1 // SPDX-License-Identifier: GPL-2.0
2 /*
3 * DMABUF CMA heap exporter
4 *
5 * Copyright (C) 2012, 2019, 2020 Linaro Ltd.
6 * Author: <benjamin.gaignard@linaro.org> for ST-Ericsson.
7 *
8 * Also utilizing parts of Andrew Davis' SRAM heap:
9 * Copyright (C) 2019 Texas Instruments Incorporated - http://www.ti.com/
10 * Andrew F. Davis <afd@ti.com>
11 */
12
13 #define pr_fmt(fmt) "cma_heap: " fmt
14
15 #include <linux/cma.h>
16 #include <linux/dma-buf.h>
17 #include <linux/dma-heap.h>
18 #include <linux/dma-map-ops.h>
19 #include <linux/err.h>
20 #include <linux/highmem.h>
21 #include <linux/io.h>
22 #include <linux/mm.h>
23 #include <linux/module.h>
24 #include <linux/scatterlist.h>
25 #include <linux/slab.h>
26 #include <linux/vmalloc.h>
27
28 #define DEFAULT_CMA_NAME "default_cma_region"
29
30 struct cma_heap {
31 struct dma_heap *heap;
32 struct cma *cma;
33 };
34
35 struct cma_heap_buffer {
36 struct cma_heap *heap;
37 struct list_head attachments;
38 struct mutex lock;
39 unsigned long len;
40 struct page *cma_pages;
41 struct page **pages;
42 pgoff_t pagecount;
43 int vmap_cnt;
44 void *vaddr;
45 };
46
47 struct dma_heap_attachment {
48 struct device *dev;
49 struct sg_table table;
50 struct list_head list;
51 bool mapped;
52 };
53
cma_heap_attach(struct dma_buf * dmabuf,struct dma_buf_attachment * attachment)54 static int cma_heap_attach(struct dma_buf *dmabuf,
55 struct dma_buf_attachment *attachment)
56 {
57 struct cma_heap_buffer *buffer = dmabuf->priv;
58 struct dma_heap_attachment *a;
59 int ret;
60
61 a = kzalloc(sizeof(*a), GFP_KERNEL);
62 if (!a)
63 return -ENOMEM;
64
65 ret = sg_alloc_table_from_pages(&a->table, buffer->pages,
66 buffer->pagecount, 0,
67 buffer->pagecount << PAGE_SHIFT,
68 GFP_KERNEL);
69 if (ret) {
70 kfree(a);
71 return ret;
72 }
73
74 a->dev = attachment->dev;
75 INIT_LIST_HEAD(&a->list);
76 a->mapped = false;
77
78 attachment->priv = a;
79
80 mutex_lock(&buffer->lock);
81 list_add(&a->list, &buffer->attachments);
82 mutex_unlock(&buffer->lock);
83
84 return 0;
85 }
86
cma_heap_detach(struct dma_buf * dmabuf,struct dma_buf_attachment * attachment)87 static void cma_heap_detach(struct dma_buf *dmabuf,
88 struct dma_buf_attachment *attachment)
89 {
90 struct cma_heap_buffer *buffer = dmabuf->priv;
91 struct dma_heap_attachment *a = attachment->priv;
92
93 mutex_lock(&buffer->lock);
94 list_del(&a->list);
95 mutex_unlock(&buffer->lock);
96
97 sg_free_table(&a->table);
98 kfree(a);
99 }
100
cma_heap_map_dma_buf(struct dma_buf_attachment * attachment,enum dma_data_direction direction)101 static struct sg_table *cma_heap_map_dma_buf(struct dma_buf_attachment *attachment,
102 enum dma_data_direction direction)
103 {
104 struct dma_heap_attachment *a = attachment->priv;
105 struct sg_table *table = &a->table;
106 int ret;
107
108 ret = dma_map_sgtable(attachment->dev, table, direction, 0);
109 if (ret)
110 return ERR_PTR(-ENOMEM);
111 a->mapped = true;
112 return table;
113 }
114
cma_heap_unmap_dma_buf(struct dma_buf_attachment * attachment,struct sg_table * table,enum dma_data_direction direction)115 static void cma_heap_unmap_dma_buf(struct dma_buf_attachment *attachment,
116 struct sg_table *table,
117 enum dma_data_direction direction)
118 {
119 struct dma_heap_attachment *a = attachment->priv;
120
121 a->mapped = false;
122 dma_unmap_sgtable(attachment->dev, table, direction, 0);
123 }
124
cma_heap_dma_buf_begin_cpu_access(struct dma_buf * dmabuf,enum dma_data_direction direction)125 static int cma_heap_dma_buf_begin_cpu_access(struct dma_buf *dmabuf,
126 enum dma_data_direction direction)
127 {
128 struct cma_heap_buffer *buffer = dmabuf->priv;
129 struct dma_heap_attachment *a;
130
131 mutex_lock(&buffer->lock);
132
133 if (buffer->vmap_cnt)
134 invalidate_kernel_vmap_range(buffer->vaddr, buffer->len);
135
136 list_for_each_entry(a, &buffer->attachments, list) {
137 if (!a->mapped)
138 continue;
139 dma_sync_sgtable_for_cpu(a->dev, &a->table, direction);
140 }
141 mutex_unlock(&buffer->lock);
142
143 return 0;
144 }
145
cma_heap_dma_buf_end_cpu_access(struct dma_buf * dmabuf,enum dma_data_direction direction)146 static int cma_heap_dma_buf_end_cpu_access(struct dma_buf *dmabuf,
147 enum dma_data_direction direction)
148 {
149 struct cma_heap_buffer *buffer = dmabuf->priv;
150 struct dma_heap_attachment *a;
151
152 mutex_lock(&buffer->lock);
153
154 if (buffer->vmap_cnt)
155 flush_kernel_vmap_range(buffer->vaddr, buffer->len);
156
157 list_for_each_entry(a, &buffer->attachments, list) {
158 if (!a->mapped)
159 continue;
160 dma_sync_sgtable_for_device(a->dev, &a->table, direction);
161 }
162 mutex_unlock(&buffer->lock);
163
164 return 0;
165 }
166
cma_heap_vm_fault(struct vm_fault * vmf)167 static vm_fault_t cma_heap_vm_fault(struct vm_fault *vmf)
168 {
169 struct vm_area_struct *vma = vmf->vma;
170 struct cma_heap_buffer *buffer = vma->vm_private_data;
171
172 if (vmf->pgoff >= buffer->pagecount)
173 return VM_FAULT_SIGBUS;
174
175 return vmf_insert_pfn(vma, vmf->address, page_to_pfn(buffer->pages[vmf->pgoff]));
176 }
177
178 static const struct vm_operations_struct dma_heap_vm_ops = {
179 .fault = cma_heap_vm_fault,
180 };
181
cma_heap_mmap(struct dma_buf * dmabuf,struct vm_area_struct * vma)182 static int cma_heap_mmap(struct dma_buf *dmabuf, struct vm_area_struct *vma)
183 {
184 struct cma_heap_buffer *buffer = dmabuf->priv;
185
186 if ((vma->vm_flags & (VM_SHARED | VM_MAYSHARE)) == 0)
187 return -EINVAL;
188
189 vm_flags_set(vma, VM_IO | VM_PFNMAP | VM_DONTEXPAND | VM_DONTDUMP);
190
191 vma->vm_ops = &dma_heap_vm_ops;
192 vma->vm_private_data = buffer;
193
194 return 0;
195 }
196
cma_heap_do_vmap(struct cma_heap_buffer * buffer)197 static void *cma_heap_do_vmap(struct cma_heap_buffer *buffer)
198 {
199 void *vaddr;
200
201 vaddr = vmap(buffer->pages, buffer->pagecount, VM_MAP, PAGE_KERNEL);
202 if (!vaddr)
203 return ERR_PTR(-ENOMEM);
204
205 return vaddr;
206 }
207
cma_heap_vmap(struct dma_buf * dmabuf,struct iosys_map * map)208 static int cma_heap_vmap(struct dma_buf *dmabuf, struct iosys_map *map)
209 {
210 struct cma_heap_buffer *buffer = dmabuf->priv;
211 void *vaddr;
212 int ret = 0;
213
214 mutex_lock(&buffer->lock);
215 if (buffer->vmap_cnt) {
216 buffer->vmap_cnt++;
217 iosys_map_set_vaddr(map, buffer->vaddr);
218 goto out;
219 }
220
221 vaddr = cma_heap_do_vmap(buffer);
222 if (IS_ERR(vaddr)) {
223 ret = PTR_ERR(vaddr);
224 goto out;
225 }
226 buffer->vaddr = vaddr;
227 buffer->vmap_cnt++;
228 iosys_map_set_vaddr(map, buffer->vaddr);
229 out:
230 mutex_unlock(&buffer->lock);
231
232 return ret;
233 }
234
cma_heap_vunmap(struct dma_buf * dmabuf,struct iosys_map * map)235 static void cma_heap_vunmap(struct dma_buf *dmabuf, struct iosys_map *map)
236 {
237 struct cma_heap_buffer *buffer = dmabuf->priv;
238
239 mutex_lock(&buffer->lock);
240 if (!--buffer->vmap_cnt) {
241 vunmap(buffer->vaddr);
242 buffer->vaddr = NULL;
243 }
244 mutex_unlock(&buffer->lock);
245 iosys_map_clear(map);
246 }
247
cma_heap_dma_buf_release(struct dma_buf * dmabuf)248 static void cma_heap_dma_buf_release(struct dma_buf *dmabuf)
249 {
250 struct cma_heap_buffer *buffer = dmabuf->priv;
251 struct cma_heap *cma_heap = buffer->heap;
252
253 if (buffer->vmap_cnt > 0) {
254 WARN(1, "%s: buffer still mapped in the kernel\n", __func__);
255 vunmap(buffer->vaddr);
256 buffer->vaddr = NULL;
257 }
258
259 /* free page list */
260 kfree(buffer->pages);
261 /* release memory */
262 cma_release(cma_heap->cma, buffer->cma_pages, buffer->pagecount);
263 kfree(buffer);
264 }
265
266 static const struct dma_buf_ops cma_heap_buf_ops = {
267 .attach = cma_heap_attach,
268 .detach = cma_heap_detach,
269 .map_dma_buf = cma_heap_map_dma_buf,
270 .unmap_dma_buf = cma_heap_unmap_dma_buf,
271 .begin_cpu_access = cma_heap_dma_buf_begin_cpu_access,
272 .end_cpu_access = cma_heap_dma_buf_end_cpu_access,
273 .mmap = cma_heap_mmap,
274 .vmap = cma_heap_vmap,
275 .vunmap = cma_heap_vunmap,
276 .release = cma_heap_dma_buf_release,
277 };
278
cma_heap_allocate(struct dma_heap * heap,unsigned long len,u32 fd_flags,u64 heap_flags)279 static struct dma_buf *cma_heap_allocate(struct dma_heap *heap,
280 unsigned long len,
281 u32 fd_flags,
282 u64 heap_flags)
283 {
284 struct cma_heap *cma_heap = dma_heap_get_drvdata(heap);
285 struct cma_heap_buffer *buffer;
286 DEFINE_DMA_BUF_EXPORT_INFO(exp_info);
287 size_t size = PAGE_ALIGN(len);
288 pgoff_t pagecount = size >> PAGE_SHIFT;
289 unsigned long align = get_order(size);
290 struct page *cma_pages;
291 struct dma_buf *dmabuf;
292 int ret = -ENOMEM;
293 pgoff_t pg;
294
295 buffer = kzalloc(sizeof(*buffer), GFP_KERNEL);
296 if (!buffer)
297 return ERR_PTR(-ENOMEM);
298
299 INIT_LIST_HEAD(&buffer->attachments);
300 mutex_init(&buffer->lock);
301 buffer->len = size;
302
303 if (align > CONFIG_CMA_ALIGNMENT)
304 align = CONFIG_CMA_ALIGNMENT;
305
306 cma_pages = cma_alloc(cma_heap->cma, pagecount, align, false);
307 if (!cma_pages)
308 goto free_buffer;
309
310 /* Clear the cma pages */
311 if (PageHighMem(cma_pages)) {
312 unsigned long nr_clear_pages = pagecount;
313 struct page *page = cma_pages;
314
315 while (nr_clear_pages > 0) {
316 void *vaddr = kmap_local_page(page);
317
318 memset(vaddr, 0, PAGE_SIZE);
319 kunmap_local(vaddr);
320 /*
321 * Avoid wasting time zeroing memory if the process
322 * has been killed by SIGKILL.
323 */
324 if (fatal_signal_pending(current))
325 goto free_cma;
326 page++;
327 nr_clear_pages--;
328 }
329 } else {
330 memset(page_address(cma_pages), 0, size);
331 }
332
333 buffer->pages = kmalloc_array(pagecount, sizeof(*buffer->pages), GFP_KERNEL);
334 if (!buffer->pages) {
335 ret = -ENOMEM;
336 goto free_cma;
337 }
338
339 for (pg = 0; pg < pagecount; pg++)
340 buffer->pages[pg] = &cma_pages[pg];
341
342 buffer->cma_pages = cma_pages;
343 buffer->heap = cma_heap;
344 buffer->pagecount = pagecount;
345
346 /* create the dmabuf */
347 exp_info.exp_name = dma_heap_get_name(heap);
348 exp_info.ops = &cma_heap_buf_ops;
349 exp_info.size = buffer->len;
350 exp_info.flags = fd_flags;
351 exp_info.priv = buffer;
352 dmabuf = dma_buf_export(&exp_info);
353 if (IS_ERR(dmabuf)) {
354 ret = PTR_ERR(dmabuf);
355 goto free_pages;
356 }
357 return dmabuf;
358
359 free_pages:
360 kfree(buffer->pages);
361 free_cma:
362 cma_release(cma_heap->cma, cma_pages, pagecount);
363 free_buffer:
364 kfree(buffer);
365
366 return ERR_PTR(ret);
367 }
368
369 static const struct dma_heap_ops cma_heap_ops = {
370 .allocate = cma_heap_allocate,
371 };
372
__add_cma_heap(struct cma * cma,const char * name)373 static int __init __add_cma_heap(struct cma *cma, const char *name)
374 {
375 struct dma_heap_export_info exp_info;
376 struct cma_heap *cma_heap;
377
378 cma_heap = kzalloc(sizeof(*cma_heap), GFP_KERNEL);
379 if (!cma_heap)
380 return -ENOMEM;
381 cma_heap->cma = cma;
382
383 exp_info.name = name;
384 exp_info.ops = &cma_heap_ops;
385 exp_info.priv = cma_heap;
386
387 cma_heap->heap = dma_heap_add(&exp_info);
388 if (IS_ERR(cma_heap->heap)) {
389 int ret = PTR_ERR(cma_heap->heap);
390
391 kfree(cma_heap);
392 return ret;
393 }
394
395 return 0;
396 }
397
add_default_cma_heap(void)398 static int __init add_default_cma_heap(void)
399 {
400 struct cma *default_cma = dev_get_cma_area(NULL);
401 const char *legacy_cma_name;
402 int ret;
403
404 if (!default_cma)
405 return 0;
406
407 ret = __add_cma_heap(default_cma, DEFAULT_CMA_NAME);
408 if (ret)
409 return ret;
410
411 if (IS_ENABLED(CONFIG_DMABUF_HEAPS_CMA_LEGACY)) {
412 legacy_cma_name = cma_get_name(default_cma);
413 if (!strcmp(legacy_cma_name, DEFAULT_CMA_NAME)) {
414 pr_warn("legacy name and default name are the same, skipping legacy heap\n");
415 return 0;
416 }
417
418 ret = __add_cma_heap(default_cma, legacy_cma_name);
419 if (ret)
420 pr_warn("failed to add legacy heap: %pe\n",
421 ERR_PTR(ret));
422 }
423
424 return 0;
425 }
426 module_init(add_default_cma_heap);
427 MODULE_DESCRIPTION("DMA-BUF CMA Heap");
428