1 // SPDX-License-Identifier: GPL-2.0
2
3 #include "messages.h"
4 #include "ctree.h"
5 #include "delalloc-space.h"
6 #include "block-rsv.h"
7 #include "btrfs_inode.h"
8 #include "space-info.h"
9 #include "qgroup.h"
10 #include "fs.h"
11
12 /*
13 * HOW DOES THIS WORK
14 *
15 * There are two stages to data reservations, one for data and one for metadata
16 * to handle the new extents and checksums generated by writing data.
17 *
18 *
19 * DATA RESERVATION
20 * The general flow of the data reservation is as follows
21 *
22 * -> Reserve
23 * We call into btrfs_reserve_data_bytes() for the user request bytes that
24 * they wish to write. We make this reservation and add it to
25 * space_info->bytes_may_use. We set EXTENT_DELALLOC on the inode io_tree
26 * for the range and carry on if this is buffered, or follow up trying to
27 * make a real allocation if we are pre-allocating or doing O_DIRECT.
28 *
29 * -> Use
30 * At writepages()/prealloc/O_DIRECT time we will call into
31 * btrfs_reserve_extent() for some part or all of this range of bytes. We
32 * will make the allocation and subtract space_info->bytes_may_use by the
33 * original requested length and increase the space_info->bytes_reserved by
34 * the allocated length. This distinction is important because compression
35 * may allocate a smaller on disk extent than we previously reserved.
36 *
37 * -> Allocation
38 * finish_ordered_io() will insert the new file extent item for this range,
39 * and then add a delayed ref update for the extent tree. Once that delayed
40 * ref is written the extent size is subtracted from
41 * space_info->bytes_reserved and added to space_info->bytes_used.
42 *
43 * Error handling
44 *
45 * -> By the reservation maker
46 * This is the simplest case, we haven't completed our operation and we know
47 * how much we reserved, we can simply call
48 * btrfs_free_reserved_data_space*() and it will be removed from
49 * space_info->bytes_may_use.
50 *
51 * -> After the reservation has been made, but before cow_file_range()
52 * This is specifically for the delalloc case. You must clear
53 * EXTENT_DELALLOC with the EXTENT_CLEAR_DATA_RESV bit, and the range will
54 * be subtracted from space_info->bytes_may_use.
55 *
56 * METADATA RESERVATION
57 * The general metadata reservation lifetimes are discussed elsewhere, this
58 * will just focus on how it is used for delalloc space.
59 *
60 * We keep track of two things on a per inode bases
61 *
62 * ->outstanding_extents
63 * This is the number of file extent items we'll need to handle all of the
64 * outstanding DELALLOC space we have in this inode. We limit the maximum
65 * size of an extent, so a large contiguous dirty area may require more than
66 * one outstanding_extent, which is why count_max_extents() is used to
67 * determine how many outstanding_extents get added.
68 *
69 * ->csum_bytes
70 * This is essentially how many dirty bytes we have for this inode, so we
71 * can calculate the number of checksum items we would have to add in order
72 * to checksum our outstanding data.
73 *
74 * We keep a per-inode block_rsv in order to make it easier to keep track of
75 * our reservation. We use btrfs_calculate_inode_block_rsv_size() to
76 * calculate the current theoretical maximum reservation we would need for the
77 * metadata for this inode. We call this and then adjust our reservation as
78 * necessary, either by attempting to reserve more space, or freeing up excess
79 * space.
80 *
81 * OUTSTANDING_EXTENTS HANDLING
82 *
83 * ->outstanding_extents is used for keeping track of how many extents we will
84 * need to use for this inode, and it will fluctuate depending on where you are
85 * in the life cycle of the dirty data. Consider the following normal case for
86 * a completely clean inode, with a num_bytes < our maximum allowed extent size
87 *
88 * -> reserve
89 * ->outstanding_extents += 1 (current value is 1)
90 *
91 * -> set_delalloc
92 * ->outstanding_extents += 1 (current value is 2)
93 *
94 * -> btrfs_delalloc_release_extents()
95 * ->outstanding_extents -= 1 (current value is 1)
96 *
97 * We must call this once we are done, as we hold our reservation for the
98 * duration of our operation, and then assume set_delalloc will update the
99 * counter appropriately.
100 *
101 * -> add ordered extent
102 * ->outstanding_extents += 1 (current value is 2)
103 *
104 * -> btrfs_clear_delalloc_extent
105 * ->outstanding_extents -= 1 (current value is 1)
106 *
107 * -> finish_ordered_io/btrfs_remove_ordered_extent
108 * ->outstanding_extents -= 1 (current value is 0)
109 *
110 * Each stage is responsible for their own accounting of the extent, thus
111 * making error handling and cleanup easier.
112 */
113
data_sinfo_for_inode(const struct btrfs_inode * inode)114 static inline struct btrfs_space_info *data_sinfo_for_inode(const struct btrfs_inode *inode)
115 {
116 struct btrfs_fs_info *fs_info = inode->root->fs_info;
117
118 if (btrfs_is_zoned(fs_info) && btrfs_is_data_reloc_root(inode->root)) {
119 ASSERT(fs_info->data_sinfo->sub_group[0]->subgroup_id ==
120 BTRFS_SUB_GROUP_DATA_RELOC);
121 return fs_info->data_sinfo->sub_group[0];
122 }
123 return fs_info->data_sinfo;
124 }
125
btrfs_alloc_data_chunk_ondemand(const struct btrfs_inode * inode,u64 bytes)126 int btrfs_alloc_data_chunk_ondemand(const struct btrfs_inode *inode, u64 bytes)
127 {
128 struct btrfs_root *root = inode->root;
129 struct btrfs_fs_info *fs_info = root->fs_info;
130 enum btrfs_reserve_flush_enum flush = BTRFS_RESERVE_FLUSH_DATA;
131
132 /* Make sure bytes are sectorsize aligned */
133 bytes = ALIGN(bytes, fs_info->sectorsize);
134
135 if (btrfs_is_free_space_inode(inode))
136 flush = BTRFS_RESERVE_FLUSH_FREE_SPACE_INODE;
137
138 return btrfs_reserve_data_bytes(data_sinfo_for_inode(inode), bytes, flush);
139 }
140
btrfs_check_data_free_space(struct btrfs_inode * inode,struct extent_changeset ** reserved,u64 start,u64 len,bool noflush)141 int btrfs_check_data_free_space(struct btrfs_inode *inode,
142 struct extent_changeset **reserved, u64 start,
143 u64 len, bool noflush)
144 {
145 struct btrfs_fs_info *fs_info = inode->root->fs_info;
146 enum btrfs_reserve_flush_enum flush = BTRFS_RESERVE_FLUSH_DATA;
147 int ret;
148
149 /* align the range */
150 len = round_up(start + len, fs_info->sectorsize) -
151 round_down(start, fs_info->sectorsize);
152 start = round_down(start, fs_info->sectorsize);
153
154 if (noflush)
155 flush = BTRFS_RESERVE_NO_FLUSH;
156 else if (btrfs_is_free_space_inode(inode))
157 flush = BTRFS_RESERVE_FLUSH_FREE_SPACE_INODE;
158
159 ret = btrfs_reserve_data_bytes(data_sinfo_for_inode(inode), len, flush);
160 if (ret < 0)
161 return ret;
162
163 /* Use new btrfs_qgroup_reserve_data to reserve precious data space. */
164 ret = btrfs_qgroup_reserve_data(inode, reserved, start, len);
165 if (ret < 0) {
166 btrfs_free_reserved_data_space_noquota(inode, len);
167 extent_changeset_free(*reserved);
168 *reserved = NULL;
169 } else {
170 ret = 0;
171 }
172 return ret;
173 }
174
175 /*
176 * Called if we need to clear a data reservation for this inode
177 * Normally in a error case.
178 *
179 * This one will *NOT* use accurate qgroup reserved space API, just for case
180 * which we can't sleep and is sure it won't affect qgroup reserved space.
181 * Like clear_bit_hook().
182 */
btrfs_free_reserved_data_space_noquota(struct btrfs_inode * inode,u64 len)183 void btrfs_free_reserved_data_space_noquota(struct btrfs_inode *inode, u64 len)
184 {
185 struct btrfs_fs_info *fs_info = inode->root->fs_info;
186
187 ASSERT(IS_ALIGNED(len, fs_info->sectorsize));
188
189 btrfs_space_info_free_bytes_may_use(data_sinfo_for_inode(inode), len);
190 }
191
192 /*
193 * Called if we need to clear a data reservation for this inode
194 * Normally in a error case.
195 *
196 * This one will handle the per-inode data rsv map for accurate reserved
197 * space framework.
198 */
btrfs_free_reserved_data_space(struct btrfs_inode * inode,struct extent_changeset * reserved,u64 start,u64 len)199 void btrfs_free_reserved_data_space(struct btrfs_inode *inode,
200 struct extent_changeset *reserved, u64 start, u64 len)
201 {
202 struct btrfs_fs_info *fs_info = inode->root->fs_info;
203
204 /* Make sure the range is aligned to sectorsize */
205 len = round_up(start + len, fs_info->sectorsize) -
206 round_down(start, fs_info->sectorsize);
207 start = round_down(start, fs_info->sectorsize);
208
209 btrfs_free_reserved_data_space_noquota(inode, len);
210 btrfs_qgroup_free_data(inode, reserved, start, len, NULL);
211 }
212
213 /*
214 * Release any excessive reservations for an inode.
215 *
216 * @inode: the inode we need to release from
217 * @qgroup_free: free or convert qgroup meta. Unlike normal operation, qgroup
218 * meta reservation needs to know if we are freeing qgroup
219 * reservation or just converting it into per-trans. Normally
220 * @qgroup_free is true for error handling, and false for normal
221 * release.
222 *
223 * This is the same as btrfs_block_rsv_release, except that it handles the
224 * tracepoint for the reservation.
225 */
btrfs_inode_rsv_release(struct btrfs_inode * inode,bool qgroup_free)226 static void btrfs_inode_rsv_release(struct btrfs_inode *inode, bool qgroup_free)
227 {
228 struct btrfs_fs_info *fs_info = inode->root->fs_info;
229 struct btrfs_block_rsv *block_rsv = &inode->block_rsv;
230 u64 released = 0;
231 u64 qgroup_to_release = 0;
232
233 /*
234 * Since we statically set the block_rsv->size we just want to say we
235 * are releasing 0 bytes, and then we'll just get the reservation over
236 * the size free'd.
237 */
238 released = btrfs_block_rsv_release(fs_info, block_rsv, 0,
239 &qgroup_to_release);
240 if (released > 0)
241 trace_btrfs_space_reservation(fs_info, "delalloc",
242 btrfs_ino(inode), released, 0);
243 if (qgroup_free)
244 btrfs_qgroup_free_meta_prealloc(inode->root, qgroup_to_release);
245 else
246 btrfs_qgroup_convert_reserved_meta(inode->root,
247 qgroup_to_release);
248 }
249
btrfs_calculate_inode_block_rsv_size(struct btrfs_fs_info * fs_info,struct btrfs_inode * inode)250 static void btrfs_calculate_inode_block_rsv_size(struct btrfs_fs_info *fs_info,
251 struct btrfs_inode *inode)
252 {
253 struct btrfs_block_rsv *block_rsv = &inode->block_rsv;
254 u64 reserve_size = 0;
255 u64 qgroup_rsv_size = 0;
256 unsigned outstanding_extents;
257
258 lockdep_assert_held(&inode->lock);
259 outstanding_extents = inode->outstanding_extents;
260
261 /*
262 * Insert size for the number of outstanding extents, 1 normal size for
263 * updating the inode.
264 */
265 if (outstanding_extents) {
266 reserve_size = btrfs_calc_insert_metadata_size(fs_info,
267 outstanding_extents);
268 reserve_size += btrfs_calc_metadata_size(fs_info, 1);
269 }
270 if (!(inode->flags & BTRFS_INODE_NODATASUM)) {
271 u64 csum_leaves;
272
273 csum_leaves = btrfs_csum_bytes_to_leaves(fs_info, inode->csum_bytes);
274 reserve_size += btrfs_calc_insert_metadata_size(fs_info, csum_leaves);
275 }
276 /*
277 * For qgroup rsv, the calculation is very simple:
278 * account one nodesize for each outstanding extent
279 *
280 * This is overestimating in most cases.
281 */
282 qgroup_rsv_size = (u64)outstanding_extents * fs_info->nodesize;
283
284 spin_lock(&block_rsv->lock);
285 block_rsv->size = reserve_size;
286 block_rsv->qgroup_rsv_size = qgroup_rsv_size;
287 spin_unlock(&block_rsv->lock);
288 }
289
calc_inode_reservations(struct btrfs_inode * inode,u64 num_bytes,u64 disk_num_bytes,u64 * meta_reserve,u64 * qgroup_reserve)290 static void calc_inode_reservations(struct btrfs_inode *inode,
291 u64 num_bytes, u64 disk_num_bytes,
292 u64 *meta_reserve, u64 *qgroup_reserve)
293 {
294 struct btrfs_fs_info *fs_info = inode->root->fs_info;
295 u64 nr_extents = count_max_extents(fs_info, num_bytes);
296 u64 csum_leaves;
297 u64 inode_update = btrfs_calc_metadata_size(fs_info, 1);
298
299 if (inode->flags & BTRFS_INODE_NODATASUM)
300 csum_leaves = 0;
301 else
302 csum_leaves = btrfs_csum_bytes_to_leaves(fs_info, disk_num_bytes);
303
304 *meta_reserve = btrfs_calc_insert_metadata_size(fs_info,
305 nr_extents + csum_leaves);
306
307 /*
308 * finish_ordered_io has to update the inode, so add the space required
309 * for an inode update.
310 */
311 *meta_reserve += inode_update;
312 *qgroup_reserve = nr_extents * fs_info->nodesize;
313 }
314
btrfs_delalloc_reserve_metadata(struct btrfs_inode * inode,u64 num_bytes,u64 disk_num_bytes,bool noflush)315 int btrfs_delalloc_reserve_metadata(struct btrfs_inode *inode, u64 num_bytes,
316 u64 disk_num_bytes, bool noflush)
317 {
318 struct btrfs_root *root = inode->root;
319 struct btrfs_fs_info *fs_info = root->fs_info;
320 struct btrfs_block_rsv *block_rsv = &inode->block_rsv;
321 u64 meta_reserve, qgroup_reserve;
322 unsigned nr_extents;
323 enum btrfs_reserve_flush_enum flush = BTRFS_RESERVE_FLUSH_ALL;
324 int ret = 0;
325
326 /*
327 * If we are a free space inode we need to not flush since we will be in
328 * the middle of a transaction commit. We also don't need the delalloc
329 * mutex since we won't race with anybody. We need this mostly to make
330 * lockdep shut its filthy mouth.
331 *
332 * If we have a transaction open (can happen if we call truncate_block
333 * from truncate), then we need FLUSH_LIMIT so we don't deadlock.
334 */
335 if (noflush || btrfs_is_free_space_inode(inode)) {
336 flush = BTRFS_RESERVE_NO_FLUSH;
337 } else {
338 if (current->journal_info)
339 flush = BTRFS_RESERVE_FLUSH_LIMIT;
340 }
341
342 num_bytes = ALIGN(num_bytes, fs_info->sectorsize);
343 disk_num_bytes = ALIGN(disk_num_bytes, fs_info->sectorsize);
344
345 /*
346 * We always want to do it this way, every other way is wrong and ends
347 * in tears. Pre-reserving the amount we are going to add will always
348 * be the right way, because otherwise if we have enough parallelism we
349 * could end up with thousands of inodes all holding little bits of
350 * reservations they were able to make previously and the only way to
351 * reclaim that space is to ENOSPC out the operations and clear
352 * everything out and try again, which is bad. This way we just
353 * over-reserve slightly, and clean up the mess when we are done.
354 */
355 calc_inode_reservations(inode, num_bytes, disk_num_bytes,
356 &meta_reserve, &qgroup_reserve);
357 ret = btrfs_qgroup_reserve_meta_prealloc(root, qgroup_reserve, true,
358 noflush);
359 if (ret)
360 return ret;
361 ret = btrfs_reserve_metadata_bytes(fs_info, block_rsv->space_info,
362 meta_reserve, flush);
363 if (ret) {
364 btrfs_qgroup_free_meta_prealloc(root, qgroup_reserve);
365 return ret;
366 }
367
368 /*
369 * Now we need to update our outstanding extents and csum bytes _first_
370 * and then add the reservation to the block_rsv. This keeps us from
371 * racing with an ordered completion or some such that would think it
372 * needs to free the reservation we just made.
373 */
374 nr_extents = count_max_extents(fs_info, num_bytes);
375 spin_lock(&inode->lock);
376 btrfs_mod_outstanding_extents(inode, nr_extents);
377 if (!(inode->flags & BTRFS_INODE_NODATASUM))
378 inode->csum_bytes += disk_num_bytes;
379 btrfs_calculate_inode_block_rsv_size(fs_info, inode);
380 spin_unlock(&inode->lock);
381
382 /* Now we can safely add our space to our block rsv */
383 btrfs_block_rsv_add_bytes(block_rsv, meta_reserve, false);
384 trace_btrfs_space_reservation(root->fs_info, "delalloc",
385 btrfs_ino(inode), meta_reserve, 1);
386
387 spin_lock(&block_rsv->lock);
388 block_rsv->qgroup_rsv_reserved += qgroup_reserve;
389 spin_unlock(&block_rsv->lock);
390
391 return 0;
392 }
393
394 /*
395 * Release a metadata reservation for an inode.
396 *
397 * @inode: the inode to release the reservation for.
398 * @num_bytes: the number of bytes we are releasing.
399 * @qgroup_free: free qgroup reservation or convert it to per-trans reservation
400 *
401 * This will release the metadata reservation for an inode. This can be called
402 * once we complete IO for a given set of bytes to release their metadata
403 * reservations, or on error for the same reason.
404 */
btrfs_delalloc_release_metadata(struct btrfs_inode * inode,u64 num_bytes,bool qgroup_free)405 void btrfs_delalloc_release_metadata(struct btrfs_inode *inode, u64 num_bytes,
406 bool qgroup_free)
407 {
408 struct btrfs_fs_info *fs_info = inode->root->fs_info;
409
410 num_bytes = ALIGN(num_bytes, fs_info->sectorsize);
411 spin_lock(&inode->lock);
412 if (!(inode->flags & BTRFS_INODE_NODATASUM))
413 inode->csum_bytes -= num_bytes;
414 btrfs_calculate_inode_block_rsv_size(fs_info, inode);
415 spin_unlock(&inode->lock);
416
417 if (btrfs_is_testing(fs_info))
418 return;
419
420 btrfs_inode_rsv_release(inode, qgroup_free);
421 }
422
423 /*
424 * Release our outstanding_extents for an inode.
425 *
426 * @inode: the inode to balance the reservation for.
427 * @num_bytes: the number of bytes we originally reserved with
428 *
429 * When we reserve space we increase outstanding_extents for the extents we may
430 * add. Once we've set the range as delalloc or created our ordered extents we
431 * have outstanding_extents to track the real usage, so we use this to free our
432 * temporarily tracked outstanding_extents. This _must_ be used in conjunction
433 * with btrfs_delalloc_reserve_metadata.
434 */
btrfs_delalloc_release_extents(struct btrfs_inode * inode,u64 num_bytes)435 void btrfs_delalloc_release_extents(struct btrfs_inode *inode, u64 num_bytes)
436 {
437 struct btrfs_fs_info *fs_info = inode->root->fs_info;
438 unsigned num_extents;
439
440 spin_lock(&inode->lock);
441 num_extents = count_max_extents(fs_info, num_bytes);
442 btrfs_mod_outstanding_extents(inode, -num_extents);
443 btrfs_calculate_inode_block_rsv_size(fs_info, inode);
444 spin_unlock(&inode->lock);
445
446 if (btrfs_is_testing(fs_info))
447 return;
448
449 btrfs_inode_rsv_release(inode, true);
450 }
451
452 /* Shrink a previously reserved extent to a new length. */
btrfs_delalloc_shrink_extents(struct btrfs_inode * inode,u64 reserved_len,u64 new_len)453 void btrfs_delalloc_shrink_extents(struct btrfs_inode *inode, u64 reserved_len, u64 new_len)
454 {
455 struct btrfs_fs_info *fs_info = inode->root->fs_info;
456 const u32 reserved_num_extents = count_max_extents(fs_info, reserved_len);
457 const u32 new_num_extents = count_max_extents(fs_info, new_len);
458 const int diff_num_extents = new_num_extents - reserved_num_extents;
459
460 ASSERT(new_len <= reserved_len);
461 if (new_num_extents == reserved_num_extents)
462 return;
463
464 spin_lock(&inode->lock);
465 btrfs_mod_outstanding_extents(inode, diff_num_extents);
466 btrfs_calculate_inode_block_rsv_size(fs_info, inode);
467 spin_unlock(&inode->lock);
468
469 if (btrfs_is_testing(fs_info))
470 return;
471
472 btrfs_inode_rsv_release(inode, true);
473 }
474
475 /*
476 * Reserve data and metadata space for delalloc
477 *
478 * @inode: inode we're writing to
479 * @start: start range we are writing to
480 * @len: how long the range we are writing to
481 * @reserved: mandatory parameter, record actually reserved qgroup ranges of
482 * current reservation.
483 *
484 * This will do the following things
485 *
486 * - reserve space in data space info for num bytes and reserve precious
487 * corresponding qgroup space
488 * (Done in check_data_free_space)
489 *
490 * - reserve space for metadata space, based on the number of outstanding
491 * extents and how much csums will be needed also reserve metadata space in a
492 * per root over-reserve method.
493 * - add to the inodes->delalloc_bytes
494 * - add it to the fs_info's delalloc inodes list.
495 * (Above 3 all done in delalloc_reserve_metadata)
496 *
497 * Return 0 for success
498 * Return <0 for error(-ENOSPC or -EDQUOT)
499 */
btrfs_delalloc_reserve_space(struct btrfs_inode * inode,struct extent_changeset ** reserved,u64 start,u64 len)500 int btrfs_delalloc_reserve_space(struct btrfs_inode *inode,
501 struct extent_changeset **reserved, u64 start, u64 len)
502 {
503 int ret;
504
505 ret = btrfs_check_data_free_space(inode, reserved, start, len, false);
506 if (ret < 0)
507 return ret;
508 ret = btrfs_delalloc_reserve_metadata(inode, len, len, false);
509 if (ret < 0) {
510 btrfs_free_reserved_data_space(inode, *reserved, start, len);
511 extent_changeset_free(*reserved);
512 *reserved = NULL;
513 }
514 return ret;
515 }
516
517 /*
518 * Release data and metadata space for delalloc
519 *
520 * @inode: inode we're releasing space for
521 * @reserved: list of changed/reserved ranges
522 * @start: start position of the space already reserved
523 * @len: length of the space already reserved
524 * @qgroup_free: should qgroup reserved-space also be freed
525 *
526 * Release the metadata space that was not used and will decrement
527 * ->delalloc_bytes and remove it from the fs_info->delalloc_inodes list if
528 * there are no delalloc bytes left. Also it will handle the qgroup reserved
529 * space.
530 */
btrfs_delalloc_release_space(struct btrfs_inode * inode,struct extent_changeset * reserved,u64 start,u64 len,bool qgroup_free)531 void btrfs_delalloc_release_space(struct btrfs_inode *inode,
532 struct extent_changeset *reserved,
533 u64 start, u64 len, bool qgroup_free)
534 {
535 btrfs_delalloc_release_metadata(inode, len, qgroup_free);
536 btrfs_free_reserved_data_space(inode, reserved, start, len);
537 }
538