1 /* SPDX-License-Identifier: GPL-2.0-or-later */
2 /* include/asm-generic/tlb.h
3 *
4 * Generic TLB shootdown code
5 *
6 * Copyright 2001 Red Hat, Inc.
7 * Based on code from mm/memory.c Copyright Linus Torvalds and others.
8 *
9 * Copyright 2011 Red Hat, Inc., Peter Zijlstra
10 */
11 #ifndef _ASM_GENERIC__TLB_H
12 #define _ASM_GENERIC__TLB_H
13
14 #include <linux/mmu_notifier.h>
15 #include <linux/swap.h>
16 #include <linux/hugetlb_inline.h>
17 #include <asm/tlbflush.h>
18 #include <asm/cacheflush.h>
19
20 /*
21 * Blindly accessing user memory from NMI context can be dangerous
22 * if we're in the middle of switching the current user task or switching
23 * the loaded mm.
24 */
25 #ifndef nmi_uaccess_okay
26 # define nmi_uaccess_okay() true
27 #endif
28
29 #ifdef CONFIG_MMU
30
31 /*
32 * Generic MMU-gather implementation.
33 *
34 * The mmu_gather data structure is used by the mm code to implement the
35 * correct and efficient ordering of freeing pages and TLB invalidations.
36 *
37 * This correct ordering is:
38 *
39 * 1) unhook page
40 * 2) TLB invalidate page
41 * 3) free page
42 *
43 * That is, we must never free a page before we have ensured there are no live
44 * translations left to it. Otherwise it might be possible to observe (or
45 * worse, change) the page content after it has been reused.
46 *
47 * The mmu_gather API consists of:
48 *
49 * - tlb_gather_mmu() / tlb_gather_mmu_fullmm() / tlb_finish_mmu()
50 *
51 * start and finish a mmu_gather
52 *
53 * Finish in particular will issue a (final) TLB invalidate and free
54 * all (remaining) queued pages.
55 *
56 * - tlb_start_vma() / tlb_end_vma(); marks the start / end of a VMA
57 *
58 * Defaults to flushing at tlb_end_vma() to reset the range; helps when
59 * there's large holes between the VMAs.
60 *
61 * - tlb_free_vmas()
62 *
63 * tlb_free_vmas() marks the start of unlinking of one or more vmas
64 * and freeing page-tables.
65 *
66 * - tlb_remove_table()
67 *
68 * tlb_remove_table() is the basic primitive to free page-table directories
69 * (__p*_free_tlb()). In it's most primitive form it is an alias for
70 * tlb_remove_page() below, for when page directories are pages and have no
71 * additional constraints.
72 *
73 * See also MMU_GATHER_TABLE_FREE and MMU_GATHER_RCU_TABLE_FREE.
74 *
75 * - tlb_remove_page() / tlb_remove_page_size()
76 * - __tlb_remove_folio_pages() / __tlb_remove_page_size()
77 * - __tlb_remove_folio_pages_size()
78 *
79 * __tlb_remove_folio_pages_size() is the basic primitive that queues pages
80 * for freeing. It will return a boolean indicating if the queue is (now)
81 * full and a call to tlb_flush_mmu() is required.
82 *
83 * tlb_remove_page() and tlb_remove_page_size() imply the call to
84 * tlb_flush_mmu() when required and has no return value.
85 *
86 * __tlb_remove_folio_pages() is similar to __tlb_remove_page_size(),
87 * however, instead of removing a single page, assume PAGE_SIZE and remove
88 * the given number of consecutive pages that are all part of the
89 * same (large) folio.
90 *
91 * - tlb_change_page_size()
92 *
93 * call before __tlb_remove_page*() to set the current page-size; implies a
94 * possible tlb_flush_mmu() call.
95 *
96 * - tlb_flush_mmu() / tlb_flush_mmu_tlbonly()
97 *
98 * tlb_flush_mmu_tlbonly() - does the TLB invalidate (and resets
99 * related state, like the range)
100 *
101 * tlb_flush_mmu() - in addition to the above TLB invalidate, also frees
102 * whatever pages are still batched.
103 *
104 * - mmu_gather::fullmm
105 *
106 * A flag set by tlb_gather_mmu_fullmm() to indicate we're going to free
107 * the entire mm; this allows a number of optimizations.
108 *
109 * - We can ignore tlb_{start,end}_vma(); because we don't
110 * care about ranges. Everything will be shot down.
111 *
112 * - (RISC) architectures that use ASIDs can cycle to a new ASID
113 * and delay the invalidation until ASID space runs out.
114 *
115 * - mmu_gather::need_flush_all
116 *
117 * A flag that can be set by the arch code if it wants to force
118 * flush the entire TLB irrespective of the range. For instance
119 * x86-PAE needs this when changing top-level entries.
120 *
121 * And allows the architecture to provide and implement tlb_flush():
122 *
123 * tlb_flush() may, in addition to the above mentioned mmu_gather fields, make
124 * use of:
125 *
126 * - mmu_gather::start / mmu_gather::end
127 *
128 * which provides the range that needs to be flushed to cover the pages to
129 * be freed.
130 *
131 * - mmu_gather::freed_tables
132 *
133 * set when we freed page table pages
134 *
135 * - tlb_get_unmap_shift() / tlb_get_unmap_size()
136 *
137 * returns the smallest TLB entry size unmapped in this range.
138 *
139 * If an architecture does not provide tlb_flush() a default implementation
140 * based on flush_tlb_range() will be used, unless MMU_GATHER_NO_RANGE is
141 * specified, in which case we'll default to flush_tlb_mm().
142 *
143 * Additionally there are a few opt-in features:
144 *
145 * MMU_GATHER_PAGE_SIZE
146 *
147 * This ensures we call tlb_flush() every time tlb_change_page_size() actually
148 * changes the size and provides mmu_gather::page_size to tlb_flush().
149 *
150 * This might be useful if your architecture has size specific TLB
151 * invalidation instructions.
152 *
153 * MMU_GATHER_TABLE_FREE
154 *
155 * This provides tlb_remove_table(), to be used instead of tlb_remove_page()
156 * for page directores (__p*_free_tlb()).
157 *
158 * Useful if your architecture has non-page page directories.
159 *
160 * When used, an architecture is expected to provide __tlb_remove_table() or
161 * use the generic __tlb_remove_table(), which does the actual freeing of these
162 * pages.
163 *
164 * MMU_GATHER_RCU_TABLE_FREE
165 *
166 * Like MMU_GATHER_TABLE_FREE, and adds semi-RCU semantics to the free (see
167 * comment below).
168 *
169 * Useful if your architecture doesn't use IPIs for remote TLB invalidates
170 * and therefore doesn't naturally serialize with software page-table walkers.
171 *
172 * MMU_GATHER_NO_FLUSH_CACHE
173 *
174 * Indicates the architecture has flush_cache_range() but it needs *NOT* be called
175 * before unmapping a VMA.
176 *
177 * NOTE: strictly speaking we shouldn't have this knob and instead rely on
178 * flush_cache_range() being a NOP, except Sparc64 seems to be
179 * different here.
180 *
181 * MMU_GATHER_MERGE_VMAS
182 *
183 * Indicates the architecture wants to merge ranges over VMAs; typical when
184 * multiple range invalidates are more expensive than a full invalidate.
185 *
186 * MMU_GATHER_NO_RANGE
187 *
188 * Use this if your architecture lacks an efficient flush_tlb_range(). This
189 * option implies MMU_GATHER_MERGE_VMAS above.
190 *
191 * MMU_GATHER_NO_GATHER
192 *
193 * If the option is set the mmu_gather will not track individual pages for
194 * delayed page free anymore. A platform that enables the option needs to
195 * provide its own implementation of the __tlb_remove_page_size() function to
196 * free pages.
197 *
198 * This is useful if your architecture already flushes TLB entries in the
199 * various ptep_get_and_clear() functions.
200 */
201
202 #ifdef CONFIG_MMU_GATHER_TABLE_FREE
203
204 struct mmu_table_batch {
205 #ifdef CONFIG_MMU_GATHER_RCU_TABLE_FREE
206 struct rcu_head rcu;
207 #endif
208 unsigned int nr;
209 void *tables[];
210 };
211
212 #define MAX_TABLE_BATCH \
213 ((PAGE_SIZE - sizeof(struct mmu_table_batch)) / sizeof(void *))
214
215 #ifndef __HAVE_ARCH_TLB_REMOVE_TABLE
__tlb_remove_table(void * table)216 static inline void __tlb_remove_table(void *table)
217 {
218 struct ptdesc *ptdesc = (struct ptdesc *)table;
219
220 pagetable_dtor_free(ptdesc);
221 }
222 #endif
223
224 extern void tlb_remove_table(struct mmu_gather *tlb, void *table);
225
226 #else /* !CONFIG_MMU_GATHER_TABLE_FREE */
227
228 static inline void tlb_remove_page(struct mmu_gather *tlb, struct page *page);
229 /*
230 * Without MMU_GATHER_TABLE_FREE the architecture is assumed to have page based
231 * page directories and we can use the normal page batching to free them.
232 */
tlb_remove_table(struct mmu_gather * tlb,void * table)233 static inline void tlb_remove_table(struct mmu_gather *tlb, void *table)
234 {
235 struct ptdesc *ptdesc = (struct ptdesc *)table;
236
237 pagetable_dtor(ptdesc);
238 tlb_remove_page(tlb, ptdesc_page(ptdesc));
239 }
240 #endif /* CONFIG_MMU_GATHER_TABLE_FREE */
241
242 #ifdef CONFIG_MMU_GATHER_RCU_TABLE_FREE
243 /*
244 * This allows an architecture that does not use the linux page-tables for
245 * hardware to skip the TLBI when freeing page tables.
246 */
247 #ifndef tlb_needs_table_invalidate
248 #define tlb_needs_table_invalidate() (true)
249 #endif
250
251 void tlb_remove_table_sync_one(void);
252
253 #else
254
255 #ifdef tlb_needs_table_invalidate
256 #error tlb_needs_table_invalidate() requires MMU_GATHER_RCU_TABLE_FREE
257 #endif
258
tlb_remove_table_sync_one(void)259 static inline void tlb_remove_table_sync_one(void) { }
260
261 #endif /* CONFIG_MMU_GATHER_RCU_TABLE_FREE */
262
263
264 #ifndef CONFIG_MMU_GATHER_NO_GATHER
265 /*
266 * If we can't allocate a page to make a big batch of page pointers
267 * to work on, then just handle a few from the on-stack structure.
268 */
269 #define MMU_GATHER_BUNDLE 8
270
271 struct mmu_gather_batch {
272 struct mmu_gather_batch *next;
273 unsigned int nr;
274 unsigned int max;
275 struct encoded_page *encoded_pages[];
276 };
277
278 #define MAX_GATHER_BATCH \
279 ((PAGE_SIZE - sizeof(struct mmu_gather_batch)) / sizeof(void *))
280
281 /*
282 * Limit the maximum number of mmu_gather batches to reduce a risk of soft
283 * lockups for non-preemptible kernels on huge machines when a lot of memory
284 * is zapped during unmapping.
285 * 10K pages freed at once should be safe even without a preemption point.
286 */
287 #define MAX_GATHER_BATCH_COUNT (10000UL/MAX_GATHER_BATCH)
288
289 extern bool __tlb_remove_page_size(struct mmu_gather *tlb, struct page *page,
290 bool delay_rmap, int page_size);
291 bool __tlb_remove_folio_pages(struct mmu_gather *tlb, struct page *page,
292 unsigned int nr_pages, bool delay_rmap);
293
294 #ifdef CONFIG_SMP
295 /*
296 * This both sets 'delayed_rmap', and returns true. It would be an inline
297 * function, except we define it before the 'struct mmu_gather'.
298 */
299 #define tlb_delay_rmap(tlb) (((tlb)->delayed_rmap = 1), true)
300 extern void tlb_flush_rmaps(struct mmu_gather *tlb, struct vm_area_struct *vma);
301 #endif
302
303 #endif
304
305 /*
306 * We have a no-op version of the rmap removal that doesn't
307 * delay anything. That is used on S390, which flushes remote
308 * TLBs synchronously, and on UP, which doesn't have any
309 * remote TLBs to flush and is not preemptible due to this
310 * all happening under the page table lock.
311 */
312 #ifndef tlb_delay_rmap
313 #define tlb_delay_rmap(tlb) (false)
tlb_flush_rmaps(struct mmu_gather * tlb,struct vm_area_struct * vma)314 static inline void tlb_flush_rmaps(struct mmu_gather *tlb, struct vm_area_struct *vma) { }
315 #endif
316
317 /*
318 * struct mmu_gather is an opaque type used by the mm code for passing around
319 * any data needed by arch specific code for tlb_remove_page.
320 */
321 struct mmu_gather {
322 struct mm_struct *mm;
323
324 #ifdef CONFIG_MMU_GATHER_TABLE_FREE
325 struct mmu_table_batch *batch;
326 #endif
327
328 unsigned long start;
329 unsigned long end;
330 /*
331 * we are in the middle of an operation to clear
332 * a full mm and can make some optimizations
333 */
334 unsigned int fullmm : 1;
335
336 /*
337 * we have performed an operation which
338 * requires a complete flush of the tlb
339 */
340 unsigned int need_flush_all : 1;
341
342 /*
343 * we have removed page directories
344 */
345 unsigned int freed_tables : 1;
346
347 /*
348 * Do we have pending delayed rmap removals?
349 */
350 unsigned int delayed_rmap : 1;
351
352 /*
353 * at which levels have we cleared entries?
354 */
355 unsigned int cleared_ptes : 1;
356 unsigned int cleared_pmds : 1;
357 unsigned int cleared_puds : 1;
358 unsigned int cleared_p4ds : 1;
359
360 /*
361 * tracks VM_EXEC | VM_HUGETLB in tlb_start_vma
362 */
363 unsigned int vma_exec : 1;
364 unsigned int vma_huge : 1;
365 unsigned int vma_pfn : 1;
366
367 unsigned int batch_count;
368
369 #ifndef CONFIG_MMU_GATHER_NO_GATHER
370 struct mmu_gather_batch *active;
371 struct mmu_gather_batch local;
372 struct page *__pages[MMU_GATHER_BUNDLE];
373
374 #ifdef CONFIG_MMU_GATHER_PAGE_SIZE
375 unsigned int page_size;
376 #endif
377 #endif
378 };
379
380 void tlb_flush_mmu(struct mmu_gather *tlb);
381
__tlb_adjust_range(struct mmu_gather * tlb,unsigned long address,unsigned int range_size)382 static inline void __tlb_adjust_range(struct mmu_gather *tlb,
383 unsigned long address,
384 unsigned int range_size)
385 {
386 tlb->start = min(tlb->start, address);
387 tlb->end = max(tlb->end, address + range_size);
388 }
389
__tlb_reset_range(struct mmu_gather * tlb)390 static inline void __tlb_reset_range(struct mmu_gather *tlb)
391 {
392 if (tlb->fullmm) {
393 tlb->start = tlb->end = ~0;
394 } else {
395 tlb->start = TASK_SIZE;
396 tlb->end = 0;
397 }
398 tlb->freed_tables = 0;
399 tlb->cleared_ptes = 0;
400 tlb->cleared_pmds = 0;
401 tlb->cleared_puds = 0;
402 tlb->cleared_p4ds = 0;
403 /*
404 * Do not reset mmu_gather::vma_* fields here, we do not
405 * call into tlb_start_vma() again to set them if there is an
406 * intermediate flush.
407 */
408 }
409
410 #ifdef CONFIG_MMU_GATHER_NO_RANGE
411
412 #if defined(tlb_flush)
413 #error MMU_GATHER_NO_RANGE relies on default tlb_flush()
414 #endif
415
416 /*
417 * When an architecture does not have efficient means of range flushing TLBs
418 * there is no point in doing intermediate flushes on tlb_end_vma() to keep the
419 * range small. We equally don't have to worry about page granularity or other
420 * things.
421 *
422 * All we need to do is issue a full flush for any !0 range.
423 */
tlb_flush(struct mmu_gather * tlb)424 static inline void tlb_flush(struct mmu_gather *tlb)
425 {
426 if (tlb->end)
427 flush_tlb_mm(tlb->mm);
428 }
429
430 #else /* CONFIG_MMU_GATHER_NO_RANGE */
431
432 #ifndef tlb_flush
433 /*
434 * When an architecture does not provide its own tlb_flush() implementation
435 * but does have a reasonably efficient flush_vma_range() implementation
436 * use that.
437 */
tlb_flush(struct mmu_gather * tlb)438 static inline void tlb_flush(struct mmu_gather *tlb)
439 {
440 if (tlb->fullmm || tlb->need_flush_all) {
441 flush_tlb_mm(tlb->mm);
442 } else if (tlb->end) {
443 struct vm_area_struct vma = {
444 .vm_mm = tlb->mm,
445 .vm_flags = (tlb->vma_exec ? VM_EXEC : 0) |
446 (tlb->vma_huge ? VM_HUGETLB : 0),
447 };
448
449 flush_tlb_range(&vma, tlb->start, tlb->end);
450 }
451 }
452 #endif
453
454 #endif /* CONFIG_MMU_GATHER_NO_RANGE */
455
456 static inline void
tlb_update_vma_flags(struct mmu_gather * tlb,struct vm_area_struct * vma)457 tlb_update_vma_flags(struct mmu_gather *tlb, struct vm_area_struct *vma)
458 {
459 /*
460 * flush_tlb_range() implementations that look at VM_HUGETLB (tile,
461 * mips-4k) flush only large pages.
462 *
463 * flush_tlb_range() implementations that flush I-TLB also flush D-TLB
464 * (tile, xtensa, arm), so it's ok to just add VM_EXEC to an existing
465 * range.
466 *
467 * We rely on tlb_end_vma() to issue a flush, such that when we reset
468 * these values the batch is empty.
469 */
470 tlb->vma_huge = is_vm_hugetlb_page(vma);
471 tlb->vma_exec = !!(vma->vm_flags & VM_EXEC);
472
473 /*
474 * Track if there's at least one VM_PFNMAP/VM_MIXEDMAP vma
475 * in the tracked range, see tlb_free_vmas().
476 */
477 tlb->vma_pfn |= !!(vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP));
478 }
479
tlb_flush_mmu_tlbonly(struct mmu_gather * tlb)480 static inline void tlb_flush_mmu_tlbonly(struct mmu_gather *tlb)
481 {
482 /*
483 * Anything calling __tlb_adjust_range() also sets at least one of
484 * these bits.
485 */
486 if (!(tlb->freed_tables || tlb->cleared_ptes || tlb->cleared_pmds ||
487 tlb->cleared_puds || tlb->cleared_p4ds))
488 return;
489
490 tlb_flush(tlb);
491 __tlb_reset_range(tlb);
492 }
493
tlb_remove_page_size(struct mmu_gather * tlb,struct page * page,int page_size)494 static inline void tlb_remove_page_size(struct mmu_gather *tlb,
495 struct page *page, int page_size)
496 {
497 if (__tlb_remove_page_size(tlb, page, false, page_size))
498 tlb_flush_mmu(tlb);
499 }
500
tlb_remove_page(struct mmu_gather * tlb,struct page * page)501 static inline void tlb_remove_page(struct mmu_gather *tlb, struct page *page)
502 {
503 return tlb_remove_page_size(tlb, page, PAGE_SIZE);
504 }
505
tlb_remove_ptdesc(struct mmu_gather * tlb,struct ptdesc * pt)506 static inline void tlb_remove_ptdesc(struct mmu_gather *tlb, struct ptdesc *pt)
507 {
508 tlb_remove_table(tlb, pt);
509 }
510
tlb_change_page_size(struct mmu_gather * tlb,unsigned int page_size)511 static inline void tlb_change_page_size(struct mmu_gather *tlb,
512 unsigned int page_size)
513 {
514 #ifdef CONFIG_MMU_GATHER_PAGE_SIZE
515 if (tlb->page_size && tlb->page_size != page_size) {
516 if (!tlb->fullmm && !tlb->need_flush_all)
517 tlb_flush_mmu(tlb);
518 }
519
520 tlb->page_size = page_size;
521 #endif
522 }
523
tlb_get_unmap_shift(struct mmu_gather * tlb)524 static inline unsigned long tlb_get_unmap_shift(struct mmu_gather *tlb)
525 {
526 if (tlb->cleared_ptes)
527 return PAGE_SHIFT;
528 if (tlb->cleared_pmds)
529 return PMD_SHIFT;
530 if (tlb->cleared_puds)
531 return PUD_SHIFT;
532 if (tlb->cleared_p4ds)
533 return P4D_SHIFT;
534
535 return PAGE_SHIFT;
536 }
537
tlb_get_unmap_size(struct mmu_gather * tlb)538 static inline unsigned long tlb_get_unmap_size(struct mmu_gather *tlb)
539 {
540 return 1UL << tlb_get_unmap_shift(tlb);
541 }
542
543 /*
544 * In the case of tlb vma handling, we can optimise these away in the
545 * case where we're doing a full MM flush. When we're doing a munmap,
546 * the vmas are adjusted to only cover the region to be torn down.
547 */
tlb_start_vma(struct mmu_gather * tlb,struct vm_area_struct * vma)548 static inline void tlb_start_vma(struct mmu_gather *tlb, struct vm_area_struct *vma)
549 {
550 if (tlb->fullmm)
551 return;
552
553 tlb_update_vma_flags(tlb, vma);
554 #ifndef CONFIG_MMU_GATHER_NO_FLUSH_CACHE
555 flush_cache_range(vma, vma->vm_start, vma->vm_end);
556 #endif
557 }
558
tlb_end_vma(struct mmu_gather * tlb,struct vm_area_struct * vma)559 static inline void tlb_end_vma(struct mmu_gather *tlb, struct vm_area_struct *vma)
560 {
561 if (tlb->fullmm || IS_ENABLED(CONFIG_MMU_GATHER_MERGE_VMAS))
562 return;
563
564 /*
565 * Do a TLB flush and reset the range at VMA boundaries; this avoids
566 * the ranges growing with the unused space between consecutive VMAs,
567 * but also the mmu_gather::vma_* flags from tlb_start_vma() rely on
568 * this.
569 */
570 tlb_flush_mmu_tlbonly(tlb);
571 }
572
tlb_free_vmas(struct mmu_gather * tlb)573 static inline void tlb_free_vmas(struct mmu_gather *tlb)
574 {
575 if (tlb->fullmm)
576 return;
577
578 /*
579 * VM_PFNMAP is more fragile because the core mm will not track the
580 * page mapcount -- there might not be page-frames for these PFNs
581 * after all.
582 *
583 * Specifically() there is a race between munmap() and
584 * unmap_mapping_range(), where munmap() will unlink the VMA, such
585 * that unmap_mapping_range() will no longer observe the VMA and
586 * no-op, without observing the TLBI, returning prematurely.
587 *
588 * So if we're about to unlink such a VMA, and we have pending
589 * TLBI for such a vma, flush things now.
590 */
591 if (tlb->vma_pfn)
592 tlb_flush_mmu_tlbonly(tlb);
593 }
594
595 /*
596 * tlb_flush_{pte|pmd|pud|p4d}_range() adjust the tlb->start and tlb->end,
597 * and set corresponding cleared_*.
598 */
tlb_flush_pte_range(struct mmu_gather * tlb,unsigned long address,unsigned long size)599 static inline void tlb_flush_pte_range(struct mmu_gather *tlb,
600 unsigned long address, unsigned long size)
601 {
602 __tlb_adjust_range(tlb, address, size);
603 tlb->cleared_ptes = 1;
604 }
605
tlb_flush_pmd_range(struct mmu_gather * tlb,unsigned long address,unsigned long size)606 static inline void tlb_flush_pmd_range(struct mmu_gather *tlb,
607 unsigned long address, unsigned long size)
608 {
609 __tlb_adjust_range(tlb, address, size);
610 tlb->cleared_pmds = 1;
611 }
612
tlb_flush_pud_range(struct mmu_gather * tlb,unsigned long address,unsigned long size)613 static inline void tlb_flush_pud_range(struct mmu_gather *tlb,
614 unsigned long address, unsigned long size)
615 {
616 __tlb_adjust_range(tlb, address, size);
617 tlb->cleared_puds = 1;
618 }
619
tlb_flush_p4d_range(struct mmu_gather * tlb,unsigned long address,unsigned long size)620 static inline void tlb_flush_p4d_range(struct mmu_gather *tlb,
621 unsigned long address, unsigned long size)
622 {
623 __tlb_adjust_range(tlb, address, size);
624 tlb->cleared_p4ds = 1;
625 }
626
627 #ifndef __tlb_remove_tlb_entry
__tlb_remove_tlb_entry(struct mmu_gather * tlb,pte_t * ptep,unsigned long address)628 static inline void __tlb_remove_tlb_entry(struct mmu_gather *tlb, pte_t *ptep, unsigned long address)
629 {
630 }
631 #endif
632
633 /**
634 * tlb_remove_tlb_entry - remember a pte unmapping for later tlb invalidation.
635 *
636 * Record the fact that pte's were really unmapped by updating the range,
637 * so we can later optimise away the tlb invalidate. This helps when
638 * userspace is unmapping already-unmapped pages, which happens quite a lot.
639 */
640 #define tlb_remove_tlb_entry(tlb, ptep, address) \
641 do { \
642 tlb_flush_pte_range(tlb, address, PAGE_SIZE); \
643 __tlb_remove_tlb_entry(tlb, ptep, address); \
644 } while (0)
645
646 /**
647 * tlb_remove_tlb_entries - remember unmapping of multiple consecutive ptes for
648 * later tlb invalidation.
649 *
650 * Similar to tlb_remove_tlb_entry(), but remember unmapping of multiple
651 * consecutive ptes instead of only a single one.
652 */
tlb_remove_tlb_entries(struct mmu_gather * tlb,pte_t * ptep,unsigned int nr,unsigned long address)653 static inline void tlb_remove_tlb_entries(struct mmu_gather *tlb,
654 pte_t *ptep, unsigned int nr, unsigned long address)
655 {
656 tlb_flush_pte_range(tlb, address, PAGE_SIZE * nr);
657 for (;;) {
658 __tlb_remove_tlb_entry(tlb, ptep, address);
659 if (--nr == 0)
660 break;
661 ptep++;
662 address += PAGE_SIZE;
663 }
664 }
665
666 #define tlb_remove_huge_tlb_entry(h, tlb, ptep, address) \
667 do { \
668 unsigned long _sz = huge_page_size(h); \
669 if (_sz >= P4D_SIZE) \
670 tlb_flush_p4d_range(tlb, address, _sz); \
671 else if (_sz >= PUD_SIZE) \
672 tlb_flush_pud_range(tlb, address, _sz); \
673 else if (_sz >= PMD_SIZE) \
674 tlb_flush_pmd_range(tlb, address, _sz); \
675 else \
676 tlb_flush_pte_range(tlb, address, _sz); \
677 __tlb_remove_tlb_entry(tlb, ptep, address); \
678 } while (0)
679
680 /**
681 * tlb_remove_pmd_tlb_entry - remember a pmd mapping for later tlb invalidation
682 * This is a nop so far, because only x86 needs it.
683 */
684 #ifndef __tlb_remove_pmd_tlb_entry
685 #define __tlb_remove_pmd_tlb_entry(tlb, pmdp, address) do {} while (0)
686 #endif
687
688 #define tlb_remove_pmd_tlb_entry(tlb, pmdp, address) \
689 do { \
690 tlb_flush_pmd_range(tlb, address, HPAGE_PMD_SIZE); \
691 __tlb_remove_pmd_tlb_entry(tlb, pmdp, address); \
692 } while (0)
693
694 /**
695 * tlb_remove_pud_tlb_entry - remember a pud mapping for later tlb
696 * invalidation. This is a nop so far, because only x86 needs it.
697 */
698 #ifndef __tlb_remove_pud_tlb_entry
699 #define __tlb_remove_pud_tlb_entry(tlb, pudp, address) do {} while (0)
700 #endif
701
702 #define tlb_remove_pud_tlb_entry(tlb, pudp, address) \
703 do { \
704 tlb_flush_pud_range(tlb, address, HPAGE_PUD_SIZE); \
705 __tlb_remove_pud_tlb_entry(tlb, pudp, address); \
706 } while (0)
707
708 /*
709 * For things like page tables caches (ie caching addresses "inside" the
710 * page tables, like x86 does), for legacy reasons, flushing an
711 * individual page had better flush the page table caches behind it. This
712 * is definitely how x86 works, for example. And if you have an
713 * architected non-legacy page table cache (which I'm not aware of
714 * anybody actually doing), you're going to have some architecturally
715 * explicit flushing for that, likely *separate* from a regular TLB entry
716 * flush, and thus you'd need more than just some range expansion..
717 *
718 * So if we ever find an architecture
719 * that would want something that odd, I think it is up to that
720 * architecture to do its own odd thing, not cause pain for others
721 * http://lkml.kernel.org/r/CA+55aFzBggoXtNXQeng5d_mRoDnaMBE5Y+URs+PHR67nUpMtaw@mail.gmail.com
722 *
723 * For now w.r.t page table cache, mark the range_size as PAGE_SIZE
724 */
725
726 #ifndef pte_free_tlb
727 #define pte_free_tlb(tlb, ptep, address) \
728 do { \
729 tlb_flush_pmd_range(tlb, address, PAGE_SIZE); \
730 tlb->freed_tables = 1; \
731 __pte_free_tlb(tlb, ptep, address); \
732 } while (0)
733 #endif
734
735 #ifndef pmd_free_tlb
736 #define pmd_free_tlb(tlb, pmdp, address) \
737 do { \
738 tlb_flush_pud_range(tlb, address, PAGE_SIZE); \
739 tlb->freed_tables = 1; \
740 __pmd_free_tlb(tlb, pmdp, address); \
741 } while (0)
742 #endif
743
744 #ifndef pud_free_tlb
745 #define pud_free_tlb(tlb, pudp, address) \
746 do { \
747 tlb_flush_p4d_range(tlb, address, PAGE_SIZE); \
748 tlb->freed_tables = 1; \
749 __pud_free_tlb(tlb, pudp, address); \
750 } while (0)
751 #endif
752
753 #ifndef p4d_free_tlb
754 #define p4d_free_tlb(tlb, pudp, address) \
755 do { \
756 __tlb_adjust_range(tlb, address, PAGE_SIZE); \
757 tlb->freed_tables = 1; \
758 __p4d_free_tlb(tlb, pudp, address); \
759 } while (0)
760 #endif
761
762 #ifndef pte_needs_flush
pte_needs_flush(pte_t oldpte,pte_t newpte)763 static inline bool pte_needs_flush(pte_t oldpte, pte_t newpte)
764 {
765 return true;
766 }
767 #endif
768
769 #ifndef huge_pmd_needs_flush
huge_pmd_needs_flush(pmd_t oldpmd,pmd_t newpmd)770 static inline bool huge_pmd_needs_flush(pmd_t oldpmd, pmd_t newpmd)
771 {
772 return true;
773 }
774 #endif
775
776 #endif /* CONFIG_MMU */
777
778 #endif /* _ASM_GENERIC__TLB_H */
779