1 // SPDX-License-Identifier: GPL-2.0-only
2 #include "cgroup-internal.h"
3 
4 #include <linux/sched/cputime.h>
5 
6 #include <linux/bpf.h>
7 #include <linux/btf.h>
8 #include <linux/btf_ids.h>
9 
10 #include <trace/events/cgroup.h>
11 
12 static DEFINE_SPINLOCK(rstat_base_lock);
13 static DEFINE_PER_CPU(struct llist_head, rstat_backlog_list);
14 
15 static void cgroup_base_stat_flush(struct cgroup *cgrp, int cpu);
16 
17 /*
18  * Determines whether a given css can participate in rstat.
19  * css's that are cgroup::self use rstat for base stats.
20  * Other css's associated with a subsystem use rstat only when
21  * they define the ss->css_rstat_flush callback.
22  */
css_uses_rstat(struct cgroup_subsys_state * css)23 static inline bool css_uses_rstat(struct cgroup_subsys_state *css)
24 {
25 	return css_is_self(css) || css->ss->css_rstat_flush != NULL;
26 }
27 
css_rstat_cpu(struct cgroup_subsys_state * css,int cpu)28 static struct css_rstat_cpu *css_rstat_cpu(
29 		struct cgroup_subsys_state *css, int cpu)
30 {
31 	return per_cpu_ptr(css->rstat_cpu, cpu);
32 }
33 
cgroup_rstat_base_cpu(struct cgroup * cgrp,int cpu)34 static struct cgroup_rstat_base_cpu *cgroup_rstat_base_cpu(
35 		struct cgroup *cgrp, int cpu)
36 {
37 	return per_cpu_ptr(cgrp->rstat_base_cpu, cpu);
38 }
39 
ss_rstat_lock(struct cgroup_subsys * ss)40 static spinlock_t *ss_rstat_lock(struct cgroup_subsys *ss)
41 {
42 	if (ss)
43 		return &ss->rstat_ss_lock;
44 
45 	return &rstat_base_lock;
46 }
47 
ss_lhead_cpu(struct cgroup_subsys * ss,int cpu)48 static inline struct llist_head *ss_lhead_cpu(struct cgroup_subsys *ss, int cpu)
49 {
50 	if (ss)
51 		return per_cpu_ptr(ss->lhead, cpu);
52 	return per_cpu_ptr(&rstat_backlog_list, cpu);
53 }
54 
55 /**
56  * css_rstat_updated - keep track of updated rstat_cpu
57  * @css: target cgroup subsystem state
58  * @cpu: cpu on which rstat_cpu was updated
59  *
60  * Atomically inserts the css in the ss's llist for the given cpu. This is
61  * reentrant safe i.e. safe against softirq, hardirq and nmi. The ss's llist
62  * will be processed at the flush time to create the update tree.
63  *
64  * NOTE: if the user needs the guarantee that the updater either add itself in
65  * the lockless list or the concurrent flusher flushes its updated stats, a
66  * memory barrier is needed before the call to css_rstat_updated() i.e. a
67  * barrier after updating the per-cpu stats and before calling
68  * css_rstat_updated().
69  */
css_rstat_updated(struct cgroup_subsys_state * css,int cpu)70 __bpf_kfunc void css_rstat_updated(struct cgroup_subsys_state *css, int cpu)
71 {
72 	struct llist_head *lhead;
73 	struct css_rstat_cpu *rstatc;
74 	struct css_rstat_cpu __percpu *rstatc_pcpu;
75 	struct llist_node *self;
76 
77 	/*
78 	 * Since bpf programs can call this function, prevent access to
79 	 * uninitialized rstat pointers.
80 	 */
81 	if (!css_uses_rstat(css))
82 		return;
83 
84 	lockdep_assert_preemption_disabled();
85 
86 	/*
87 	 * For archs withnot nmi safe cmpxchg or percpu ops support, ignore
88 	 * the requests from nmi context.
89 	 */
90 	if ((!IS_ENABLED(CONFIG_ARCH_HAVE_NMI_SAFE_CMPXCHG) ||
91 	     !IS_ENABLED(CONFIG_ARCH_HAS_NMI_SAFE_THIS_CPU_OPS)) && in_nmi())
92 		return;
93 
94 	rstatc = css_rstat_cpu(css, cpu);
95 	/*
96 	 * If already on list return. This check is racy and smp_mb() is needed
97 	 * to pair it with the smp_mb() in css_process_update_tree() if the
98 	 * guarantee that the updated stats are visible to concurrent flusher is
99 	 * needed.
100 	 */
101 	if (llist_on_list(&rstatc->lnode))
102 		return;
103 
104 	/*
105 	 * This function can be renentered by irqs and nmis for the same cgroup
106 	 * and may try to insert the same per-cpu lnode into the llist. Note
107 	 * that llist_add() does not protect against such scenarios.
108 	 *
109 	 * To protect against such stacked contexts of irqs/nmis, we use the
110 	 * fact that lnode points to itself when not on a list and then use
111 	 * this_cpu_cmpxchg() to atomically set to NULL to select the winner
112 	 * which will call llist_add(). The losers can assume the insertion is
113 	 * successful and the winner will eventually add the per-cpu lnode to
114 	 * the llist.
115 	 */
116 	self = &rstatc->lnode;
117 	rstatc_pcpu = css->rstat_cpu;
118 	if (this_cpu_cmpxchg(rstatc_pcpu->lnode.next, self, NULL) != self)
119 		return;
120 
121 	lhead = ss_lhead_cpu(css->ss, cpu);
122 	llist_add(&rstatc->lnode, lhead);
123 }
124 
__css_process_update_tree(struct cgroup_subsys_state * css,int cpu)125 static void __css_process_update_tree(struct cgroup_subsys_state *css, int cpu)
126 {
127 	/* put @css and all ancestors on the corresponding updated lists */
128 	while (true) {
129 		struct css_rstat_cpu *rstatc = css_rstat_cpu(css, cpu);
130 		struct cgroup_subsys_state *parent = css->parent;
131 		struct css_rstat_cpu *prstatc;
132 
133 		/*
134 		 * Both additions and removals are bottom-up.  If a cgroup
135 		 * is already in the tree, all ancestors are.
136 		 */
137 		if (rstatc->updated_next)
138 			break;
139 
140 		/* Root has no parent to link it to, but mark it busy */
141 		if (!parent) {
142 			rstatc->updated_next = css;
143 			break;
144 		}
145 
146 		prstatc = css_rstat_cpu(parent, cpu);
147 		rstatc->updated_next = prstatc->updated_children;
148 		prstatc->updated_children = css;
149 
150 		css = parent;
151 	}
152 }
153 
css_process_update_tree(struct cgroup_subsys * ss,int cpu)154 static void css_process_update_tree(struct cgroup_subsys *ss, int cpu)
155 {
156 	struct llist_head *lhead = ss_lhead_cpu(ss, cpu);
157 	struct llist_node *lnode;
158 
159 	while ((lnode = llist_del_first_init(lhead))) {
160 		struct css_rstat_cpu *rstatc;
161 
162 		/*
163 		 * smp_mb() is needed here (more specifically in between
164 		 * init_llist_node() and per-cpu stats flushing) if the
165 		 * guarantee is required by a rstat user where etiher the
166 		 * updater should add itself on the lockless list or the
167 		 * flusher flush the stats updated by the updater who have
168 		 * observed that they are already on the list. The
169 		 * corresponding barrier pair for this one should be before
170 		 * css_rstat_updated() by the user.
171 		 *
172 		 * For now, there aren't any such user, so not adding the
173 		 * barrier here but if such a use-case arise, please add
174 		 * smp_mb() here.
175 		 */
176 
177 		rstatc = container_of(lnode, struct css_rstat_cpu, lnode);
178 		__css_process_update_tree(rstatc->owner, cpu);
179 	}
180 }
181 
182 /**
183  * css_rstat_push_children - push children css's into the given list
184  * @head: current head of the list (= subtree root)
185  * @child: first child of the root
186  * @cpu: target cpu
187  * Return: A new singly linked list of css's to be flushed
188  *
189  * Iteratively traverse down the css_rstat_cpu updated tree level by
190  * level and push all the parents first before their next level children
191  * into a singly linked list via the rstat_flush_next pointer built from the
192  * tail backward like "pushing" css's into a stack. The root is pushed by
193  * the caller.
194  */
css_rstat_push_children(struct cgroup_subsys_state * head,struct cgroup_subsys_state * child,int cpu)195 static struct cgroup_subsys_state *css_rstat_push_children(
196 		struct cgroup_subsys_state *head,
197 		struct cgroup_subsys_state *child, int cpu)
198 {
199 	struct cgroup_subsys_state *cnext = child;	/* Next head of child css level */
200 	struct cgroup_subsys_state *ghead = NULL;	/* Head of grandchild css level */
201 	struct cgroup_subsys_state *parent, *grandchild;
202 	struct css_rstat_cpu *crstatc;
203 
204 	child->rstat_flush_next = NULL;
205 
206 	/*
207 	 * The subsystem rstat lock must be held for the whole duration from
208 	 * here as the rstat_flush_next list is being constructed to when
209 	 * it is consumed later in css_rstat_flush().
210 	 */
211 	lockdep_assert_held(ss_rstat_lock(head->ss));
212 
213 	/*
214 	 * Notation: -> updated_next pointer
215 	 *	     => rstat_flush_next pointer
216 	 *
217 	 * Assuming the following sample updated_children lists:
218 	 *  P: C1 -> C2 -> P
219 	 *  C1: G11 -> G12 -> C1
220 	 *  C2: G21 -> G22 -> C2
221 	 *
222 	 * After 1st iteration:
223 	 *  head => C2 => C1 => NULL
224 	 *  ghead => G21 => G11 => NULL
225 	 *
226 	 * After 2nd iteration:
227 	 *  head => G12 => G11 => G22 => G21 => C2 => C1 => NULL
228 	 */
229 next_level:
230 	while (cnext) {
231 		child = cnext;
232 		cnext = child->rstat_flush_next;
233 		parent = child->parent;
234 
235 		/* updated_next is parent cgroup terminated if !NULL */
236 		while (child != parent) {
237 			child->rstat_flush_next = head;
238 			head = child;
239 			crstatc = css_rstat_cpu(child, cpu);
240 			grandchild = crstatc->updated_children;
241 			if (grandchild != child) {
242 				/* Push the grand child to the next level */
243 				crstatc->updated_children = child;
244 				grandchild->rstat_flush_next = ghead;
245 				ghead = grandchild;
246 			}
247 			child = crstatc->updated_next;
248 			crstatc->updated_next = NULL;
249 		}
250 	}
251 
252 	if (ghead) {
253 		cnext = ghead;
254 		ghead = NULL;
255 		goto next_level;
256 	}
257 	return head;
258 }
259 
260 /**
261  * css_rstat_updated_list - build a list of updated css's to be flushed
262  * @root: root of the css subtree to traverse
263  * @cpu: target cpu
264  * Return: A singly linked list of css's to be flushed
265  *
266  * Walks the updated rstat_cpu tree on @cpu from @root.  During traversal,
267  * each returned css is unlinked from the updated tree.
268  *
269  * The only ordering guarantee is that, for a parent and a child pair
270  * covered by a given traversal, the child is before its parent in
271  * the list.
272  *
273  * Note that updated_children is self terminated and points to a list of
274  * child css's if not empty. Whereas updated_next is like a sibling link
275  * within the children list and terminated by the parent css. An exception
276  * here is the css root whose updated_next can be self terminated.
277  */
css_rstat_updated_list(struct cgroup_subsys_state * root,int cpu)278 static struct cgroup_subsys_state *css_rstat_updated_list(
279 		struct cgroup_subsys_state *root, int cpu)
280 {
281 	struct css_rstat_cpu *rstatc = css_rstat_cpu(root, cpu);
282 	struct cgroup_subsys_state *head = NULL, *parent, *child;
283 
284 	css_process_update_tree(root->ss, cpu);
285 
286 	/* Return NULL if this subtree is not on-list */
287 	if (!rstatc->updated_next)
288 		return NULL;
289 
290 	/*
291 	 * Unlink @root from its parent. As the updated_children list is
292 	 * singly linked, we have to walk it to find the removal point.
293 	 */
294 	parent = root->parent;
295 	if (parent) {
296 		struct css_rstat_cpu *prstatc;
297 		struct cgroup_subsys_state **nextp;
298 
299 		prstatc = css_rstat_cpu(parent, cpu);
300 		nextp = &prstatc->updated_children;
301 		while (*nextp != root) {
302 			struct css_rstat_cpu *nrstatc;
303 
304 			nrstatc = css_rstat_cpu(*nextp, cpu);
305 			WARN_ON_ONCE(*nextp == parent);
306 			nextp = &nrstatc->updated_next;
307 		}
308 		*nextp = rstatc->updated_next;
309 	}
310 
311 	rstatc->updated_next = NULL;
312 
313 	/* Push @root to the list first before pushing the children */
314 	head = root;
315 	root->rstat_flush_next = NULL;
316 	child = rstatc->updated_children;
317 	rstatc->updated_children = root;
318 	if (child != root)
319 		head = css_rstat_push_children(head, child, cpu);
320 
321 	return head;
322 }
323 
324 /*
325  * A hook for bpf stat collectors to attach to and flush their stats.
326  * Together with providing bpf kfuncs for css_rstat_updated() and
327  * css_rstat_flush(), this enables a complete workflow where bpf progs that
328  * collect cgroup stats can integrate with rstat for efficient flushing.
329  *
330  * A static noinline declaration here could cause the compiler to optimize away
331  * the function. A global noinline declaration will keep the definition, but may
332  * optimize away the callsite. Therefore, __weak is needed to ensure that the
333  * call is still emitted, by telling the compiler that we don't know what the
334  * function might eventually be.
335  */
336 
337 __bpf_hook_start();
338 
bpf_rstat_flush(struct cgroup * cgrp,struct cgroup * parent,int cpu)339 __weak noinline void bpf_rstat_flush(struct cgroup *cgrp,
340 				     struct cgroup *parent, int cpu)
341 {
342 }
343 
344 __bpf_hook_end();
345 
346 /*
347  * Helper functions for locking.
348  *
349  * This makes it easier to diagnose locking issues and contention in
350  * production environments.  The parameter @cpu_in_loop indicate lock
351  * was released and re-taken when collection data from the CPUs. The
352  * value -1 is used when obtaining the main lock else this is the CPU
353  * number processed last.
354  */
__css_rstat_lock(struct cgroup_subsys_state * css,int cpu_in_loop)355 static inline void __css_rstat_lock(struct cgroup_subsys_state *css,
356 		int cpu_in_loop)
357 	__acquires(ss_rstat_lock(css->ss))
358 {
359 	struct cgroup *cgrp = css->cgroup;
360 	spinlock_t *lock;
361 	bool contended;
362 
363 	lock = ss_rstat_lock(css->ss);
364 	contended = !spin_trylock_irq(lock);
365 	if (contended) {
366 		trace_cgroup_rstat_lock_contended(cgrp, cpu_in_loop, contended);
367 		spin_lock_irq(lock);
368 	}
369 	trace_cgroup_rstat_locked(cgrp, cpu_in_loop, contended);
370 }
371 
__css_rstat_unlock(struct cgroup_subsys_state * css,int cpu_in_loop)372 static inline void __css_rstat_unlock(struct cgroup_subsys_state *css,
373 				      int cpu_in_loop)
374 	__releases(ss_rstat_lock(css->ss))
375 {
376 	struct cgroup *cgrp = css->cgroup;
377 	spinlock_t *lock;
378 
379 	lock = ss_rstat_lock(css->ss);
380 	trace_cgroup_rstat_unlock(cgrp, cpu_in_loop, false);
381 	spin_unlock_irq(lock);
382 }
383 
384 /**
385  * css_rstat_flush - flush stats in @css's rstat subtree
386  * @css: target cgroup subsystem state
387  *
388  * Collect all per-cpu stats in @css's subtree into the global counters
389  * and propagate them upwards. After this function returns, all rstat
390  * nodes in the subtree have up-to-date ->stat.
391  *
392  * This also gets all rstat nodes in the subtree including @css off the
393  * ->updated_children lists.
394  *
395  * This function may block.
396  */
css_rstat_flush(struct cgroup_subsys_state * css)397 __bpf_kfunc void css_rstat_flush(struct cgroup_subsys_state *css)
398 {
399 	int cpu;
400 	bool is_self = css_is_self(css);
401 
402 	/*
403 	 * Since bpf programs can call this function, prevent access to
404 	 * uninitialized rstat pointers.
405 	 */
406 	if (!css_uses_rstat(css))
407 		return;
408 
409 	might_sleep();
410 	for_each_possible_cpu(cpu) {
411 		struct cgroup_subsys_state *pos;
412 
413 		/* Reacquire for each CPU to avoid disabling IRQs too long */
414 		__css_rstat_lock(css, cpu);
415 		pos = css_rstat_updated_list(css, cpu);
416 		for (; pos; pos = pos->rstat_flush_next) {
417 			if (is_self) {
418 				cgroup_base_stat_flush(pos->cgroup, cpu);
419 				bpf_rstat_flush(pos->cgroup,
420 						cgroup_parent(pos->cgroup), cpu);
421 			} else
422 				pos->ss->css_rstat_flush(pos, cpu);
423 		}
424 		__css_rstat_unlock(css, cpu);
425 		if (!cond_resched())
426 			cpu_relax();
427 	}
428 }
429 
css_rstat_init(struct cgroup_subsys_state * css)430 int css_rstat_init(struct cgroup_subsys_state *css)
431 {
432 	struct cgroup *cgrp = css->cgroup;
433 	int cpu;
434 	bool is_self = css_is_self(css);
435 
436 	if (is_self) {
437 		/* the root cgrp has rstat_base_cpu preallocated */
438 		if (!cgrp->rstat_base_cpu) {
439 			cgrp->rstat_base_cpu = alloc_percpu(struct cgroup_rstat_base_cpu);
440 			if (!cgrp->rstat_base_cpu)
441 				return -ENOMEM;
442 		}
443 	} else if (css->ss->css_rstat_flush == NULL)
444 		return 0;
445 
446 	/* the root cgrp's self css has rstat_cpu preallocated */
447 	if (!css->rstat_cpu) {
448 		css->rstat_cpu = alloc_percpu(struct css_rstat_cpu);
449 		if (!css->rstat_cpu) {
450 			if (is_self)
451 				free_percpu(cgrp->rstat_base_cpu);
452 
453 			return -ENOMEM;
454 		}
455 	}
456 
457 	/* ->updated_children list is self terminated */
458 	for_each_possible_cpu(cpu) {
459 		struct css_rstat_cpu *rstatc = css_rstat_cpu(css, cpu);
460 
461 		rstatc->owner = rstatc->updated_children = css;
462 		init_llist_node(&rstatc->lnode);
463 
464 		if (is_self) {
465 			struct cgroup_rstat_base_cpu *rstatbc;
466 
467 			rstatbc = cgroup_rstat_base_cpu(cgrp, cpu);
468 			u64_stats_init(&rstatbc->bsync);
469 		}
470 	}
471 
472 	return 0;
473 }
474 
css_rstat_exit(struct cgroup_subsys_state * css)475 void css_rstat_exit(struct cgroup_subsys_state *css)
476 {
477 	int cpu;
478 
479 	if (!css_uses_rstat(css))
480 		return;
481 
482 	css_rstat_flush(css);
483 
484 	/* sanity check */
485 	for_each_possible_cpu(cpu) {
486 		struct css_rstat_cpu *rstatc = css_rstat_cpu(css, cpu);
487 
488 		if (WARN_ON_ONCE(rstatc->updated_children != css) ||
489 		    WARN_ON_ONCE(rstatc->updated_next))
490 			return;
491 	}
492 
493 	if (css_is_self(css)) {
494 		struct cgroup *cgrp = css->cgroup;
495 
496 		free_percpu(cgrp->rstat_base_cpu);
497 		cgrp->rstat_base_cpu = NULL;
498 	}
499 
500 	free_percpu(css->rstat_cpu);
501 	css->rstat_cpu = NULL;
502 }
503 
504 /**
505  * ss_rstat_init - subsystem-specific rstat initialization
506  * @ss: target subsystem
507  *
508  * If @ss is NULL, the static locks associated with the base stats
509  * are initialized. If @ss is non-NULL, the subsystem-specific locks
510  * are initialized.
511  */
ss_rstat_init(struct cgroup_subsys * ss)512 int __init ss_rstat_init(struct cgroup_subsys *ss)
513 {
514 	int cpu;
515 
516 	if (ss) {
517 		ss->lhead = alloc_percpu(struct llist_head);
518 		if (!ss->lhead)
519 			return -ENOMEM;
520 	}
521 
522 	spin_lock_init(ss_rstat_lock(ss));
523 	for_each_possible_cpu(cpu)
524 		init_llist_head(ss_lhead_cpu(ss, cpu));
525 
526 	return 0;
527 }
528 
529 /*
530  * Functions for cgroup basic resource statistics implemented on top of
531  * rstat.
532  */
cgroup_base_stat_add(struct cgroup_base_stat * dst_bstat,struct cgroup_base_stat * src_bstat)533 static void cgroup_base_stat_add(struct cgroup_base_stat *dst_bstat,
534 				 struct cgroup_base_stat *src_bstat)
535 {
536 	dst_bstat->cputime.utime += src_bstat->cputime.utime;
537 	dst_bstat->cputime.stime += src_bstat->cputime.stime;
538 	dst_bstat->cputime.sum_exec_runtime += src_bstat->cputime.sum_exec_runtime;
539 #ifdef CONFIG_SCHED_CORE
540 	dst_bstat->forceidle_sum += src_bstat->forceidle_sum;
541 #endif
542 	dst_bstat->ntime += src_bstat->ntime;
543 }
544 
cgroup_base_stat_sub(struct cgroup_base_stat * dst_bstat,struct cgroup_base_stat * src_bstat)545 static void cgroup_base_stat_sub(struct cgroup_base_stat *dst_bstat,
546 				 struct cgroup_base_stat *src_bstat)
547 {
548 	dst_bstat->cputime.utime -= src_bstat->cputime.utime;
549 	dst_bstat->cputime.stime -= src_bstat->cputime.stime;
550 	dst_bstat->cputime.sum_exec_runtime -= src_bstat->cputime.sum_exec_runtime;
551 #ifdef CONFIG_SCHED_CORE
552 	dst_bstat->forceidle_sum -= src_bstat->forceidle_sum;
553 #endif
554 	dst_bstat->ntime -= src_bstat->ntime;
555 }
556 
cgroup_base_stat_flush(struct cgroup * cgrp,int cpu)557 static void cgroup_base_stat_flush(struct cgroup *cgrp, int cpu)
558 {
559 	struct cgroup_rstat_base_cpu *rstatbc = cgroup_rstat_base_cpu(cgrp, cpu);
560 	struct cgroup *parent = cgroup_parent(cgrp);
561 	struct cgroup_rstat_base_cpu *prstatbc;
562 	struct cgroup_base_stat delta;
563 	unsigned seq;
564 
565 	/* Root-level stats are sourced from system-wide CPU stats */
566 	if (!parent)
567 		return;
568 
569 	/* fetch the current per-cpu values */
570 	do {
571 		seq = __u64_stats_fetch_begin(&rstatbc->bsync);
572 		delta = rstatbc->bstat;
573 	} while (__u64_stats_fetch_retry(&rstatbc->bsync, seq));
574 
575 	/* propagate per-cpu delta to cgroup and per-cpu global statistics */
576 	cgroup_base_stat_sub(&delta, &rstatbc->last_bstat);
577 	cgroup_base_stat_add(&cgrp->bstat, &delta);
578 	cgroup_base_stat_add(&rstatbc->last_bstat, &delta);
579 	cgroup_base_stat_add(&rstatbc->subtree_bstat, &delta);
580 
581 	/* propagate cgroup and per-cpu global delta to parent (unless that's root) */
582 	if (cgroup_parent(parent)) {
583 		delta = cgrp->bstat;
584 		cgroup_base_stat_sub(&delta, &cgrp->last_bstat);
585 		cgroup_base_stat_add(&parent->bstat, &delta);
586 		cgroup_base_stat_add(&cgrp->last_bstat, &delta);
587 
588 		delta = rstatbc->subtree_bstat;
589 		prstatbc = cgroup_rstat_base_cpu(parent, cpu);
590 		cgroup_base_stat_sub(&delta, &rstatbc->last_subtree_bstat);
591 		cgroup_base_stat_add(&prstatbc->subtree_bstat, &delta);
592 		cgroup_base_stat_add(&rstatbc->last_subtree_bstat, &delta);
593 	}
594 }
595 
596 static struct cgroup_rstat_base_cpu *
cgroup_base_stat_cputime_account_begin(struct cgroup * cgrp,unsigned long * flags)597 cgroup_base_stat_cputime_account_begin(struct cgroup *cgrp, unsigned long *flags)
598 {
599 	struct cgroup_rstat_base_cpu *rstatbc;
600 
601 	rstatbc = get_cpu_ptr(cgrp->rstat_base_cpu);
602 	*flags = u64_stats_update_begin_irqsave(&rstatbc->bsync);
603 	return rstatbc;
604 }
605 
cgroup_base_stat_cputime_account_end(struct cgroup * cgrp,struct cgroup_rstat_base_cpu * rstatbc,unsigned long flags)606 static void cgroup_base_stat_cputime_account_end(struct cgroup *cgrp,
607 						 struct cgroup_rstat_base_cpu *rstatbc,
608 						 unsigned long flags)
609 {
610 	u64_stats_update_end_irqrestore(&rstatbc->bsync, flags);
611 	css_rstat_updated(&cgrp->self, smp_processor_id());
612 	put_cpu_ptr(rstatbc);
613 }
614 
__cgroup_account_cputime(struct cgroup * cgrp,u64 delta_exec)615 void __cgroup_account_cputime(struct cgroup *cgrp, u64 delta_exec)
616 {
617 	struct cgroup_rstat_base_cpu *rstatbc;
618 	unsigned long flags;
619 
620 	rstatbc = cgroup_base_stat_cputime_account_begin(cgrp, &flags);
621 	rstatbc->bstat.cputime.sum_exec_runtime += delta_exec;
622 	cgroup_base_stat_cputime_account_end(cgrp, rstatbc, flags);
623 }
624 
__cgroup_account_cputime_field(struct cgroup * cgrp,enum cpu_usage_stat index,u64 delta_exec)625 void __cgroup_account_cputime_field(struct cgroup *cgrp,
626 				    enum cpu_usage_stat index, u64 delta_exec)
627 {
628 	struct cgroup_rstat_base_cpu *rstatbc;
629 	unsigned long flags;
630 
631 	rstatbc = cgroup_base_stat_cputime_account_begin(cgrp, &flags);
632 
633 	switch (index) {
634 	case CPUTIME_NICE:
635 		rstatbc->bstat.ntime += delta_exec;
636 		fallthrough;
637 	case CPUTIME_USER:
638 		rstatbc->bstat.cputime.utime += delta_exec;
639 		break;
640 	case CPUTIME_SYSTEM:
641 	case CPUTIME_IRQ:
642 	case CPUTIME_SOFTIRQ:
643 		rstatbc->bstat.cputime.stime += delta_exec;
644 		break;
645 #ifdef CONFIG_SCHED_CORE
646 	case CPUTIME_FORCEIDLE:
647 		rstatbc->bstat.forceidle_sum += delta_exec;
648 		break;
649 #endif
650 	default:
651 		break;
652 	}
653 
654 	cgroup_base_stat_cputime_account_end(cgrp, rstatbc, flags);
655 }
656 
657 /*
658  * compute the cputime for the root cgroup by getting the per cpu data
659  * at a global level, then categorizing the fields in a manner consistent
660  * with how it is done by __cgroup_account_cputime_field for each bit of
661  * cpu time attributed to a cgroup.
662  */
root_cgroup_cputime(struct cgroup_base_stat * bstat)663 static void root_cgroup_cputime(struct cgroup_base_stat *bstat)
664 {
665 	struct task_cputime *cputime = &bstat->cputime;
666 	int i;
667 
668 	memset(bstat, 0, sizeof(*bstat));
669 	for_each_possible_cpu(i) {
670 		struct kernel_cpustat kcpustat;
671 		u64 *cpustat = kcpustat.cpustat;
672 		u64 user = 0;
673 		u64 sys = 0;
674 
675 		kcpustat_cpu_fetch(&kcpustat, i);
676 
677 		user += cpustat[CPUTIME_USER];
678 		user += cpustat[CPUTIME_NICE];
679 		cputime->utime += user;
680 
681 		sys += cpustat[CPUTIME_SYSTEM];
682 		sys += cpustat[CPUTIME_IRQ];
683 		sys += cpustat[CPUTIME_SOFTIRQ];
684 		cputime->stime += sys;
685 
686 		cputime->sum_exec_runtime += user;
687 		cputime->sum_exec_runtime += sys;
688 
689 #ifdef CONFIG_SCHED_CORE
690 		bstat->forceidle_sum += cpustat[CPUTIME_FORCEIDLE];
691 #endif
692 		bstat->ntime += cpustat[CPUTIME_NICE];
693 	}
694 }
695 
696 
cgroup_force_idle_show(struct seq_file * seq,struct cgroup_base_stat * bstat)697 static void cgroup_force_idle_show(struct seq_file *seq, struct cgroup_base_stat *bstat)
698 {
699 #ifdef CONFIG_SCHED_CORE
700 	u64 forceidle_time = bstat->forceidle_sum;
701 
702 	do_div(forceidle_time, NSEC_PER_USEC);
703 	seq_printf(seq, "core_sched.force_idle_usec %llu\n", forceidle_time);
704 #endif
705 }
706 
cgroup_base_stat_cputime_show(struct seq_file * seq)707 void cgroup_base_stat_cputime_show(struct seq_file *seq)
708 {
709 	struct cgroup *cgrp = seq_css(seq)->cgroup;
710 	struct cgroup_base_stat bstat;
711 
712 	if (cgroup_parent(cgrp)) {
713 		css_rstat_flush(&cgrp->self);
714 		__css_rstat_lock(&cgrp->self, -1);
715 		bstat = cgrp->bstat;
716 		cputime_adjust(&cgrp->bstat.cputime, &cgrp->prev_cputime,
717 			       &bstat.cputime.utime, &bstat.cputime.stime);
718 		__css_rstat_unlock(&cgrp->self, -1);
719 	} else {
720 		root_cgroup_cputime(&bstat);
721 	}
722 
723 	do_div(bstat.cputime.sum_exec_runtime, NSEC_PER_USEC);
724 	do_div(bstat.cputime.utime, NSEC_PER_USEC);
725 	do_div(bstat.cputime.stime, NSEC_PER_USEC);
726 	do_div(bstat.ntime, NSEC_PER_USEC);
727 
728 	seq_printf(seq, "usage_usec %llu\n"
729 			"user_usec %llu\n"
730 			"system_usec %llu\n"
731 			"nice_usec %llu\n",
732 			bstat.cputime.sum_exec_runtime,
733 			bstat.cputime.utime,
734 			bstat.cputime.stime,
735 			bstat.ntime);
736 
737 	cgroup_force_idle_show(seq, &bstat);
738 }
739 
740 /* Add bpf kfuncs for css_rstat_updated() and css_rstat_flush() */
741 BTF_KFUNCS_START(bpf_rstat_kfunc_ids)
742 BTF_ID_FLAGS(func, css_rstat_updated)
743 BTF_ID_FLAGS(func, css_rstat_flush, KF_SLEEPABLE)
744 BTF_KFUNCS_END(bpf_rstat_kfunc_ids)
745 
746 static const struct btf_kfunc_id_set bpf_rstat_kfunc_set = {
747 	.owner          = THIS_MODULE,
748 	.set            = &bpf_rstat_kfunc_ids,
749 };
750 
bpf_rstat_kfunc_init(void)751 static int __init bpf_rstat_kfunc_init(void)
752 {
753 	return register_btf_kfunc_id_set(BPF_PROG_TYPE_TRACING,
754 					 &bpf_rstat_kfunc_set);
755 }
756 late_initcall(bpf_rstat_kfunc_init);
757