input|,
503 // and, after proxying some amount of handshake traffic, handing back |out|.
RunHandshaker(BIO * bio,const TestConfig * config,bool is_resume,Span<const uint8_t> input,std::vector<uint8_t> * out)504 static bool RunHandshaker(BIO *bio, const TestConfig *config, bool is_resume,
505 Span<const uint8_t> input,
506 std::vector<uint8_t> *out) {
507 int rfd[2], wfd[2];
508 // We use pipes, rather than some other mechanism, for their buffers. During
509 // the handshake, this process acts as a dumb proxy until receiving the
510 // handback signal, which arrives asynchronously. The race condition means
511 // that this process could incorrectly proxy post-handshake data from the
512 // client to the handshaker.
513 //
514 // To avoid this, this process never proxies data to the handshaker that the
515 // handshaker has not explicitly requested as a result of hitting
516 // |SSL_ERROR_WANT_READ|. Pipes allow the data to sit in a buffer while the
517 // two processes synchronize over the |control| channel.
518 if (pipe(rfd) != 0) {
519 perror("pipe");
520 return false;
521 }
522 ScopedFD rfd0_closer(rfd[0]), rfd1_closer(rfd[1]);
523
524 if (pipe(wfd) != 0) {
525 perror("pipe");
526 return false;
527 }
528 ScopedFD wfd0_closer(wfd[0]), wfd1_closer(wfd[1]);
529
530 ScopedProcess handshaker;
531 ScopedFD control;
532 if (!StartHandshaker(
533 &handshaker, &control, config, is_resume,
534 {{kFdProxyToHandshaker, rfd[0]}, {kFdHandshakerToProxy, wfd[1]}},
535 {rfd[1], wfd[0]})) {
536 return false;
537 }
538
539 rfd0_closer.Reset();
540 wfd1_closer.Reset();
541
542 if (write_eintr(control.fd(), input.data(), input.size()) == -1) {
543 perror("write");
544 return false;
545 }
546 bool ok = Proxy(bio, config->async, control.fd(), rfd[1], wfd[0]);
547 int wstatus;
548 if (!handshaker.Wait(&wstatus)) {
549 perror("waitpid");
550 return false;
551 }
552 if (ok && wstatus) {
553 fprintf(stderr, "handshaker exited irregularly\n");
554 return false;
555 }
556 if (!ok) {
557 return false; // This is a "good", i.e. expected, error.
558 }
559
560 constexpr size_t kBufSize = 1024 * 1024;
561 std::vector<uint8_t> buf(kBufSize);
562 ssize_t len = read_eintr(control.fd(), buf.data(), buf.size());
563 if (len == -1) {
564 perror("read");
565 return false;
566 }
567 buf.resize(len);
568 *out = std::move(buf);
569 return true;
570 }
571
RequestHandshakeHint(const TestConfig * config,bool is_resume,Span<const uint8_t> input,bool * out_has_hints,std::vector<uint8_t> * out_hints)572 static bool RequestHandshakeHint(const TestConfig *config, bool is_resume,
573 Span<const uint8_t> input, bool *out_has_hints,
574 std::vector<uint8_t> *out_hints) {
575 ScopedProcess handshaker;
576 ScopedFD control;
577 if (!StartHandshaker(&handshaker, &control, config, is_resume, {}, {})) {
578 return false;
579 }
580
581 if (write_eintr(control.fd(), input.data(), input.size()) == -1) {
582 perror("write");
583 return false;
584 }
585
586 char msg;
587 if (read_eintr(control.fd(), &msg, 1) != 1) {
588 perror("read");
589 return false;
590 }
591
592 switch (msg) {
593 case kControlMsgDone: {
594 constexpr size_t kBufSize = 1024 * 1024;
595 out_hints->resize(kBufSize);
596 ssize_t len =
597 read_eintr(control.fd(), out_hints->data(), out_hints->size());
598 if (len == -1) {
599 perror("read");
600 return false;
601 }
602 out_hints->resize(len);
603 *out_has_hints = true;
604 break;
605 }
606 case kControlMsgError:
607 *out_has_hints = false;
608 break;
609 default:
610 fprintf(stderr, "Unknown control message from handshaker: %c\n", msg);
611 return false;
612 }
613
614 int wstatus;
615 if (!handshaker.Wait(&wstatus)) {
616 perror("waitpid");
617 return false;
618 }
619 if (wstatus) {
620 fprintf(stderr, "handshaker exited irregularly\n");
621 return false;
622 }
623
624 return true;
625 }
626
627 // PrepareHandoff accepts the |ClientHello| from |ssl| and serializes state to
628 // be passed to the handshaker. The serialized state includes both the SSL
629 // handoff, as well test-related state.
PrepareHandoff(SSL * ssl,SettingsWriter * writer,std::vector<uint8_t> * out_handoff)630 static bool PrepareHandoff(SSL *ssl, SettingsWriter *writer,
631 std::vector<uint8_t> *out_handoff) {
632 SSL_set_handoff_mode(ssl, 1);
633
634 const TestConfig *config = GetTestConfig(ssl);
635 int ret = -1;
636 do {
637 ret = CheckIdempotentError(
638 "SSL_do_handshake", ssl,
639 [&]() -> int { return SSL_do_handshake(ssl); });
640 } while (!HandoffReady(ssl, ret) &&
641 config->async &&
642 RetryAsync(ssl, ret));
643 if (!HandoffReady(ssl, ret)) {
644 fprintf(stderr, "Handshake failed while waiting for handoff.\n");
645 return false;
646 }
647
648 ScopedCBB cbb;
649 SSL_CLIENT_HELLO hello;
650 if (!CBB_init(cbb.get(), 512) ||
651 !SSL_serialize_handoff(ssl, cbb.get(), &hello) ||
652 !writer->WriteHandoff({CBB_data(cbb.get()), CBB_len(cbb.get())}) ||
653 !SerializeContextState(SSL_get_SSL_CTX(ssl), cbb.get()) ||
654 !GetTestState(ssl)->Serialize(cbb.get())) {
655 fprintf(stderr, "Handoff serialisation failed.\n");
656 return false;
657 }
658 out_handoff->assign(CBB_data(cbb.get()),
659 CBB_data(cbb.get()) + CBB_len(cbb.get()));
660 return true;
661 }
662
663 // DoSplitHandshake delegates the SSL handshake to a separate process, called
664 // the handshaker. This process proxies I/O between the handshaker and the
665 // client, using the |BIO| from |ssl|. After a successful handshake, |ssl| is
666 // replaced with a new |SSL| object, in a way that is intended to be invisible
667 // to the caller.
DoSplitHandshake(UniquePtr<SSL> * ssl,SettingsWriter * writer,bool is_resume)668 bool DoSplitHandshake(UniquePtr<SSL> *ssl, SettingsWriter *writer,
669 bool is_resume) {
670 assert(SSL_get_rbio(ssl->get()) == SSL_get_wbio(ssl->get()));
671 std::vector<uint8_t> handshaker_input;
672 const TestConfig *config = GetTestConfig(ssl->get());
673 // out is the response from the handshaker, which includes a serialized
674 // handback message, but also serialized updates to the |TestState|.
675 std::vector<uint8_t> out;
676 if (!PrepareHandoff(ssl->get(), writer, &handshaker_input) ||
677 !RunHandshaker(SSL_get_rbio(ssl->get()), config, is_resume,
678 handshaker_input, &out)) {
679 fprintf(stderr, "Handoff failed.\n");
680 return false;
681 }
682
683 SSL_CTX *ctx = SSL_get_SSL_CTX(ssl->get());
684 UniquePtr<SSL> ssl_handback = config->NewSSL(ctx, nullptr, nullptr);
685 if (!ssl_handback) {
686 return false;
687 }
688 CBS output, handback;
689 CBS_init(&output, out.data(), out.size());
690 if (!CBS_get_u24_length_prefixed(&output, &handback) ||
691 !DeserializeContextState(&output, ctx) ||
692 !SetTestState(ssl_handback.get(), TestState::Deserialize(&output, ctx)) ||
693 !GetTestState(ssl_handback.get()) || !writer->WriteHandback(handback) ||
694 !SSL_apply_handback(ssl_handback.get(), handback)) {
695 fprintf(stderr, "Handback failed.\n");
696 return false;
697 }
698 MoveBIOs(ssl_handback.get(), ssl->get());
699 GetTestState(ssl_handback.get())->async_bio =
700 GetTestState(ssl->get())->async_bio;
701 GetTestState(ssl->get())->async_bio = nullptr;
702
703 *ssl = std::move(ssl_handback);
704 return true;
705 }
706
GetHandshakeHint(SSL * ssl,SettingsWriter * writer,bool is_resume,const SSL_CLIENT_HELLO * client_hello)707 bool GetHandshakeHint(SSL *ssl, SettingsWriter *writer, bool is_resume,
708 const SSL_CLIENT_HELLO *client_hello) {
709 ScopedCBB input;
710 CBB child;
711 if (!CBB_init(input.get(), client_hello->client_hello_len + 256) ||
712 !CBB_add_u24_length_prefixed(input.get(), &child) ||
713 !CBB_add_bytes(&child, client_hello->client_hello,
714 client_hello->client_hello_len) ||
715 !CBB_add_u24_length_prefixed(input.get(), &child) ||
716 !SSL_serialize_capabilities(ssl, &child) || //
717 !CBB_flush(input.get())) {
718 return false;
719 }
720
721 bool has_hints;
722 std::vector<uint8_t> hints;
723 if (!RequestHandshakeHint(GetTestConfig(ssl), is_resume,
724 Span(CBB_data(input.get()), CBB_len(input.get())),
725 &has_hints, &hints)) {
726 return false;
727 }
728 if (has_hints &&
729 (!writer->WriteHints(hints) ||
730 !SSL_set_handshake_hints(ssl, hints.data(), hints.size()))) {
731 return false;
732 }
733
734 return true;
735 }
736
737 #endif // defined(HANDSHAKER_SUPPORTED)
738