1 /*
2  * Copyright 2024 The Hafnium Authors.
3  *
4  * Use of this source code is governed by a BSD-style
5  * license that can be found in the LICENSE file or at
6  * https://opensource.org/licenses/BSD-3-Clause.
7  */
8 
9 #include "hf/arch/gicv3.h"
10 
11 #include "hf/api.h"
12 #include "hf/check.h"
13 #include "hf/ffa.h"
14 #include "hf/ffa/direct_messaging.h"
15 #include "hf/ffa/interrupts.h"
16 #include "hf/ffa/vm.h"
17 #include "hf/ffa_internal.h"
18 #include "hf/plat/interrupts.h"
19 #include "hf/vm.h"
20 
ffa_cpu_cycles_run_forward(ffa_id_t vm_id,ffa_vcpu_index_t vcpu_idx,struct ffa_value * ret)21 bool ffa_cpu_cycles_run_forward(ffa_id_t vm_id, ffa_vcpu_index_t vcpu_idx,
22 				struct ffa_value *ret)
23 {
24 	(void)vm_id;
25 	(void)vcpu_idx;
26 	(void)ret;
27 
28 	return false;
29 }
30 
31 /**
32  * Check if current VM can resume target VM using FFA_RUN ABI.
33  */
ffa_cpu_cycles_run_checks(struct vcpu_locked current_locked,ffa_id_t target_vm_id,ffa_vcpu_index_t vcpu_idx,struct ffa_value * run_ret,struct vcpu ** next)34 bool ffa_cpu_cycles_run_checks(struct vcpu_locked current_locked,
35 			       ffa_id_t target_vm_id, ffa_vcpu_index_t vcpu_idx,
36 			       struct ffa_value *run_ret, struct vcpu **next)
37 {
38 	/*
39 	 * Under the Partition runtime model specified in FF-A v1.1-Beta0 spec,
40 	 * SP can invoke FFA_RUN to resume target SP.
41 	 */
42 	struct vcpu *target_vcpu;
43 	struct vcpu *current = current_locked.vcpu;
44 	bool ret = true;
45 	struct vm *vm;
46 	struct vcpu_locked target_locked;
47 	struct two_vcpu_locked vcpus_locked;
48 
49 	vm = vm_find(target_vm_id);
50 	if (vm == NULL) {
51 		return false;
52 	}
53 
54 	if (vm_is_mp(vm) && vm_is_mp(current->vm) &&
55 	    vcpu_idx != cpu_index(current->cpu)) {
56 		dlog_verbose("vcpu_idx (%d) != pcpu index (%zu)\n", vcpu_idx,
57 			     cpu_index(current->cpu));
58 		return false;
59 	}
60 
61 	target_vcpu = api_ffa_get_vm_vcpu(vm, current);
62 
63 	vcpu_unlock(&current_locked);
64 
65 	/* Lock both vCPUs at once to avoid deadlock. */
66 	vcpus_locked = vcpu_lock_both(current, target_vcpu);
67 	current_locked = vcpus_locked.vcpu1;
68 	target_locked = vcpus_locked.vcpu2;
69 
70 	/* Only the primary VM can turn ON a vCPU that is currently OFF. */
71 	if (!vm_is_primary(current->vm) &&
72 	    target_vcpu->state == VCPU_STATE_OFF) {
73 		run_ret->arg2 = FFA_DENIED;
74 		ret = false;
75 		goto out;
76 	}
77 
78 	/*
79 	 * An SPx can resume another SPy only when SPy is in PREEMPTED or
80 	 * BLOCKED state.
81 	 */
82 	if (vm_id_is_current_world(current->vm->id) &&
83 	    vm_id_is_current_world(target_vm_id)) {
84 		/* Target SP must be in preempted or blocked state. */
85 		if (target_vcpu->state != VCPU_STATE_PREEMPTED &&
86 		    target_vcpu->state != VCPU_STATE_BLOCKED) {
87 			run_ret->arg2 = FFA_DENIED;
88 			ret = false;
89 			goto out;
90 		}
91 	}
92 
93 	/* A SP cannot invoke FFA_RUN to resume a normal world VM. */
94 	if (!vm_id_is_current_world(target_vm_id)) {
95 		run_ret->arg2 = FFA_DENIED;
96 		ret = false;
97 		goto out;
98 	}
99 
100 	if (vm_id_is_current_world(current->vm->id)) {
101 		/*
102 		 * Refer FF-A v1.1 EAC0 spec section 8.3.2.2.1
103 		 * Signaling an Other S-Int in blocked state
104 		 */
105 		if (current->preempted_vcpu != NULL) {
106 			/*
107 			 * After the target SP execution context has handled
108 			 * the interrupt, it uses the FFA_RUN ABI to resume
109 			 * the request due to which it had entered the blocked
110 			 * state earlier.
111 			 * Deny the state transition if the SP didnt perform the
112 			 * deactivation of the secure virtual interrupt.
113 			 */
114 			if (vcpu_virt_interrupt_count_get(current_locked) > 0) {
115 				run_ret->arg2 = FFA_DENIED;
116 				ret = false;
117 				goto out;
118 			}
119 
120 			/*
121 			 * Refer Figure 8.13 Scenario 1: Implementation choice:
122 			 * SPMC left all intermediate SP execution contexts in
123 			 * blocked state. Hence, SPMC now bypasses the
124 			 * intermediate these execution contexts and resumes the
125 			 * SP execution context that was originally preempted.
126 			 */
127 			*next = current->preempted_vcpu;
128 			if (target_vcpu != current->preempted_vcpu) {
129 				dlog_verbose("Skipping intermediate vCPUs\n");
130 			}
131 
132 			/*
133 			 * Clear fields corresponding to secure interrupt
134 			 * handling.
135 			 */
136 			vcpu_secure_interrupt_complete(current_locked);
137 		}
138 	}
139 
140 	/* Check if a vCPU of SP is being resumed. */
141 	if (vm_id_is_current_world(target_vm_id)) {
142 		/*
143 		 * A call chain cannot span CPUs. The target vCPU can only be
144 		 * resumed by FFA_RUN on present CPU.
145 		 */
146 		if ((target_vcpu->call_chain.prev_node != NULL ||
147 		     target_vcpu->call_chain.next_node != NULL) &&
148 		    (target_vcpu->cpu != current->cpu)) {
149 			run_ret->arg2 = FFA_DENIED;
150 			ret = false;
151 			goto out;
152 		}
153 	}
154 
155 out:
156 	vcpu_unlock(&target_locked);
157 	return ret;
158 }
159 
160 /**
161  * SPMC scheduled call chain is completely unwound.
162  */
ffa_cpu_cycles_exit_spmc_schedule_mode(struct vcpu_locked current_locked)163 static void ffa_cpu_cycles_exit_spmc_schedule_mode(
164 	struct vcpu_locked current_locked)
165 {
166 	struct vcpu *current;
167 
168 	current = current_locked.vcpu;
169 	assert(current->call_chain.next_node == NULL);
170 	CHECK(current->scheduling_mode == SPMC_MODE);
171 
172 	current->scheduling_mode = NONE;
173 	current->rt_model = RTM_NONE;
174 }
175 
176 /**
177  * A SP in running state could have been pre-empted by a secure interrupt. SPM
178  * would switch the execution to the vCPU of target SP responsible for interupt
179  * handling. Upon completion of interrupt handling, vCPU performs interrupt
180  * signal completion through FFA_MSG_WAIT ABI (provided it was in waiting state
181  * when interrupt was signaled).
182  *
183  * SPM then resumes the original SP that was initially pre-empted.
184  */
ffa_cpu_cycles_preempted_vcpu_resume(struct vcpu_locked current_locked,struct vcpu ** next)185 static struct ffa_value ffa_cpu_cycles_preempted_vcpu_resume(
186 	struct vcpu_locked current_locked, struct vcpu **next)
187 {
188 	struct ffa_value ffa_ret = (struct ffa_value){.func = FFA_MSG_WAIT_32};
189 	struct vcpu *target_vcpu;
190 	struct vcpu *current = current_locked.vcpu;
191 	struct vcpu_locked target_locked;
192 	struct two_vcpu_locked vcpus_locked;
193 
194 	CHECK(current->preempted_vcpu != NULL);
195 	CHECK(current->preempted_vcpu->state == VCPU_STATE_PREEMPTED);
196 
197 	target_vcpu = current->preempted_vcpu;
198 	vcpu_unlock(&current_locked);
199 
200 	/* Lock both vCPUs at once to avoid deadlock. */
201 	vcpus_locked = vcpu_lock_both(current, target_vcpu);
202 	current_locked = vcpus_locked.vcpu1;
203 	target_locked = vcpus_locked.vcpu2;
204 
205 	/* Reset the fields tracking secure interrupt processing. */
206 	vcpu_secure_interrupt_complete(current_locked);
207 
208 	/* SPMC scheduled call chain is completely unwound. */
209 	ffa_cpu_cycles_exit_spmc_schedule_mode(current_locked);
210 	assert(current->call_chain.prev_node == NULL);
211 
212 	current->state = VCPU_STATE_WAITING;
213 
214 	vcpu_set_running(target_locked, NULL);
215 
216 	vcpu_unlock(&target_locked);
217 
218 	/* Restore interrupt priority mask. */
219 	ffa_interrupts_unmask(current);
220 
221 	/* The pre-empted vCPU should be run. */
222 	*next = target_vcpu;
223 
224 	return ffa_ret;
225 }
226 
ffa_msg_wait_complete(struct vcpu_locked current_locked,struct vcpu ** next)227 static void ffa_msg_wait_complete(struct vcpu_locked current_locked,
228 				  struct vcpu **next)
229 {
230 	struct vcpu *current = current_locked.vcpu;
231 
232 	current->scheduling_mode = NONE;
233 	current->rt_model = RTM_NONE;
234 
235 	/*
236 	 * We no longer need to do a managed exit so clear the interrupt if
237 	 * needed.
238 	 */
239 	vcpu_virt_interrupt_clear(current_locked, HF_MANAGED_EXIT_INTID);
240 
241 	/* Relinquish control back to the NWd. */
242 	*next = api_switch_to_other_world(
243 		current_locked, (struct ffa_value){.func = FFA_MSG_WAIT_32},
244 		VCPU_STATE_WAITING);
245 }
246 
247 /**
248  * Deals with the common case of intercepting an FFA_MSG_WAIT call.
249  */
ffa_cpu_cycles_msg_wait_intercept(struct vcpu_locked current_locked,struct vcpu ** next,struct ffa_value * ffa_ret)250 static bool ffa_cpu_cycles_msg_wait_intercept(struct vcpu_locked current_locked,
251 					      struct vcpu **next,
252 					      struct ffa_value *ffa_ret)
253 {
254 	struct two_vcpu_locked both_vcpu_locks;
255 	struct vcpu *current = current_locked.vcpu;
256 	bool ret = false;
257 
258 	assert(next != NULL);
259 	assert(*next != NULL);
260 
261 	vcpu_unlock(&current_locked);
262 
263 	both_vcpu_locks = vcpu_lock_both(current, *next);
264 
265 	/*
266 	 * Check if there is a pending interrupt, and if the partition
267 	 * is expects to notify the scheduler or resume straight away.
268 	 * Either trigger SRI for later donation of CPU cycles, or
269 	 * eret `FFA_INTERRUPT` back to the caller.
270 	 */
271 	if (ffa_interrupts_intercept_call(both_vcpu_locks.vcpu1,
272 					  both_vcpu_locks.vcpu2, ffa_ret)) {
273 		*next = NULL;
274 		ret = true;
275 	}
276 
277 	vcpu_unlock(&both_vcpu_locks.vcpu2);
278 
279 	return ret;
280 }
281 
sp_boot_next(struct vcpu_locked current_locked,struct vcpu ** next)282 static bool sp_boot_next(struct vcpu_locked current_locked, struct vcpu **next)
283 {
284 	struct vcpu *vcpu_next = NULL;
285 	struct vcpu *current = current_locked.vcpu;
286 	struct vm *next_vm;
287 	size_t cpu_indx = cpu_index(current->cpu);
288 
289 	if (current->cpu->last_sp_initialized) {
290 		return false;
291 	}
292 
293 	if (!atomic_load_explicit(&current->vm->aborting,
294 				  memory_order_relaxed)) {
295 		/* vCPU has just returned from successful initialization. */
296 		dlog_verbose(
297 			"Initialized execution context of VM: %#x on CPU: %zu, "
298 			"boot_order: %u\n",
299 			current->vm->id, cpu_index(current->cpu),
300 			current->vm->boot_order);
301 	}
302 
303 	if (cpu_index(current_locked.vcpu->cpu) == PRIMARY_CPU_IDX) {
304 		next_vm = vm_get_next_boot(current->vm);
305 	} else {
306 		/* SP boot chain on secondary CPU. */
307 		next_vm = vm_get_next_boot_secondary_core(current->vm);
308 	}
309 
310 	current->state = VCPU_STATE_WAITING;
311 	current->rt_model = RTM_NONE;
312 	current->scheduling_mode = NONE;
313 
314 	/*
315 	 * Pick next SP's vCPU to be booted. Once all SPs have booted
316 	 * (next_vm is NULL), then return execution to NWd.
317 	 */
318 	if (next_vm == NULL) {
319 		current->cpu->last_sp_initialized = true;
320 		goto out;
321 	}
322 
323 	vcpu_next = vm_get_vcpu(next_vm, cpu_indx);
324 
325 	/*
326 	 * An SP's execution context needs to be bootstrapped if:
327 	 * - It has never been initialized before.
328 	 * - Or it was turned off when the CPU, on which it was pinned, was
329 	 *   powered down.
330 	 */
331 	if (vcpu_next->rt_model == RTM_SP_INIT ||
332 	    vcpu_next->state == VCPU_STATE_OFF) {
333 		vcpu_next->rt_model = RTM_SP_INIT;
334 		arch_regs_reset(vcpu_next);
335 		vcpu_next->cpu = current->cpu;
336 		vcpu_next->state = VCPU_STATE_RUNNING;
337 		vcpu_next->regs_available = false;
338 		vcpu_set_phys_core_idx(vcpu_next);
339 		arch_regs_set_pc_arg(&vcpu_next->regs,
340 				     vcpu_next->vm->secondary_ep, 0ULL);
341 
342 		if (cpu_index(current_locked.vcpu->cpu) == PRIMARY_CPU_IDX) {
343 			/*
344 			 * Boot information is passed by the SPMC to the SP's
345 			 * execution context only on the primary CPU.
346 			 */
347 			vcpu_set_boot_info_gp_reg(vcpu_next);
348 		}
349 
350 		*next = vcpu_next;
351 
352 		return true;
353 	}
354 out:
355 	dlog_notice("Finished bootstrapping all SPs on CPU%lx\n", cpu_indx);
356 	return false;
357 }
358 
359 /**
360  * The invocation of FFA_MSG_WAIT at secure virtual FF-A instance is compliant
361  * with FF-A v1.1 EAC0 specification. It only performs the state transition
362  * from RUNNING to WAITING for the following Partition runtime models:
363  * RTM_FFA_RUN, RTM_SEC_INTERRUPT, RTM_SP_INIT.
364  */
ffa_cpu_cycles_msg_wait_prepare(struct vcpu_locked current_locked,struct vcpu ** next)365 struct ffa_value ffa_cpu_cycles_msg_wait_prepare(
366 	struct vcpu_locked current_locked, struct vcpu **next)
367 {
368 	struct ffa_value ret = api_ffa_interrupt_return(0);
369 	struct vcpu *current = current_locked.vcpu;
370 
371 	switch (current->rt_model) {
372 	case RTM_SP_INIT:
373 		if (!sp_boot_next(current_locked, next)) {
374 			ffa_msg_wait_complete(current_locked, next);
375 
376 			ffa_cpu_cycles_msg_wait_intercept(current_locked, next,
377 							  &ret);
378 		}
379 		break;
380 	case RTM_SEC_INTERRUPT:
381 		/*
382 		 * Either resume the preempted SP or complete the FFA_MSG_WAIT.
383 		 */
384 		assert(current->preempted_vcpu != NULL);
385 		ffa_cpu_cycles_preempted_vcpu_resume(current_locked, next);
386 
387 		if (!ffa_cpu_cycles_msg_wait_intercept(current_locked, next,
388 						       &ret)) {
389 			/*
390 			 * If CPU cycles were allocated through FFA_RUN
391 			 * interface, allow the interrupts(if they were masked
392 			 * earlier) before returning control to NWd.
393 			 */
394 			ffa_interrupts_unmask(current);
395 		}
396 
397 		break;
398 	case RTM_FFA_RUN:
399 		ffa_msg_wait_complete(current_locked, next);
400 
401 		if (!ffa_cpu_cycles_msg_wait_intercept(current_locked, next,
402 						       &ret)) {
403 			/*
404 			 * If CPU cycles were allocated through FFA_RUN
405 			 * interface, allow the interrupts(if they were masked
406 			 * earlier) before returning control to NWd.
407 			 */
408 			ffa_interrupts_unmask(current);
409 		}
410 
411 		break;
412 	default:
413 		panic("%s: unexpected runtime model %x for [%x %x]",
414 		      current->rt_model, current->vm->id,
415 		      cpu_index(current->cpu));
416 	}
417 
418 	vcpu_unlock(&current_locked);
419 
420 	return ret;
421 }
422 
423 /*
424  * Initialize the scheduling mode and/or Partition Runtime model of the target
425  * SP upon being resumed by an FFA_RUN ABI.
426  */
ffa_cpu_cycles_init_schedule_mode_ffa_run(struct vcpu_locked current_locked,struct vcpu_locked target_locked)427 void ffa_cpu_cycles_init_schedule_mode_ffa_run(
428 	struct vcpu_locked current_locked, struct vcpu_locked target_locked)
429 {
430 	struct vcpu *vcpu = target_locked.vcpu;
431 	struct vcpu *current = current_locked.vcpu;
432 
433 	/*
434 	 * Scenario 1 in Table 8.4; Therefore SPMC could be resuming a vCPU
435 	 * that was part of NWd scheduled mode.
436 	 */
437 	CHECK(vcpu->scheduling_mode != SPMC_MODE);
438 
439 	/* Section 8.2.3 bullet 4.2 of spec FF-A v1.1 EAC0. */
440 	if (vcpu->state == VCPU_STATE_WAITING) {
441 		assert(vcpu->rt_model == RTM_SP_INIT ||
442 		       vcpu->rt_model == RTM_NONE);
443 		vcpu->rt_model = RTM_FFA_RUN;
444 
445 		if (!vm_id_is_current_world(current->vm->id) ||
446 		    (current->scheduling_mode == NWD_MODE)) {
447 			vcpu->scheduling_mode = NWD_MODE;
448 		}
449 	} else {
450 		/* SP vCPU would have been pre-empted earlier or blocked. */
451 		CHECK(vcpu->state == VCPU_STATE_PREEMPTED ||
452 		      vcpu->state == VCPU_STATE_BLOCKED);
453 	}
454 
455 	ffa_interrupts_mask(target_locked);
456 }
457 
458 /*
459  * Prepare to yield execution back to the VM/SP that allocated CPU cycles and
460  * move to BLOCKED state. If the CPU cycles were allocated to the current
461  * execution context by the SPMC to handle secure virtual interrupt, then
462  * FFA_YIELD invocation is essentially a no-op.
463  */
ffa_cpu_cycles_yield_prepare(struct vcpu_locked current_locked,struct vcpu ** next,uint32_t timeout_low,uint32_t timeout_high)464 struct ffa_value ffa_cpu_cycles_yield_prepare(struct vcpu_locked current_locked,
465 					      struct vcpu **next,
466 					      uint32_t timeout_low,
467 					      uint32_t timeout_high)
468 {
469 	struct ffa_value ret_args = (struct ffa_value){.func = FFA_SUCCESS_32};
470 	struct vcpu *current = current_locked.vcpu;
471 	struct ffa_value ret = {
472 		.func = FFA_YIELD_32,
473 		.arg1 = ffa_vm_vcpu(current->vm->id, vcpu_index(current)),
474 		.arg2 = timeout_low,
475 		.arg3 = timeout_high,
476 	};
477 
478 	switch (current->rt_model) {
479 	case RTM_FFA_DIR_REQ:
480 		assert(current->direct_request_origin.vm_id !=
481 		       HF_INVALID_VM_ID);
482 		if (current->call_chain.prev_node == NULL) {
483 			/*
484 			 * Relinquish cycles to the NWd VM that sent direct
485 			 * request message to the current SP.
486 			 */
487 			*next = api_switch_to_other_world(current_locked, ret,
488 							  VCPU_STATE_BLOCKED);
489 		} else {
490 			/*
491 			 * Relinquish cycles to the SP that sent direct request
492 			 * message to the current SP.
493 			 */
494 			*next = api_switch_to_vm(
495 				current_locked, ret, VCPU_STATE_BLOCKED,
496 				current->direct_request_origin.vm_id);
497 		}
498 		break;
499 	case RTM_SEC_INTERRUPT: {
500 		/*
501 		 * SPMC does not implement a scheduler needed to resume the
502 		 * current vCPU upon timeout expiration. Hence, SPMC makes the
503 		 * implementation defined choice to treat FFA_YIELD invocation
504 		 * as a no-op if the SP execution context is in the secure
505 		 * interrupt runtime model. This does not violate FF-A spec as
506 		 * the spec does not mandate timeout to be honored. Moreover,
507 		 * timeout specified by an endpoint is just a hint to the
508 		 * partition manager which allocated CPU cycles.
509 		 * Resume the current vCPU.
510 		 */
511 		*next = NULL;
512 		break;
513 	}
514 	default:
515 		CHECK(current->rt_model == RTM_FFA_RUN);
516 		*next = api_switch_to_primary(current_locked, ret,
517 					      VCPU_STATE_BLOCKED);
518 		break;
519 	}
520 
521 	/*
522 	 * Before yielding CPU cycles, allow the interrupts(if they were
523 	 * masked earlier).
524 	 */
525 	if (*next != NULL) {
526 		ffa_interrupts_unmask(current);
527 	}
528 
529 	return ret_args;
530 }
531 
532 /**
533  * Validates the Runtime model for FFA_RUN. Refer to section 7.2 of the FF-A
534  * v1.1 EAC0 spec.
535  */
ffa_cpu_cycles_check_rtm_ffa_run(struct vcpu_locked current_locked,struct vcpu_locked locked_vcpu,uint32_t func,enum vcpu_state * next_state)536 static bool ffa_cpu_cycles_check_rtm_ffa_run(struct vcpu_locked current_locked,
537 					     struct vcpu_locked locked_vcpu,
538 					     uint32_t func,
539 					     enum vcpu_state *next_state)
540 {
541 	switch (func) {
542 	case FFA_MSG_SEND_DIRECT_REQ_64:
543 	case FFA_MSG_SEND_DIRECT_REQ_32:
544 	case FFA_MSG_SEND_DIRECT_REQ2_64:
545 		[[fallthrough]];
546 	case FFA_RUN_32: {
547 		/* Rules 1,2 section 7.2 EAC0 spec. */
548 		if (ffa_direct_msg_precedes_in_call_chain(current_locked,
549 							  locked_vcpu)) {
550 			return false;
551 		}
552 		*next_state = VCPU_STATE_BLOCKED;
553 		return true;
554 	}
555 	case FFA_MSG_WAIT_32:
556 		/* Rule 4 section 7.2 EAC0 spec. Fall through. */
557 		*next_state = VCPU_STATE_WAITING;
558 		return true;
559 	case FFA_YIELD_32:
560 		/* Rule 5 section 7.2 EAC0 spec. */
561 		*next_state = VCPU_STATE_BLOCKED;
562 		return true;
563 	case FFA_MSG_SEND_DIRECT_RESP_64:
564 	case FFA_MSG_SEND_DIRECT_RESP_32:
565 	case FFA_MSG_SEND_DIRECT_RESP2_64:
566 		/* Rule 3 section 7.2 EAC0 spec. Fall through. */
567 	default:
568 		/* Deny state transitions by default. */
569 		return false;
570 	}
571 }
572 
573 /**
574  * Validates the Runtime model for FFA_MSG_SEND_DIRECT_REQ and
575  * FFA_MSG_SEND_DIRECT_REQ2. Refer to section 8.3 of the FF-A
576  * v1.2 spec.
577  */
ffa_cpu_cycles_check_rtm_ffa_dir_req(struct vcpu_locked current_locked,struct vcpu_locked locked_vcpu,ffa_id_t receiver_vm_id,uint32_t func,enum vcpu_state * next_state)578 static bool ffa_cpu_cycles_check_rtm_ffa_dir_req(
579 	struct vcpu_locked current_locked, struct vcpu_locked locked_vcpu,
580 	ffa_id_t receiver_vm_id, uint32_t func, enum vcpu_state *next_state)
581 {
582 	/*
583 	 * SPMC denies invocation if the SP's vCPU is processing a PSCI power
584 	 * management operation.
585 	 */
586 	if (current_locked.vcpu->pwr_mgmt_op != PWR_MGMT_NONE) {
587 		switch (func) {
588 		case FFA_MSG_SEND_DIRECT_REQ_64:
589 		case FFA_MSG_SEND_DIRECT_REQ_32:
590 		case FFA_MSG_SEND_DIRECT_REQ2_64:
591 		case FFA_RUN_32:
592 		case FFA_YIELD_32:
593 			dlog_verbose(
594 				"State transition denied during power "
595 				"management operation\n");
596 			return false;
597 		default:
598 			break;
599 		}
600 	}
601 
602 	switch (func) {
603 	case FFA_MSG_SEND_DIRECT_REQ_64:
604 	case FFA_MSG_SEND_DIRECT_REQ_32:
605 	case FFA_MSG_SEND_DIRECT_REQ2_64:
606 		[[fallthrough]];
607 	case FFA_RUN_32: {
608 		/* Rules 1,2. */
609 		if (ffa_direct_msg_precedes_in_call_chain(current_locked,
610 							  locked_vcpu)) {
611 			return false;
612 		}
613 
614 		*next_state = VCPU_STATE_BLOCKED;
615 		return true;
616 	}
617 	case FFA_MSG_SEND_DIRECT_RESP_64:
618 	case FFA_MSG_SEND_DIRECT_RESP_32:
619 	case FFA_MSG_SEND_DIRECT_RESP2_64: {
620 		/* Rule 3. */
621 		if (current_locked.vcpu->direct_request_origin.vm_id ==
622 		    receiver_vm_id) {
623 			*next_state = VCPU_STATE_WAITING;
624 			return true;
625 		}
626 
627 		return false;
628 	}
629 	case FFA_YIELD_32:
630 		/* Rule 3, section 8.3 of FF-A v1.2 spec. */
631 		*next_state = VCPU_STATE_BLOCKED;
632 		return true;
633 	case FFA_MSG_WAIT_32:
634 		/* Rule 4. Fall through. */
635 	default:
636 		/* Deny state transitions by default. */
637 		return false;
638 	}
639 }
640 
641 /**
642  * Validates the Runtime model for Secure interrupt handling. Refer to section
643  * 8.4 of the FF-A v1.2 ALP0 spec.
644  */
ffa_cpu_cycles_check_rtm_sec_interrupt(struct vcpu_locked current_locked,struct vcpu_locked locked_vcpu,uint32_t func,enum vcpu_state * next_state)645 static bool ffa_cpu_cycles_check_rtm_sec_interrupt(
646 	struct vcpu_locked current_locked, struct vcpu_locked locked_vcpu,
647 	uint32_t func, enum vcpu_state *next_state)
648 {
649 	struct vcpu *current = current_locked.vcpu;
650 	struct vcpu *vcpu = locked_vcpu.vcpu;
651 
652 	CHECK(current->scheduling_mode == SPMC_MODE);
653 
654 	switch (func) {
655 	case FFA_MSG_SEND_DIRECT_REQ_64:
656 	case FFA_MSG_SEND_DIRECT_REQ_32:
657 	case FFA_MSG_SEND_DIRECT_REQ2_64:
658 		/* Rule 3. */
659 		*next_state = VCPU_STATE_BLOCKED;
660 		return true;
661 	case FFA_RUN_32: {
662 		/* Rule 6. */
663 		if (vcpu->state == VCPU_STATE_PREEMPTED) {
664 			*next_state = VCPU_STATE_BLOCKED;
665 			return true;
666 		}
667 
668 		return false;
669 	}
670 	case FFA_MSG_WAIT_32:
671 		/* Rule 2. */
672 		*next_state = VCPU_STATE_WAITING;
673 		return true;
674 	case FFA_YIELD_32:
675 		/* Rule 3, section 8.4 of FF-A v1.2 spec. */
676 		*next_state = VCPU_STATE_BLOCKED;
677 		return true;
678 	case FFA_MSG_SEND_DIRECT_RESP_64:
679 	case FFA_MSG_SEND_DIRECT_RESP_32:
680 	case FFA_MSG_SEND_DIRECT_RESP2_64:
681 		/* Rule 5. Fall through. */
682 	default:
683 		/* Deny state transitions by default. */
684 		return false;
685 	}
686 }
687 
688 /**
689  * Validates the Runtime model for SP initialization. Refer to section
690  * 8.3 of the FF-A v1.2 ALP0 spec.
691  */
ffa_cpu_cycles_check_rtm_sp_init(struct vcpu_locked locked_vcpu,uint32_t func,enum vcpu_state * next_state)692 static bool ffa_cpu_cycles_check_rtm_sp_init(struct vcpu_locked locked_vcpu,
693 					     uint32_t func,
694 					     enum vcpu_state *next_state)
695 {
696 	switch (func) {
697 	case FFA_MSG_SEND_DIRECT_REQ_64:
698 	case FFA_MSG_SEND_DIRECT_REQ_32:
699 	case FFA_MSG_SEND_DIRECT_REQ2_64: {
700 		struct vcpu *vcpu = locked_vcpu.vcpu;
701 
702 		assert(vcpu != NULL);
703 		/* Rule 1. */
704 		if (vcpu->rt_model != RTM_SP_INIT) {
705 			*next_state = VCPU_STATE_BLOCKED;
706 			return true;
707 		}
708 
709 		return false;
710 	}
711 	case FFA_MSG_WAIT_32:
712 		/* Rule 2. Fall through. */
713 	case FFA_ERROR_32:
714 		/* Rule 3. */
715 		*next_state = VCPU_STATE_WAITING;
716 		return true;
717 	case FFA_YIELD_32:
718 		/* Rule 4. Fall through. */
719 	case FFA_RUN_32:
720 		/* Rule 6. Fall through. */
721 	case FFA_MSG_SEND_DIRECT_RESP_64:
722 	case FFA_MSG_SEND_DIRECT_RESP_32:
723 	case FFA_MSG_SEND_DIRECT_RESP2_64:
724 		/* Rule 5. Fall through. */
725 	default:
726 		/* Deny state transitions by default. */
727 		return false;
728 	}
729 }
730 
731 /**
732  * Check if the runtime model (state machine) of the current SP supports the
733  * given FF-A ABI invocation. If yes, next_state represents the state to which
734  * the current vcpu would transition upon the FF-A ABI invocation as determined
735  * by the Partition runtime model.
736  */
ffa_cpu_cycles_check_runtime_state_transition(struct vcpu_locked current_locked,ffa_id_t vm_id,ffa_id_t receiver_vm_id,struct vcpu_locked locked_vcpu,uint32_t func,enum vcpu_state * next_state)737 bool ffa_cpu_cycles_check_runtime_state_transition(
738 	struct vcpu_locked current_locked, ffa_id_t vm_id,
739 	ffa_id_t receiver_vm_id, struct vcpu_locked locked_vcpu, uint32_t func,
740 	enum vcpu_state *next_state)
741 {
742 	bool allowed = false;
743 	struct vcpu *current = current_locked.vcpu;
744 
745 	assert(current != NULL);
746 
747 	/* Perform state transition checks only for Secure Partitions. */
748 	if (!vm_id_is_current_world(vm_id)) {
749 		return true;
750 	}
751 
752 	switch (current->rt_model) {
753 	case RTM_FFA_RUN:
754 		allowed = ffa_cpu_cycles_check_rtm_ffa_run(
755 			current_locked, locked_vcpu, func, next_state);
756 		break;
757 	case RTM_FFA_DIR_REQ:
758 		allowed = ffa_cpu_cycles_check_rtm_ffa_dir_req(
759 			current_locked, locked_vcpu, receiver_vm_id, func,
760 			next_state);
761 		break;
762 	case RTM_SEC_INTERRUPT:
763 		allowed = ffa_cpu_cycles_check_rtm_sec_interrupt(
764 			current_locked, locked_vcpu, func, next_state);
765 		break;
766 	case RTM_SP_INIT:
767 		allowed = ffa_cpu_cycles_check_rtm_sp_init(locked_vcpu, func,
768 							   next_state);
769 		break;
770 	default:
771 		dlog_error(
772 			"Illegal Runtime Model specified by SP%x on CPU%zx\n",
773 			current->vm->id, cpu_index(current->cpu));
774 		allowed = false;
775 		break;
776 	}
777 
778 	if (!allowed) {
779 		dlog_verbose("State transition denied\n");
780 	}
781 
782 	return allowed;
783 }
784 
785 /*
786  * Handle FFA_ERROR_32 call according to the given error code.
787  *
788  * Error codes other than FFA_ABORTED, and cases of FFA_ABORTED not
789  * in RTM_SP_INIT runtime model, not implemented. Refer to section 8.5
790  * of FF-A 1.2 spec.
791  */
ffa_cpu_cycles_error_32(struct vcpu * current,struct vcpu ** next,enum ffa_error error_code)792 struct ffa_value ffa_cpu_cycles_error_32(struct vcpu *current,
793 					 struct vcpu **next,
794 					 enum ffa_error error_code)
795 {
796 	struct vcpu_locked current_locked;
797 	struct vm_locked vm_locked;
798 	enum partition_runtime_model rt_model;
799 	struct ffa_value ret = api_ffa_interrupt_return(0);
800 
801 	vm_locked = vm_lock(current->vm);
802 	current_locked = vcpu_lock(current);
803 	rt_model = current_locked.vcpu->rt_model;
804 
805 	if (error_code == FFA_ABORTED && rt_model == RTM_SP_INIT) {
806 		dlog_error("Aborting SP %#x from vCPU %u\n", current->vm->id,
807 			   vcpu_index(current));
808 
809 		atomic_store_explicit(&current->vm->aborting, true,
810 				      memory_order_relaxed);
811 
812 		ffa_vm_free_resources(vm_locked);
813 
814 		if (sp_boot_next(current_locked, next)) {
815 			goto out;
816 		}
817 
818 		/*
819 		 * Relinquish control back to the NWd. Return
820 		 * FFA_MSG_WAIT_32 to indicate to SPMD that SPMC
821 		 * has successfully finished initialization.
822 		 */
823 		*next = api_switch_to_other_world(
824 			current_locked,
825 			(struct ffa_value){.func = FFA_MSG_WAIT_32},
826 			VCPU_STATE_ABORTED);
827 
828 		goto out;
829 	}
830 	ret = ffa_error(FFA_NOT_SUPPORTED);
831 out:
832 	vcpu_unlock(&current_locked);
833 	vm_unlock(&vm_locked);
834 	return ret;
835 }
836