1 // SPDX-License-Identifier: GPL-2.0-or-later
2 /*
3 * PowerPC version
4 * Copyright (C) 1995-1996 Gary Thomas (gdt@linuxppc.org)
5 *
6 * Derived from "arch/i386/mm/fault.c"
7 * Copyright (C) 1991, 1992, 1993, 1994 Linus Torvalds
8 *
9 * Modified by Cort Dougan and Paul Mackerras.
10 *
11 * Modified for PPC64 by Dave Engebretsen (engebret@ibm.com)
12 */
13
14 #include <linux/signal.h>
15 #include <linux/sched.h>
16 #include <linux/sched/task_stack.h>
17 #include <linux/kernel.h>
18 #include <linux/errno.h>
19 #include <linux/string.h>
20 #include <linux/string_choices.h>
21 #include <linux/types.h>
22 #include <linux/pagemap.h>
23 #include <linux/ptrace.h>
24 #include <linux/mman.h>
25 #include <linux/mm.h>
26 #include <linux/interrupt.h>
27 #include <linux/highmem.h>
28 #include <linux/extable.h>
29 #include <linux/kprobes.h>
30 #include <linux/kdebug.h>
31 #include <linux/perf_event.h>
32 #include <linux/ratelimit.h>
33 #include <linux/context_tracking.h>
34 #include <linux/hugetlb.h>
35 #include <linux/uaccess.h>
36 #include <linux/kfence.h>
37 #include <linux/pkeys.h>
38
39 #include <asm/firmware.h>
40 #include <asm/interrupt.h>
41 #include <asm/page.h>
42 #include <asm/mmu.h>
43 #include <asm/mmu_context.h>
44 #include <asm/siginfo.h>
45 #include <asm/debug.h>
46 #include <asm/kup.h>
47 #include <asm/inst.h>
48
49
50 /*
51 * do_page_fault error handling helpers
52 */
53
54 static int
__bad_area_nosemaphore(struct pt_regs * regs,unsigned long address,int si_code)55 __bad_area_nosemaphore(struct pt_regs *regs, unsigned long address, int si_code)
56 {
57 /*
58 * If we are in kernel mode, bail out with a SEGV, this will
59 * be caught by the assembly which will restore the non-volatile
60 * registers before calling bad_page_fault()
61 */
62 if (!user_mode(regs))
63 return SIGSEGV;
64
65 _exception(SIGSEGV, regs, si_code, address);
66
67 return 0;
68 }
69
bad_area_nosemaphore(struct pt_regs * regs,unsigned long address)70 static noinline int bad_area_nosemaphore(struct pt_regs *regs, unsigned long address)
71 {
72 return __bad_area_nosemaphore(regs, address, SEGV_MAPERR);
73 }
74
__bad_area(struct pt_regs * regs,unsigned long address,int si_code,struct mm_struct * mm,struct vm_area_struct * vma)75 static int __bad_area(struct pt_regs *regs, unsigned long address, int si_code,
76 struct mm_struct *mm, struct vm_area_struct *vma)
77 {
78
79 /*
80 * Something tried to access memory that isn't in our memory map..
81 * Fix it, but check if it's kernel or user first..
82 */
83 if (mm)
84 mmap_read_unlock(mm);
85 else
86 vma_end_read(vma);
87
88 return __bad_area_nosemaphore(regs, address, si_code);
89 }
90
bad_access_pkey(struct pt_regs * regs,unsigned long address,struct mm_struct * mm,struct vm_area_struct * vma)91 static noinline int bad_access_pkey(struct pt_regs *regs, unsigned long address,
92 struct mm_struct *mm,
93 struct vm_area_struct *vma)
94 {
95 int pkey;
96
97 /*
98 * We don't try to fetch the pkey from page table because reading
99 * page table without locking doesn't guarantee stable pte value.
100 * Hence the pkey value that we return to userspace can be different
101 * from the pkey that actually caused access error.
102 *
103 * It does *not* guarantee that the VMA we find here
104 * was the one that we faulted on.
105 *
106 * 1. T1 : mprotect_key(foo, PAGE_SIZE, pkey=4);
107 * 2. T1 : set AMR to deny access to pkey=4, touches, page
108 * 3. T1 : faults...
109 * 4. T2: mprotect_key(foo, PAGE_SIZE, pkey=5);
110 * 5. T1 : enters fault handler, takes mmap_lock, etc...
111 * 6. T1 : reaches here, sees vma_pkey(vma)=5, when we really
112 * faulted on a pte with its pkey=4.
113 */
114 pkey = vma_pkey(vma);
115
116 if (mm)
117 mmap_read_unlock(mm);
118 else
119 vma_end_read(vma);
120
121 /*
122 * If we are in kernel mode, bail out with a SEGV, this will
123 * be caught by the assembly which will restore the non-volatile
124 * registers before calling bad_page_fault()
125 */
126 if (!user_mode(regs))
127 return SIGSEGV;
128
129 _exception_pkey(regs, address, pkey);
130
131 return 0;
132 }
133
bad_access(struct pt_regs * regs,unsigned long address,struct mm_struct * mm,struct vm_area_struct * vma)134 static noinline int bad_access(struct pt_regs *regs, unsigned long address,
135 struct mm_struct *mm, struct vm_area_struct *vma)
136 {
137 return __bad_area(regs, address, SEGV_ACCERR, mm, vma);
138 }
139
do_sigbus(struct pt_regs * regs,unsigned long address,vm_fault_t fault)140 static int do_sigbus(struct pt_regs *regs, unsigned long address,
141 vm_fault_t fault)
142 {
143 if (!user_mode(regs))
144 return SIGBUS;
145
146 current->thread.trap_nr = BUS_ADRERR;
147 #ifdef CONFIG_MEMORY_FAILURE
148 if (fault & (VM_FAULT_HWPOISON|VM_FAULT_HWPOISON_LARGE)) {
149 unsigned int lsb = 0; /* shutup gcc */
150
151 pr_err("MCE: Killing %s:%d due to hardware memory corruption fault at %lx\n",
152 current->comm, current->pid, address);
153
154 if (fault & VM_FAULT_HWPOISON_LARGE)
155 lsb = hstate_index_to_shift(VM_FAULT_GET_HINDEX(fault));
156 if (fault & VM_FAULT_HWPOISON)
157 lsb = PAGE_SHIFT;
158
159 force_sig_mceerr(BUS_MCEERR_AR, (void __user *)address, lsb);
160 return 0;
161 }
162
163 #endif
164 force_sig_fault(SIGBUS, BUS_ADRERR, (void __user *)address);
165 return 0;
166 }
167
mm_fault_error(struct pt_regs * regs,unsigned long addr,vm_fault_t fault)168 static int mm_fault_error(struct pt_regs *regs, unsigned long addr,
169 vm_fault_t fault)
170 {
171 /*
172 * Kernel page fault interrupted by SIGKILL. We have no reason to
173 * continue processing.
174 */
175 if (fatal_signal_pending(current) && !user_mode(regs))
176 return SIGKILL;
177
178 /* Out of memory */
179 if (fault & VM_FAULT_OOM) {
180 /*
181 * We ran out of memory, or some other thing happened to us that
182 * made us unable to handle the page fault gracefully.
183 */
184 if (!user_mode(regs))
185 return SIGSEGV;
186 pagefault_out_of_memory();
187 } else {
188 if (fault & (VM_FAULT_SIGBUS|VM_FAULT_HWPOISON|
189 VM_FAULT_HWPOISON_LARGE))
190 return do_sigbus(regs, addr, fault);
191 else if (fault & VM_FAULT_SIGSEGV)
192 return bad_area_nosemaphore(regs, addr);
193 else
194 BUG();
195 }
196 return 0;
197 }
198
199 /* Is this a bad kernel fault ? */
bad_kernel_fault(struct pt_regs * regs,unsigned long error_code,unsigned long address,bool is_write)200 static bool bad_kernel_fault(struct pt_regs *regs, unsigned long error_code,
201 unsigned long address, bool is_write)
202 {
203 int is_exec = TRAP(regs) == INTERRUPT_INST_STORAGE;
204
205 if (is_exec) {
206 pr_crit_ratelimited("kernel tried to execute %s page (%lx) - exploit attempt? (uid: %d)\n",
207 address >= TASK_SIZE ? "exec-protected" : "user",
208 address,
209 from_kuid(&init_user_ns, current_uid()));
210
211 // Kernel exec fault is always bad
212 return true;
213 }
214
215 // Kernel fault on kernel address is bad
216 if (address >= TASK_SIZE)
217 return true;
218
219 // Read/write fault blocked by KUAP is bad, it can never succeed.
220 if (bad_kuap_fault(regs, address, is_write)) {
221 pr_crit_ratelimited("Kernel attempted to %s user page (%lx) - exploit attempt? (uid: %d)\n",
222 str_write_read(is_write), address,
223 from_kuid(&init_user_ns, current_uid()));
224
225 // Fault on user outside of certain regions (eg. copy_tofrom_user()) is bad
226 if (!search_exception_tables(regs->nip))
227 return true;
228
229 // Read/write fault in a valid region (the exception table search passed
230 // above), but blocked by KUAP is bad, it can never succeed.
231 return WARN(true, "Bug: %s fault blocked by KUAP!", is_write ? "Write" : "Read");
232 }
233
234 // What's left? Kernel fault on user and allowed by KUAP in the faulting context.
235 return false;
236 }
237
access_pkey_error(bool is_write,bool is_exec,bool is_pkey,struct vm_area_struct * vma)238 static bool access_pkey_error(bool is_write, bool is_exec, bool is_pkey,
239 struct vm_area_struct *vma)
240 {
241 /*
242 * Make sure to check the VMA so that we do not perform
243 * faults just to hit a pkey fault as soon as we fill in a
244 * page. Only called for current mm, hence foreign == 0
245 */
246 if (!arch_vma_access_permitted(vma, is_write, is_exec, 0))
247 return true;
248
249 return false;
250 }
251
access_error(bool is_write,bool is_exec,struct vm_area_struct * vma)252 static bool access_error(bool is_write, bool is_exec, struct vm_area_struct *vma)
253 {
254 /*
255 * Allow execution from readable areas if the MMU does not
256 * provide separate controls over reading and executing.
257 *
258 * Note: That code used to not be enabled for 4xx/BookE.
259 * It is now as I/D cache coherency for these is done at
260 * set_pte_at() time and I see no reason why the test
261 * below wouldn't be valid on those processors. This -may-
262 * break programs compiled with a really old ABI though.
263 */
264 if (is_exec) {
265 return !(vma->vm_flags & VM_EXEC) &&
266 (cpu_has_feature(CPU_FTR_NOEXECUTE) ||
267 !(vma->vm_flags & (VM_READ | VM_WRITE)));
268 }
269
270 if (is_write) {
271 if (unlikely(!(vma->vm_flags & VM_WRITE)))
272 return true;
273 return false;
274 }
275
276 /*
277 * VM_READ, VM_WRITE and VM_EXEC may imply read permissions, as
278 * defined in protection_map[]. In that case Read faults can only be
279 * caused by a PROT_NONE mapping. However a non exec access on a
280 * VM_EXEC only mapping is invalid anyway, so report it as such.
281 */
282 if (unlikely(!vma_is_accessible(vma)))
283 return true;
284
285 if ((vma->vm_flags & VM_ACCESS_FLAGS) == VM_EXEC)
286 return true;
287
288 /*
289 * We should ideally do the vma pkey access check here. But in the
290 * fault path, handle_mm_fault() also does the same check. To avoid
291 * these multiple checks, we skip it here and handle access error due
292 * to pkeys later.
293 */
294 return false;
295 }
296
297 #ifdef CONFIG_PPC_SMLPAR
cmo_account_page_fault(void)298 static inline void cmo_account_page_fault(void)
299 {
300 if (firmware_has_feature(FW_FEATURE_CMO)) {
301 u32 page_ins;
302
303 preempt_disable();
304 page_ins = be32_to_cpu(get_lppaca()->page_ins);
305 page_ins += 1 << PAGE_FACTOR;
306 get_lppaca()->page_ins = cpu_to_be32(page_ins);
307 preempt_enable();
308 }
309 }
310 #else
cmo_account_page_fault(void)311 static inline void cmo_account_page_fault(void) { }
312 #endif /* CONFIG_PPC_SMLPAR */
313
sanity_check_fault(bool is_write,bool is_user,unsigned long error_code,unsigned long address)314 static void sanity_check_fault(bool is_write, bool is_user,
315 unsigned long error_code, unsigned long address)
316 {
317 /*
318 * Userspace trying to access kernel address, we get PROTFAULT for that.
319 */
320 if (is_user && address >= TASK_SIZE) {
321 if ((long)address == -1)
322 return;
323
324 pr_crit_ratelimited("%s[%d]: User access of kernel address (%lx) - exploit attempt? (uid: %d)\n",
325 current->comm, current->pid, address,
326 from_kuid(&init_user_ns, current_uid()));
327 return;
328 }
329
330 if (!IS_ENABLED(CONFIG_PPC_BOOK3S))
331 return;
332
333 /*
334 * For hash translation mode, we should never get a
335 * PROTFAULT. Any update to pte to reduce access will result in us
336 * removing the hash page table entry, thus resulting in a DSISR_NOHPTE
337 * fault instead of DSISR_PROTFAULT.
338 *
339 * A pte update to relax the access will not result in a hash page table
340 * entry invalidate and hence can result in DSISR_PROTFAULT.
341 * ptep_set_access_flags() doesn't do a hpte flush. This is why we have
342 * the special !is_write in the below conditional.
343 *
344 * For platforms that doesn't supports coherent icache and do support
345 * per page noexec bit, we do setup things such that we do the
346 * sync between D/I cache via fault. But that is handled via low level
347 * hash fault code (hash_page_do_lazy_icache()) and we should not reach
348 * here in such case.
349 *
350 * For wrong access that can result in PROTFAULT, the above vma->vm_flags
351 * check should handle those and hence we should fall to the bad_area
352 * handling correctly.
353 *
354 * For embedded with per page exec support that doesn't support coherent
355 * icache we do get PROTFAULT and we handle that D/I cache sync in
356 * set_pte_at while taking the noexec/prot fault. Hence this is WARN_ON
357 * is conditional for server MMU.
358 *
359 * For radix, we can get prot fault for autonuma case, because radix
360 * page table will have them marked noaccess for user.
361 */
362 if (radix_enabled() || is_write)
363 return;
364
365 WARN_ON_ONCE(error_code & DSISR_PROTFAULT);
366 }
367
368 /*
369 * Define the correct "is_write" bit in error_code based
370 * on the processor family
371 */
372 #ifdef CONFIG_BOOKE
373 #define page_fault_is_write(__err) ((__err) & ESR_DST)
374 #else
375 #define page_fault_is_write(__err) ((__err) & DSISR_ISSTORE)
376 #endif
377
378 #ifdef CONFIG_BOOKE
379 #define page_fault_is_bad(__err) (0)
380 #elif defined(CONFIG_PPC_8xx)
381 #define page_fault_is_bad(__err) ((__err) & DSISR_NOEXEC_OR_G)
382 #elif defined(CONFIG_PPC64)
page_fault_is_bad(unsigned long err)383 static int page_fault_is_bad(unsigned long err)
384 {
385 unsigned long flag = DSISR_BAD_FAULT_64S;
386
387 /*
388 * PAPR+ v2.11 § 14.15.3.4.1 (unreleased)
389 * If byte 0, bit 3 of pi-attribute-specifier-type in
390 * ibm,pi-features property is defined, ignore the DSI error
391 * which is caused by the paste instruction on the
392 * suspended NX window.
393 */
394 if (mmu_has_feature(MMU_FTR_NX_DSI))
395 flag &= ~DSISR_BAD_COPYPASTE;
396
397 return err & flag;
398 }
399 #else
400 #define page_fault_is_bad(__err) ((__err) & DSISR_BAD_FAULT_32S)
401 #endif
402
403 /*
404 * For 600- and 800-family processors, the error_code parameter is DSISR
405 * for a data fault, SRR1 for an instruction fault.
406 * For 400-family processors the error_code parameter is ESR for a data fault,
407 * 0 for an instruction fault.
408 * For 64-bit processors, the error_code parameter is DSISR for a data access
409 * fault, SRR1 & 0x08000000 for an instruction access fault.
410 *
411 * The return value is 0 if the fault was handled, or the signal
412 * number if this is a kernel fault that can't be handled here.
413 */
___do_page_fault(struct pt_regs * regs,unsigned long address,unsigned long error_code)414 static int ___do_page_fault(struct pt_regs *regs, unsigned long address,
415 unsigned long error_code)
416 {
417 struct vm_area_struct * vma;
418 struct mm_struct *mm = current->mm;
419 unsigned int flags = FAULT_FLAG_DEFAULT;
420 int is_exec = TRAP(regs) == INTERRUPT_INST_STORAGE;
421 int is_user = user_mode(regs);
422 int is_write = page_fault_is_write(error_code);
423 vm_fault_t fault, major = 0;
424 bool kprobe_fault = kprobe_page_fault(regs, 11);
425
426 if (unlikely(debugger_fault_handler(regs) || kprobe_fault))
427 return 0;
428
429 if (unlikely(page_fault_is_bad(error_code))) {
430 if (is_user) {
431 _exception(SIGBUS, regs, BUS_OBJERR, address);
432 return 0;
433 }
434 return SIGBUS;
435 }
436
437 /* Additional sanity check(s) */
438 sanity_check_fault(is_write, is_user, error_code, address);
439
440 /*
441 * The kernel should never take an execute fault nor should it
442 * take a page fault to a kernel address or a page fault to a user
443 * address outside of dedicated places.
444 *
445 * Rather than kfence directly reporting false negatives, search whether
446 * the NIP belongs to the fixup table for cases where fault could come
447 * from functions like copy_from_kernel_nofault().
448 */
449 if (unlikely(!is_user && bad_kernel_fault(regs, error_code, address, is_write))) {
450 if (is_kfence_address((void *)address) &&
451 !search_exception_tables(instruction_pointer(regs)) &&
452 kfence_handle_page_fault(address, is_write, regs))
453 return 0;
454
455 return SIGSEGV;
456 }
457
458 /*
459 * If we're in an interrupt, have no user context or are running
460 * in a region with pagefaults disabled then we must not take the fault
461 */
462 if (unlikely(faulthandler_disabled() || !mm)) {
463 if (is_user)
464 printk_ratelimited(KERN_ERR "Page fault in user mode"
465 " with faulthandler_disabled()=%d"
466 " mm=%p\n",
467 faulthandler_disabled(), mm);
468 return bad_area_nosemaphore(regs, address);
469 }
470
471 interrupt_cond_local_irq_enable(regs);
472
473 perf_sw_event(PERF_COUNT_SW_PAGE_FAULTS, 1, regs, address);
474
475 /*
476 * We want to do this outside mmap_lock, because reading code around nip
477 * can result in fault, which will cause a deadlock when called with
478 * mmap_lock held
479 */
480 if (is_user)
481 flags |= FAULT_FLAG_USER;
482 if (is_write)
483 flags |= FAULT_FLAG_WRITE;
484 if (is_exec)
485 flags |= FAULT_FLAG_INSTRUCTION;
486
487 if (!(flags & FAULT_FLAG_USER))
488 goto lock_mmap;
489
490 vma = lock_vma_under_rcu(mm, address);
491 if (!vma)
492 goto lock_mmap;
493
494 if (unlikely(access_pkey_error(is_write, is_exec,
495 (error_code & DSISR_KEYFAULT), vma))) {
496 count_vm_vma_lock_event(VMA_LOCK_SUCCESS);
497 return bad_access_pkey(regs, address, NULL, vma);
498 }
499
500 if (unlikely(access_error(is_write, is_exec, vma))) {
501 count_vm_vma_lock_event(VMA_LOCK_SUCCESS);
502 return bad_access(regs, address, NULL, vma);
503 }
504
505 fault = handle_mm_fault(vma, address, flags | FAULT_FLAG_VMA_LOCK, regs);
506 if (!(fault & (VM_FAULT_RETRY | VM_FAULT_COMPLETED)))
507 vma_end_read(vma);
508
509 if (!(fault & VM_FAULT_RETRY)) {
510 count_vm_vma_lock_event(VMA_LOCK_SUCCESS);
511 goto done;
512 }
513 count_vm_vma_lock_event(VMA_LOCK_RETRY);
514 if (fault & VM_FAULT_MAJOR)
515 flags |= FAULT_FLAG_TRIED;
516
517 if (fault_signal_pending(fault, regs))
518 return user_mode(regs) ? 0 : SIGBUS;
519
520 lock_mmap:
521
522 /* When running in the kernel we expect faults to occur only to
523 * addresses in user space. All other faults represent errors in the
524 * kernel and should generate an OOPS. Unfortunately, in the case of an
525 * erroneous fault occurring in a code path which already holds mmap_lock
526 * we will deadlock attempting to validate the fault against the
527 * address space. Luckily the kernel only validly references user
528 * space from well defined areas of code, which are listed in the
529 * exceptions table. lock_mm_and_find_vma() handles that logic.
530 */
531 retry:
532 vma = lock_mm_and_find_vma(mm, address, regs);
533 if (unlikely(!vma))
534 return bad_area_nosemaphore(regs, address);
535
536 if (unlikely(access_pkey_error(is_write, is_exec,
537 (error_code & DSISR_KEYFAULT), vma)))
538 return bad_access_pkey(regs, address, mm, vma);
539
540 if (unlikely(access_error(is_write, is_exec, vma)))
541 return bad_access(regs, address, mm, vma);
542
543 /*
544 * If for any reason at all we couldn't handle the fault,
545 * make sure we exit gracefully rather than endlessly redo
546 * the fault.
547 */
548 fault = handle_mm_fault(vma, address, flags, regs);
549
550 major |= fault & VM_FAULT_MAJOR;
551
552 if (fault_signal_pending(fault, regs))
553 return user_mode(regs) ? 0 : SIGBUS;
554
555 /* The fault is fully completed (including releasing mmap lock) */
556 if (fault & VM_FAULT_COMPLETED)
557 goto out;
558
559 /*
560 * Handle the retry right now, the mmap_lock has been released in that
561 * case.
562 */
563 if (unlikely(fault & VM_FAULT_RETRY)) {
564 flags |= FAULT_FLAG_TRIED;
565 goto retry;
566 }
567
568 mmap_read_unlock(current->mm);
569
570 done:
571 if (unlikely(fault & VM_FAULT_ERROR))
572 return mm_fault_error(regs, address, fault);
573
574 out:
575 /*
576 * Major/minor page fault accounting.
577 */
578 if (major)
579 cmo_account_page_fault();
580
581 return 0;
582 }
583 NOKPROBE_SYMBOL(___do_page_fault);
584
__do_page_fault(struct pt_regs * regs)585 static __always_inline void __do_page_fault(struct pt_regs *regs)
586 {
587 long err;
588
589 err = ___do_page_fault(regs, regs->dar, regs->dsisr);
590 if (unlikely(err))
591 bad_page_fault(regs, err);
592 }
593
DEFINE_INTERRUPT_HANDLER(do_page_fault)594 DEFINE_INTERRUPT_HANDLER(do_page_fault)
595 {
596 __do_page_fault(regs);
597 }
598
599 #ifdef CONFIG_PPC_BOOK3S_64
600 /* Same as do_page_fault but interrupt entry has already run in do_hash_fault */
hash__do_page_fault(struct pt_regs * regs)601 void hash__do_page_fault(struct pt_regs *regs)
602 {
603 __do_page_fault(regs);
604 }
605 NOKPROBE_SYMBOL(hash__do_page_fault);
606 #endif
607
608 /*
609 * bad_page_fault is called when we have a bad access from the kernel.
610 * It is called from the DSI and ISI handlers in head.S and from some
611 * of the procedures in traps.c.
612 */
__bad_page_fault(struct pt_regs * regs,int sig)613 static void __bad_page_fault(struct pt_regs *regs, int sig)
614 {
615 int is_write = page_fault_is_write(regs->dsisr);
616 const char *msg;
617
618 /* kernel has accessed a bad area */
619
620 if (regs->dar < PAGE_SIZE)
621 msg = "Kernel NULL pointer dereference";
622 else
623 msg = "Unable to handle kernel data access";
624
625 switch (TRAP(regs)) {
626 case INTERRUPT_DATA_STORAGE:
627 case INTERRUPT_H_DATA_STORAGE:
628 pr_alert("BUG: %s on %s at 0x%08lx\n", msg,
629 str_write_read(is_write), regs->dar);
630 break;
631 case INTERRUPT_DATA_SEGMENT:
632 pr_alert("BUG: %s at 0x%08lx\n", msg, regs->dar);
633 break;
634 case INTERRUPT_INST_STORAGE:
635 case INTERRUPT_INST_SEGMENT:
636 pr_alert("BUG: Unable to handle kernel instruction fetch%s",
637 regs->nip < PAGE_SIZE ? " (NULL pointer?)\n" : "\n");
638 break;
639 case INTERRUPT_ALIGNMENT:
640 pr_alert("BUG: Unable to handle kernel unaligned access at 0x%08lx\n",
641 regs->dar);
642 break;
643 default:
644 pr_alert("BUG: Unable to handle unknown paging fault at 0x%08lx\n",
645 regs->dar);
646 break;
647 }
648 printk(KERN_ALERT "Faulting instruction address: 0x%08lx\n",
649 regs->nip);
650
651 if (task_stack_end_corrupted(current))
652 printk(KERN_ALERT "Thread overran stack, or stack corrupted\n");
653
654 die("Kernel access of bad area", regs, sig);
655 }
656
bad_page_fault(struct pt_regs * regs,int sig)657 void bad_page_fault(struct pt_regs *regs, int sig)
658 {
659 const struct exception_table_entry *entry;
660
661 /* Are we prepared to handle this fault? */
662 entry = search_exception_tables(instruction_pointer(regs));
663 if (entry)
664 instruction_pointer_set(regs, extable_fixup(entry));
665 else
666 __bad_page_fault(regs, sig);
667 }
668
669 #ifdef CONFIG_PPC_BOOK3S_64
DEFINE_INTERRUPT_HANDLER(do_bad_page_fault_segv)670 DEFINE_INTERRUPT_HANDLER(do_bad_page_fault_segv)
671 {
672 bad_page_fault(regs, SIGSEGV);
673 }
674
675 /*
676 * In radix, segment interrupts indicate the EA is not addressable by the
677 * page table geometry, so they are always sent here.
678 *
679 * In hash, this is called if do_slb_fault returns error. Typically it is
680 * because the EA was outside the region allowed by software.
681 */
DEFINE_INTERRUPT_HANDLER(do_bad_segment_interrupt)682 DEFINE_INTERRUPT_HANDLER(do_bad_segment_interrupt)
683 {
684 int err = regs->result;
685
686 if (err == -EFAULT) {
687 if (user_mode(regs))
688 _exception(SIGSEGV, regs, SEGV_BNDERR, regs->dar);
689 else
690 bad_page_fault(regs, SIGSEGV);
691 } else if (err == -EINVAL) {
692 unrecoverable_exception(regs);
693 } else {
694 BUG();
695 }
696 }
697 #endif
698