1 /*
2 * Copyright 2024 The Hafnium Authors.
3 *
4 * Use of this source code is governed by a BSD-style
5 * license that can be found in the LICENSE file or at
6 * https://opensource.org/licenses/BSD-3-Clause.
7 */
8
9 #include "hf/arch/gicv3.h"
10
11 #include "hf/api.h"
12 #include "hf/check.h"
13 #include "hf/ffa.h"
14 #include "hf/ffa/direct_messaging.h"
15 #include "hf/ffa/interrupts.h"
16 #include "hf/ffa/vm.h"
17 #include "hf/ffa_internal.h"
18 #include "hf/plat/interrupts.h"
19 #include "hf/vm.h"
20
ffa_cpu_cycles_run_forward(ffa_id_t vm_id,ffa_vcpu_index_t vcpu_idx,struct ffa_value * ret)21 bool ffa_cpu_cycles_run_forward(ffa_id_t vm_id, ffa_vcpu_index_t vcpu_idx,
22 struct ffa_value *ret)
23 {
24 (void)vm_id;
25 (void)vcpu_idx;
26 (void)ret;
27
28 return false;
29 }
30
31 /**
32 * Check if current VM can resume target VM using FFA_RUN ABI.
33 */
ffa_cpu_cycles_run_checks(struct vcpu_locked current_locked,ffa_id_t target_vm_id,ffa_vcpu_index_t vcpu_idx,struct ffa_value * run_ret,struct vcpu ** next)34 bool ffa_cpu_cycles_run_checks(struct vcpu_locked current_locked,
35 ffa_id_t target_vm_id, ffa_vcpu_index_t vcpu_idx,
36 struct ffa_value *run_ret, struct vcpu **next)
37 {
38 /*
39 * Under the Partition runtime model specified in FF-A v1.1-Beta0 spec,
40 * SP can invoke FFA_RUN to resume target SP.
41 */
42 struct vcpu *target_vcpu;
43 struct vcpu *current = current_locked.vcpu;
44 bool ret = true;
45 struct vm *vm;
46 struct vcpu_locked target_locked;
47 struct two_vcpu_locked vcpus_locked;
48
49 vm = vm_find(target_vm_id);
50 if (vm == NULL) {
51 return false;
52 }
53
54 if (vm_is_mp(vm) && vm_is_mp(current->vm) &&
55 vcpu_idx != cpu_index(current->cpu)) {
56 dlog_verbose("vcpu_idx (%d) != pcpu index (%zu)\n", vcpu_idx,
57 cpu_index(current->cpu));
58 return false;
59 }
60
61 target_vcpu = api_ffa_get_vm_vcpu(vm, current);
62
63 vcpu_unlock(¤t_locked);
64
65 /* Lock both vCPUs at once to avoid deadlock. */
66 vcpus_locked = vcpu_lock_both(current, target_vcpu);
67 current_locked = vcpus_locked.vcpu1;
68 target_locked = vcpus_locked.vcpu2;
69
70 /* Only the primary VM can turn ON a vCPU that is currently OFF. */
71 if (!vm_is_primary(current->vm) &&
72 target_vcpu->state == VCPU_STATE_OFF) {
73 run_ret->arg2 = FFA_DENIED;
74 ret = false;
75 goto out;
76 }
77
78 /*
79 * An SPx can resume another SPy only when SPy is in PREEMPTED or
80 * BLOCKED state.
81 */
82 if (vm_id_is_current_world(current->vm->id) &&
83 vm_id_is_current_world(target_vm_id)) {
84 /* Target SP must be in preempted or blocked state. */
85 if (target_vcpu->state != VCPU_STATE_PREEMPTED &&
86 target_vcpu->state != VCPU_STATE_BLOCKED) {
87 run_ret->arg2 = FFA_DENIED;
88 ret = false;
89 goto out;
90 }
91 }
92
93 /* A SP cannot invoke FFA_RUN to resume a normal world VM. */
94 if (!vm_id_is_current_world(target_vm_id)) {
95 run_ret->arg2 = FFA_DENIED;
96 ret = false;
97 goto out;
98 }
99
100 if (vm_id_is_current_world(current->vm->id)) {
101 /*
102 * Refer FF-A v1.1 EAC0 spec section 8.3.2.2.1
103 * Signaling an Other S-Int in blocked state
104 */
105 if (current->preempted_vcpu != NULL) {
106 /*
107 * After the target SP execution context has handled
108 * the interrupt, it uses the FFA_RUN ABI to resume
109 * the request due to which it had entered the blocked
110 * state earlier.
111 * Deny the state transition if the SP didnt perform the
112 * deactivation of the secure virtual interrupt.
113 */
114 if (vcpu_virt_interrupt_count_get(current_locked) > 0) {
115 run_ret->arg2 = FFA_DENIED;
116 ret = false;
117 goto out;
118 }
119
120 /*
121 * Refer Figure 8.13 Scenario 1: Implementation choice:
122 * SPMC left all intermediate SP execution contexts in
123 * blocked state. Hence, SPMC now bypasses the
124 * intermediate these execution contexts and resumes the
125 * SP execution context that was originally preempted.
126 */
127 *next = current->preempted_vcpu;
128 if (target_vcpu != current->preempted_vcpu) {
129 dlog_verbose("Skipping intermediate vCPUs\n");
130 }
131
132 /*
133 * Clear fields corresponding to secure interrupt
134 * handling.
135 */
136 vcpu_secure_interrupt_complete(current_locked);
137 }
138 }
139
140 /* Check if a vCPU of SP is being resumed. */
141 if (vm_id_is_current_world(target_vm_id)) {
142 /*
143 * A call chain cannot span CPUs. The target vCPU can only be
144 * resumed by FFA_RUN on present CPU.
145 */
146 if ((target_vcpu->call_chain.prev_node != NULL ||
147 target_vcpu->call_chain.next_node != NULL) &&
148 (target_vcpu->cpu != current->cpu)) {
149 run_ret->arg2 = FFA_DENIED;
150 ret = false;
151 goto out;
152 }
153 }
154
155 out:
156 vcpu_unlock(&target_locked);
157 return ret;
158 }
159
160 /**
161 * SPMC scheduled call chain is completely unwound.
162 */
ffa_cpu_cycles_exit_spmc_schedule_mode(struct vcpu_locked current_locked)163 static void ffa_cpu_cycles_exit_spmc_schedule_mode(
164 struct vcpu_locked current_locked)
165 {
166 struct vcpu *current;
167
168 current = current_locked.vcpu;
169 assert(current->call_chain.next_node == NULL);
170 CHECK(current->scheduling_mode == SPMC_MODE);
171
172 current->scheduling_mode = NONE;
173 current->rt_model = RTM_NONE;
174 }
175
176 /**
177 * A SP in running state could have been pre-empted by a secure interrupt. SPM
178 * would switch the execution to the vCPU of target SP responsible for interupt
179 * handling. Upon completion of interrupt handling, vCPU performs interrupt
180 * signal completion through FFA_MSG_WAIT ABI (provided it was in waiting state
181 * when interrupt was signaled).
182 *
183 * SPM then resumes the original SP that was initially pre-empted.
184 */
ffa_cpu_cycles_preempted_vcpu_resume(struct vcpu_locked current_locked,struct vcpu ** next)185 static struct ffa_value ffa_cpu_cycles_preempted_vcpu_resume(
186 struct vcpu_locked current_locked, struct vcpu **next)
187 {
188 struct ffa_value ffa_ret = (struct ffa_value){.func = FFA_MSG_WAIT_32};
189 struct vcpu *target_vcpu;
190 struct vcpu *current = current_locked.vcpu;
191 struct vcpu_locked target_locked;
192 struct two_vcpu_locked vcpus_locked;
193
194 CHECK(current->preempted_vcpu != NULL);
195 CHECK(current->preempted_vcpu->state == VCPU_STATE_PREEMPTED);
196
197 target_vcpu = current->preempted_vcpu;
198 vcpu_unlock(¤t_locked);
199
200 /* Lock both vCPUs at once to avoid deadlock. */
201 vcpus_locked = vcpu_lock_both(current, target_vcpu);
202 current_locked = vcpus_locked.vcpu1;
203 target_locked = vcpus_locked.vcpu2;
204
205 /* Reset the fields tracking secure interrupt processing. */
206 vcpu_secure_interrupt_complete(current_locked);
207
208 /* SPMC scheduled call chain is completely unwound. */
209 ffa_cpu_cycles_exit_spmc_schedule_mode(current_locked);
210 assert(current->call_chain.prev_node == NULL);
211
212 current->state = VCPU_STATE_WAITING;
213
214 vcpu_set_running(target_locked, NULL);
215
216 vcpu_unlock(&target_locked);
217
218 /* Restore interrupt priority mask. */
219 ffa_interrupts_unmask(current);
220
221 /* The pre-empted vCPU should be run. */
222 *next = target_vcpu;
223
224 return ffa_ret;
225 }
226
ffa_msg_wait_complete(struct vcpu_locked current_locked,struct vcpu ** next)227 static void ffa_msg_wait_complete(struct vcpu_locked current_locked,
228 struct vcpu **next)
229 {
230 struct vcpu *current = current_locked.vcpu;
231
232 current->scheduling_mode = NONE;
233 current->rt_model = RTM_NONE;
234
235 /*
236 * We no longer need to do a managed exit so clear the interrupt if
237 * needed.
238 */
239 vcpu_virt_interrupt_clear(current_locked, HF_MANAGED_EXIT_INTID);
240
241 /* Relinquish control back to the NWd. */
242 *next = api_switch_to_other_world(
243 current_locked, (struct ffa_value){.func = FFA_MSG_WAIT_32},
244 VCPU_STATE_WAITING);
245 }
246
247 /**
248 * Deals with the common case of intercepting an FFA_MSG_WAIT call.
249 */
ffa_cpu_cycles_msg_wait_intercept(struct vcpu_locked current_locked,struct vcpu ** next,struct ffa_value * ffa_ret)250 static bool ffa_cpu_cycles_msg_wait_intercept(struct vcpu_locked current_locked,
251 struct vcpu **next,
252 struct ffa_value *ffa_ret)
253 {
254 struct two_vcpu_locked both_vcpu_locks;
255 struct vcpu *current = current_locked.vcpu;
256 bool ret = false;
257
258 assert(next != NULL);
259 assert(*next != NULL);
260
261 vcpu_unlock(¤t_locked);
262
263 both_vcpu_locks = vcpu_lock_both(current, *next);
264
265 /*
266 * Check if there is a pending interrupt, and if the partition
267 * is expects to notify the scheduler or resume straight away.
268 * Either trigger SRI for later donation of CPU cycles, or
269 * eret `FFA_INTERRUPT` back to the caller.
270 */
271 if (ffa_interrupts_intercept_call(both_vcpu_locks.vcpu1,
272 both_vcpu_locks.vcpu2, ffa_ret)) {
273 *next = NULL;
274 ret = true;
275 }
276
277 vcpu_unlock(&both_vcpu_locks.vcpu2);
278
279 return ret;
280 }
281
sp_boot_next(struct vcpu_locked current_locked,struct vcpu ** next)282 static bool sp_boot_next(struct vcpu_locked current_locked, struct vcpu **next)
283 {
284 struct vcpu *vcpu_next = NULL;
285 struct vcpu *current = current_locked.vcpu;
286 struct vm *next_vm;
287 size_t cpu_indx = cpu_index(current->cpu);
288
289 if (current->cpu->last_sp_initialized) {
290 return false;
291 }
292
293 if (!atomic_load_explicit(¤t->vm->aborting,
294 memory_order_relaxed)) {
295 /* vCPU has just returned from successful initialization. */
296 dlog_verbose(
297 "Initialized execution context of VM: %#x on CPU: %zu, "
298 "boot_order: %u\n",
299 current->vm->id, cpu_index(current->cpu),
300 current->vm->boot_order);
301 }
302
303 if (cpu_index(current_locked.vcpu->cpu) == PRIMARY_CPU_IDX) {
304 next_vm = vm_get_next_boot(current->vm);
305 } else {
306 /* SP boot chain on secondary CPU. */
307 next_vm = vm_get_next_boot_secondary_core(current->vm);
308 }
309
310 current->state = VCPU_STATE_WAITING;
311 current->rt_model = RTM_NONE;
312 current->scheduling_mode = NONE;
313
314 /*
315 * Pick next SP's vCPU to be booted. Once all SPs have booted
316 * (next_vm is NULL), then return execution to NWd.
317 */
318 if (next_vm == NULL) {
319 current->cpu->last_sp_initialized = true;
320 goto out;
321 }
322
323 vcpu_next = vm_get_vcpu(next_vm, cpu_indx);
324
325 /*
326 * An SP's execution context needs to be bootstrapped if:
327 * - It has never been initialized before.
328 * - Or it was turned off when the CPU, on which it was pinned, was
329 * powered down.
330 */
331 if (vcpu_next->rt_model == RTM_SP_INIT ||
332 vcpu_next->state == VCPU_STATE_OFF) {
333 vcpu_next->rt_model = RTM_SP_INIT;
334 arch_regs_reset(vcpu_next);
335 vcpu_next->cpu = current->cpu;
336 vcpu_next->state = VCPU_STATE_RUNNING;
337 vcpu_next->regs_available = false;
338 vcpu_set_phys_core_idx(vcpu_next);
339 arch_regs_set_pc_arg(&vcpu_next->regs,
340 vcpu_next->vm->secondary_ep, 0ULL);
341
342 if (cpu_index(current_locked.vcpu->cpu) == PRIMARY_CPU_IDX) {
343 /*
344 * Boot information is passed by the SPMC to the SP's
345 * execution context only on the primary CPU.
346 */
347 vcpu_set_boot_info_gp_reg(vcpu_next);
348 }
349
350 *next = vcpu_next;
351
352 return true;
353 }
354 out:
355 dlog_notice("Finished bootstrapping all SPs on CPU%lx\n", cpu_indx);
356 return false;
357 }
358
359 /**
360 * The invocation of FFA_MSG_WAIT at secure virtual FF-A instance is compliant
361 * with FF-A v1.1 EAC0 specification. It only performs the state transition
362 * from RUNNING to WAITING for the following Partition runtime models:
363 * RTM_FFA_RUN, RTM_SEC_INTERRUPT, RTM_SP_INIT.
364 */
ffa_cpu_cycles_msg_wait_prepare(struct vcpu_locked current_locked,struct vcpu ** next)365 struct ffa_value ffa_cpu_cycles_msg_wait_prepare(
366 struct vcpu_locked current_locked, struct vcpu **next)
367 {
368 struct ffa_value ret = api_ffa_interrupt_return(0);
369 struct vcpu *current = current_locked.vcpu;
370
371 switch (current->rt_model) {
372 case RTM_SP_INIT:
373 if (!sp_boot_next(current_locked, next)) {
374 ffa_msg_wait_complete(current_locked, next);
375
376 ffa_cpu_cycles_msg_wait_intercept(current_locked, next,
377 &ret);
378 }
379 break;
380 case RTM_SEC_INTERRUPT:
381 /*
382 * Either resume the preempted SP or complete the FFA_MSG_WAIT.
383 */
384 assert(current->preempted_vcpu != NULL);
385 ffa_cpu_cycles_preempted_vcpu_resume(current_locked, next);
386
387 if (!ffa_cpu_cycles_msg_wait_intercept(current_locked, next,
388 &ret)) {
389 /*
390 * If CPU cycles were allocated through FFA_RUN
391 * interface, allow the interrupts(if they were masked
392 * earlier) before returning control to NWd.
393 */
394 ffa_interrupts_unmask(current);
395 }
396
397 break;
398 case RTM_FFA_RUN:
399 ffa_msg_wait_complete(current_locked, next);
400
401 if (!ffa_cpu_cycles_msg_wait_intercept(current_locked, next,
402 &ret)) {
403 /*
404 * If CPU cycles were allocated through FFA_RUN
405 * interface, allow the interrupts(if they were masked
406 * earlier) before returning control to NWd.
407 */
408 ffa_interrupts_unmask(current);
409 }
410
411 break;
412 default:
413 panic("%s: unexpected runtime model %x for [%x %x]",
414 current->rt_model, current->vm->id,
415 cpu_index(current->cpu));
416 }
417
418 vcpu_unlock(¤t_locked);
419
420 return ret;
421 }
422
423 /*
424 * Initialize the scheduling mode and/or Partition Runtime model of the target
425 * SP upon being resumed by an FFA_RUN ABI.
426 */
ffa_cpu_cycles_init_schedule_mode_ffa_run(struct vcpu_locked current_locked,struct vcpu_locked target_locked)427 void ffa_cpu_cycles_init_schedule_mode_ffa_run(
428 struct vcpu_locked current_locked, struct vcpu_locked target_locked)
429 {
430 struct vcpu *vcpu = target_locked.vcpu;
431 struct vcpu *current = current_locked.vcpu;
432
433 /*
434 * Scenario 1 in Table 8.4; Therefore SPMC could be resuming a vCPU
435 * that was part of NWd scheduled mode.
436 */
437 CHECK(vcpu->scheduling_mode != SPMC_MODE);
438
439 /* Section 8.2.3 bullet 4.2 of spec FF-A v1.1 EAC0. */
440 if (vcpu->state == VCPU_STATE_WAITING) {
441 assert(vcpu->rt_model == RTM_SP_INIT ||
442 vcpu->rt_model == RTM_NONE);
443 vcpu->rt_model = RTM_FFA_RUN;
444
445 if (!vm_id_is_current_world(current->vm->id) ||
446 (current->scheduling_mode == NWD_MODE)) {
447 vcpu->scheduling_mode = NWD_MODE;
448 }
449 } else {
450 /* SP vCPU would have been pre-empted earlier or blocked. */
451 CHECK(vcpu->state == VCPU_STATE_PREEMPTED ||
452 vcpu->state == VCPU_STATE_BLOCKED);
453 }
454
455 ffa_interrupts_mask(target_locked);
456 }
457
458 /*
459 * Prepare to yield execution back to the VM/SP that allocated CPU cycles and
460 * move to BLOCKED state. If the CPU cycles were allocated to the current
461 * execution context by the SPMC to handle secure virtual interrupt, then
462 * FFA_YIELD invocation is essentially a no-op.
463 */
ffa_cpu_cycles_yield_prepare(struct vcpu_locked current_locked,struct vcpu ** next,uint32_t timeout_low,uint32_t timeout_high)464 struct ffa_value ffa_cpu_cycles_yield_prepare(struct vcpu_locked current_locked,
465 struct vcpu **next,
466 uint32_t timeout_low,
467 uint32_t timeout_high)
468 {
469 struct ffa_value ret_args = (struct ffa_value){.func = FFA_SUCCESS_32};
470 struct vcpu *current = current_locked.vcpu;
471 struct ffa_value ret = {
472 .func = FFA_YIELD_32,
473 .arg1 = ffa_vm_vcpu(current->vm->id, vcpu_index(current)),
474 .arg2 = timeout_low,
475 .arg3 = timeout_high,
476 };
477
478 switch (current->rt_model) {
479 case RTM_FFA_DIR_REQ:
480 assert(current->direct_request_origin.vm_id !=
481 HF_INVALID_VM_ID);
482 if (current->call_chain.prev_node == NULL) {
483 /*
484 * Relinquish cycles to the NWd VM that sent direct
485 * request message to the current SP.
486 */
487 *next = api_switch_to_other_world(current_locked, ret,
488 VCPU_STATE_BLOCKED);
489 } else {
490 /*
491 * Relinquish cycles to the SP that sent direct request
492 * message to the current SP.
493 */
494 *next = api_switch_to_vm(
495 current_locked, ret, VCPU_STATE_BLOCKED,
496 current->direct_request_origin.vm_id);
497 }
498 break;
499 case RTM_SEC_INTERRUPT: {
500 /*
501 * SPMC does not implement a scheduler needed to resume the
502 * current vCPU upon timeout expiration. Hence, SPMC makes the
503 * implementation defined choice to treat FFA_YIELD invocation
504 * as a no-op if the SP execution context is in the secure
505 * interrupt runtime model. This does not violate FF-A spec as
506 * the spec does not mandate timeout to be honored. Moreover,
507 * timeout specified by an endpoint is just a hint to the
508 * partition manager which allocated CPU cycles.
509 * Resume the current vCPU.
510 */
511 *next = NULL;
512 break;
513 }
514 default:
515 CHECK(current->rt_model == RTM_FFA_RUN);
516 *next = api_switch_to_primary(current_locked, ret,
517 VCPU_STATE_BLOCKED);
518 break;
519 }
520
521 /*
522 * Before yielding CPU cycles, allow the interrupts(if they were
523 * masked earlier).
524 */
525 if (*next != NULL) {
526 ffa_interrupts_unmask(current);
527 }
528
529 return ret_args;
530 }
531
532 /**
533 * Validates the Runtime model for FFA_RUN. Refer to section 7.2 of the FF-A
534 * v1.1 EAC0 spec.
535 */
ffa_cpu_cycles_check_rtm_ffa_run(struct vcpu_locked current_locked,struct vcpu_locked locked_vcpu,uint32_t func,enum vcpu_state * next_state)536 static bool ffa_cpu_cycles_check_rtm_ffa_run(struct vcpu_locked current_locked,
537 struct vcpu_locked locked_vcpu,
538 uint32_t func,
539 enum vcpu_state *next_state)
540 {
541 switch (func) {
542 case FFA_MSG_SEND_DIRECT_REQ_64:
543 case FFA_MSG_SEND_DIRECT_REQ_32:
544 case FFA_MSG_SEND_DIRECT_REQ2_64:
545 [[fallthrough]];
546 case FFA_RUN_32: {
547 /* Rules 1,2 section 7.2 EAC0 spec. */
548 if (ffa_direct_msg_precedes_in_call_chain(current_locked,
549 locked_vcpu)) {
550 return false;
551 }
552 *next_state = VCPU_STATE_BLOCKED;
553 return true;
554 }
555 case FFA_MSG_WAIT_32:
556 /* Rule 4 section 7.2 EAC0 spec. Fall through. */
557 *next_state = VCPU_STATE_WAITING;
558 return true;
559 case FFA_YIELD_32:
560 /* Rule 5 section 7.2 EAC0 spec. */
561 *next_state = VCPU_STATE_BLOCKED;
562 return true;
563 case FFA_MSG_SEND_DIRECT_RESP_64:
564 case FFA_MSG_SEND_DIRECT_RESP_32:
565 case FFA_MSG_SEND_DIRECT_RESP2_64:
566 /* Rule 3 section 7.2 EAC0 spec. Fall through. */
567 default:
568 /* Deny state transitions by default. */
569 return false;
570 }
571 }
572
573 /**
574 * Validates the Runtime model for FFA_MSG_SEND_DIRECT_REQ and
575 * FFA_MSG_SEND_DIRECT_REQ2. Refer to section 8.3 of the FF-A
576 * v1.2 spec.
577 */
ffa_cpu_cycles_check_rtm_ffa_dir_req(struct vcpu_locked current_locked,struct vcpu_locked locked_vcpu,ffa_id_t receiver_vm_id,uint32_t func,enum vcpu_state * next_state)578 static bool ffa_cpu_cycles_check_rtm_ffa_dir_req(
579 struct vcpu_locked current_locked, struct vcpu_locked locked_vcpu,
580 ffa_id_t receiver_vm_id, uint32_t func, enum vcpu_state *next_state)
581 {
582 /*
583 * SPMC denies invocation if the SP's vCPU is processing a PSCI power
584 * management operation.
585 */
586 if (current_locked.vcpu->pwr_mgmt_op != PWR_MGMT_NONE) {
587 switch (func) {
588 case FFA_MSG_SEND_DIRECT_REQ_64:
589 case FFA_MSG_SEND_DIRECT_REQ_32:
590 case FFA_MSG_SEND_DIRECT_REQ2_64:
591 case FFA_RUN_32:
592 case FFA_YIELD_32:
593 dlog_verbose(
594 "State transition denied during power "
595 "management operation\n");
596 return false;
597 default:
598 break;
599 }
600 }
601
602 switch (func) {
603 case FFA_MSG_SEND_DIRECT_REQ_64:
604 case FFA_MSG_SEND_DIRECT_REQ_32:
605 case FFA_MSG_SEND_DIRECT_REQ2_64:
606 [[fallthrough]];
607 case FFA_RUN_32: {
608 /* Rules 1,2. */
609 if (ffa_direct_msg_precedes_in_call_chain(current_locked,
610 locked_vcpu)) {
611 return false;
612 }
613
614 *next_state = VCPU_STATE_BLOCKED;
615 return true;
616 }
617 case FFA_MSG_SEND_DIRECT_RESP_64:
618 case FFA_MSG_SEND_DIRECT_RESP_32:
619 case FFA_MSG_SEND_DIRECT_RESP2_64: {
620 /* Rule 3. */
621 if (current_locked.vcpu->direct_request_origin.vm_id ==
622 receiver_vm_id) {
623 *next_state = VCPU_STATE_WAITING;
624 return true;
625 }
626
627 return false;
628 }
629 case FFA_YIELD_32:
630 /* Rule 3, section 8.3 of FF-A v1.2 spec. */
631 *next_state = VCPU_STATE_BLOCKED;
632 return true;
633 case FFA_MSG_WAIT_32:
634 /* Rule 4. Fall through. */
635 default:
636 /* Deny state transitions by default. */
637 return false;
638 }
639 }
640
641 /**
642 * Validates the Runtime model for Secure interrupt handling. Refer to section
643 * 8.4 of the FF-A v1.2 ALP0 spec.
644 */
ffa_cpu_cycles_check_rtm_sec_interrupt(struct vcpu_locked current_locked,struct vcpu_locked locked_vcpu,uint32_t func,enum vcpu_state * next_state)645 static bool ffa_cpu_cycles_check_rtm_sec_interrupt(
646 struct vcpu_locked current_locked, struct vcpu_locked locked_vcpu,
647 uint32_t func, enum vcpu_state *next_state)
648 {
649 struct vcpu *current = current_locked.vcpu;
650 struct vcpu *vcpu = locked_vcpu.vcpu;
651
652 CHECK(current->scheduling_mode == SPMC_MODE);
653
654 switch (func) {
655 case FFA_MSG_SEND_DIRECT_REQ_64:
656 case FFA_MSG_SEND_DIRECT_REQ_32:
657 case FFA_MSG_SEND_DIRECT_REQ2_64:
658 /* Rule 3. */
659 *next_state = VCPU_STATE_BLOCKED;
660 return true;
661 case FFA_RUN_32: {
662 /* Rule 6. */
663 if (vcpu->state == VCPU_STATE_PREEMPTED) {
664 *next_state = VCPU_STATE_BLOCKED;
665 return true;
666 }
667
668 return false;
669 }
670 case FFA_MSG_WAIT_32:
671 /* Rule 2. */
672 *next_state = VCPU_STATE_WAITING;
673 return true;
674 case FFA_YIELD_32:
675 /* Rule 3, section 8.4 of FF-A v1.2 spec. */
676 *next_state = VCPU_STATE_BLOCKED;
677 return true;
678 case FFA_MSG_SEND_DIRECT_RESP_64:
679 case FFA_MSG_SEND_DIRECT_RESP_32:
680 case FFA_MSG_SEND_DIRECT_RESP2_64:
681 /* Rule 5. Fall through. */
682 default:
683 /* Deny state transitions by default. */
684 return false;
685 }
686 }
687
688 /**
689 * Validates the Runtime model for SP initialization. Refer to section
690 * 8.3 of the FF-A v1.2 ALP0 spec.
691 */
ffa_cpu_cycles_check_rtm_sp_init(struct vcpu_locked locked_vcpu,uint32_t func,enum vcpu_state * next_state)692 static bool ffa_cpu_cycles_check_rtm_sp_init(struct vcpu_locked locked_vcpu,
693 uint32_t func,
694 enum vcpu_state *next_state)
695 {
696 switch (func) {
697 case FFA_MSG_SEND_DIRECT_REQ_64:
698 case FFA_MSG_SEND_DIRECT_REQ_32:
699 case FFA_MSG_SEND_DIRECT_REQ2_64: {
700 struct vcpu *vcpu = locked_vcpu.vcpu;
701
702 assert(vcpu != NULL);
703 /* Rule 1. */
704 if (vcpu->rt_model != RTM_SP_INIT) {
705 *next_state = VCPU_STATE_BLOCKED;
706 return true;
707 }
708
709 return false;
710 }
711 case FFA_MSG_WAIT_32:
712 /* Rule 2. Fall through. */
713 case FFA_ERROR_32:
714 /* Rule 3. */
715 *next_state = VCPU_STATE_WAITING;
716 return true;
717 case FFA_YIELD_32:
718 /* Rule 4. Fall through. */
719 case FFA_RUN_32:
720 /* Rule 6. Fall through. */
721 case FFA_MSG_SEND_DIRECT_RESP_64:
722 case FFA_MSG_SEND_DIRECT_RESP_32:
723 case FFA_MSG_SEND_DIRECT_RESP2_64:
724 /* Rule 5. Fall through. */
725 default:
726 /* Deny state transitions by default. */
727 return false;
728 }
729 }
730
731 /**
732 * Check if the runtime model (state machine) of the current SP supports the
733 * given FF-A ABI invocation. If yes, next_state represents the state to which
734 * the current vcpu would transition upon the FF-A ABI invocation as determined
735 * by the Partition runtime model.
736 */
ffa_cpu_cycles_check_runtime_state_transition(struct vcpu_locked current_locked,ffa_id_t vm_id,ffa_id_t receiver_vm_id,struct vcpu_locked locked_vcpu,uint32_t func,enum vcpu_state * next_state)737 bool ffa_cpu_cycles_check_runtime_state_transition(
738 struct vcpu_locked current_locked, ffa_id_t vm_id,
739 ffa_id_t receiver_vm_id, struct vcpu_locked locked_vcpu, uint32_t func,
740 enum vcpu_state *next_state)
741 {
742 bool allowed = false;
743 struct vcpu *current = current_locked.vcpu;
744
745 assert(current != NULL);
746
747 /* Perform state transition checks only for Secure Partitions. */
748 if (!vm_id_is_current_world(vm_id)) {
749 return true;
750 }
751
752 switch (current->rt_model) {
753 case RTM_FFA_RUN:
754 allowed = ffa_cpu_cycles_check_rtm_ffa_run(
755 current_locked, locked_vcpu, func, next_state);
756 break;
757 case RTM_FFA_DIR_REQ:
758 allowed = ffa_cpu_cycles_check_rtm_ffa_dir_req(
759 current_locked, locked_vcpu, receiver_vm_id, func,
760 next_state);
761 break;
762 case RTM_SEC_INTERRUPT:
763 allowed = ffa_cpu_cycles_check_rtm_sec_interrupt(
764 current_locked, locked_vcpu, func, next_state);
765 break;
766 case RTM_SP_INIT:
767 allowed = ffa_cpu_cycles_check_rtm_sp_init(locked_vcpu, func,
768 next_state);
769 break;
770 default:
771 dlog_error(
772 "Illegal Runtime Model specified by SP%x on CPU%zx\n",
773 current->vm->id, cpu_index(current->cpu));
774 allowed = false;
775 break;
776 }
777
778 if (!allowed) {
779 dlog_verbose("State transition denied\n");
780 }
781
782 return allowed;
783 }
784
785 /*
786 * Handle FFA_ERROR_32 call according to the given error code.
787 *
788 * Error codes other than FFA_ABORTED, and cases of FFA_ABORTED not
789 * in RTM_SP_INIT runtime model, not implemented. Refer to section 8.5
790 * of FF-A 1.2 spec.
791 */
ffa_cpu_cycles_error_32(struct vcpu * current,struct vcpu ** next,enum ffa_error error_code)792 struct ffa_value ffa_cpu_cycles_error_32(struct vcpu *current,
793 struct vcpu **next,
794 enum ffa_error error_code)
795 {
796 struct vcpu_locked current_locked;
797 struct vm_locked vm_locked;
798 enum partition_runtime_model rt_model;
799 struct ffa_value ret = api_ffa_interrupt_return(0);
800
801 vm_locked = vm_lock(current->vm);
802 current_locked = vcpu_lock(current);
803 rt_model = current_locked.vcpu->rt_model;
804
805 if (error_code == FFA_ABORTED && rt_model == RTM_SP_INIT) {
806 dlog_error("Aborting SP %#x from vCPU %u\n", current->vm->id,
807 vcpu_index(current));
808
809 atomic_store_explicit(¤t->vm->aborting, true,
810 memory_order_relaxed);
811
812 ffa_vm_free_resources(vm_locked);
813
814 if (sp_boot_next(current_locked, next)) {
815 goto out;
816 }
817
818 /*
819 * Relinquish control back to the NWd. Return
820 * FFA_MSG_WAIT_32 to indicate to SPMD that SPMC
821 * has successfully finished initialization.
822 */
823 *next = api_switch_to_other_world(
824 current_locked,
825 (struct ffa_value){.func = FFA_MSG_WAIT_32},
826 VCPU_STATE_ABORTED);
827
828 goto out;
829 }
830 ret = ffa_error(FFA_NOT_SUPPORTED);
831 out:
832 vcpu_unlock(¤t_locked);
833 vm_unlock(&vm_locked);
834 return ret;
835 }
836