1 // SPDX-License-Identifier: GPL-2.0-or-later
2
3 #include <linux/plist.h>
4 #include <linux/sched/task.h>
5 #include <linux/sched/signal.h>
6 #include <linux/freezer.h>
7
8 #include "futex.h"
9
10 /*
11 * READ this before attempting to hack on futexes!
12 *
13 * Basic futex operation and ordering guarantees
14 * =============================================
15 *
16 * The waiter reads the futex value in user space and calls
17 * futex_wait(). This function computes the hash bucket and acquires
18 * the hash bucket lock. After that it reads the futex user space value
19 * again and verifies that the data has not changed. If it has not changed
20 * it enqueues itself into the hash bucket, releases the hash bucket lock
21 * and schedules.
22 *
23 * The waker side modifies the user space value of the futex and calls
24 * futex_wake(). This function computes the hash bucket and acquires the
25 * hash bucket lock. Then it looks for waiters on that futex in the hash
26 * bucket and wakes them.
27 *
28 * In futex wake up scenarios where no tasks are blocked on a futex, taking
29 * the hb spinlock can be avoided and simply return. In order for this
30 * optimization to work, ordering guarantees must exist so that the waiter
31 * being added to the list is acknowledged when the list is concurrently being
32 * checked by the waker, avoiding scenarios like the following:
33 *
34 * CPU 0 CPU 1
35 * val = *futex;
36 * sys_futex(WAIT, futex, val);
37 * futex_wait(futex, val);
38 * uval = *futex;
39 * *futex = newval;
40 * sys_futex(WAKE, futex);
41 * futex_wake(futex);
42 * if (queue_empty())
43 * return;
44 * if (uval == val)
45 * lock(hash_bucket(futex));
46 * queue();
47 * unlock(hash_bucket(futex));
48 * schedule();
49 *
50 * This would cause the waiter on CPU 0 to wait forever because it
51 * missed the transition of the user space value from val to newval
52 * and the waker did not find the waiter in the hash bucket queue.
53 *
54 * The correct serialization ensures that a waiter either observes
55 * the changed user space value before blocking or is woken by a
56 * concurrent waker:
57 *
58 * CPU 0 CPU 1
59 * val = *futex;
60 * sys_futex(WAIT, futex, val);
61 * futex_wait(futex, val);
62 *
63 * waiters++; (a)
64 * smp_mb(); (A) <-- paired with -.
65 * |
66 * lock(hash_bucket(futex)); |
67 * |
68 * uval = *futex; |
69 * | *futex = newval;
70 * | sys_futex(WAKE, futex);
71 * | futex_wake(futex);
72 * |
73 * `--------> smp_mb(); (B)
74 * if (uval == val)
75 * queue();
76 * unlock(hash_bucket(futex));
77 * schedule(); if (waiters)
78 * lock(hash_bucket(futex));
79 * else wake_waiters(futex);
80 * waiters--; (b) unlock(hash_bucket(futex));
81 *
82 * Where (A) orders the waiters increment and the futex value read through
83 * atomic operations (see futex_hb_waiters_inc) and where (B) orders the write
84 * to futex and the waiters read (see futex_hb_waiters_pending()).
85 *
86 * This yields the following case (where X:=waiters, Y:=futex):
87 *
88 * X = Y = 0
89 *
90 * w[X]=1 w[Y]=1
91 * MB MB
92 * r[Y]=y r[X]=x
93 *
94 * Which guarantees that x==0 && y==0 is impossible; which translates back into
95 * the guarantee that we cannot both miss the futex variable change and the
96 * enqueue.
97 *
98 * Note that a new waiter is accounted for in (a) even when it is possible that
99 * the wait call can return error, in which case we backtrack from it in (b).
100 * Refer to the comment in futex_q_lock().
101 *
102 * Similarly, in order to account for waiters being requeued on another
103 * address we always increment the waiters for the destination bucket before
104 * acquiring the lock. It then decrements them again after releasing it -
105 * the code that actually moves the futex(es) between hash buckets (requeue_futex)
106 * will do the additional required waiter count housekeeping. This is done for
107 * double_lock_hb() and double_unlock_hb(), respectively.
108 */
109
__futex_wake_mark(struct futex_q * q)110 bool __futex_wake_mark(struct futex_q *q)
111 {
112 if (WARN(q->pi_state || q->rt_waiter, "refusing to wake PI futex\n"))
113 return false;
114
115 __futex_unqueue(q);
116 /*
117 * The waiting task can free the futex_q as soon as q->lock_ptr = NULL
118 * is written, without taking any locks. This is possible in the event
119 * of a spurious wakeup, for example. A memory barrier is required here
120 * to prevent the following store to lock_ptr from getting ahead of the
121 * plist_del in __futex_unqueue().
122 */
123 smp_store_release(&q->lock_ptr, NULL);
124
125 return true;
126 }
127
128 /*
129 * The hash bucket lock must be held when this is called.
130 * Afterwards, the futex_q must not be accessed. Callers
131 * must ensure to later call wake_up_q() for the actual
132 * wakeups to occur.
133 */
futex_wake_mark(struct wake_q_head * wake_q,struct futex_q * q)134 void futex_wake_mark(struct wake_q_head *wake_q, struct futex_q *q)
135 {
136 struct task_struct *p = q->task;
137
138 get_task_struct(p);
139
140 if (!__futex_wake_mark(q)) {
141 put_task_struct(p);
142 return;
143 }
144
145 /*
146 * Queue the task for later wakeup for after we've released
147 * the hb->lock.
148 */
149 wake_q_add_safe(wake_q, p);
150 }
151
152 /*
153 * Wake up waiters matching bitset queued on this futex (uaddr).
154 */
futex_wake(u32 __user * uaddr,unsigned int flags,int nr_wake,u32 bitset)155 int futex_wake(u32 __user *uaddr, unsigned int flags, int nr_wake, u32 bitset)
156 {
157 struct futex_q *this, *next;
158 union futex_key key = FUTEX_KEY_INIT;
159 DEFINE_WAKE_Q(wake_q);
160 int ret;
161
162 if (!bitset)
163 return -EINVAL;
164
165 ret = get_futex_key(uaddr, flags, &key, FUTEX_READ);
166 if (unlikely(ret != 0))
167 return ret;
168
169 if ((flags & FLAGS_STRICT) && !nr_wake)
170 return 0;
171
172 CLASS(hb, hb)(&key);
173
174 /* Make sure we really have tasks to wakeup */
175 if (!futex_hb_waiters_pending(hb))
176 return ret;
177
178 spin_lock(&hb->lock);
179
180 plist_for_each_entry_safe(this, next, &hb->chain, list) {
181 if (futex_match (&this->key, &key)) {
182 if (this->pi_state || this->rt_waiter) {
183 ret = -EINVAL;
184 break;
185 }
186
187 /* Check if one of the bits is set in both bitsets */
188 if (!(this->bitset & bitset))
189 continue;
190
191 this->wake(&wake_q, this);
192 if (++ret >= nr_wake)
193 break;
194 }
195 }
196
197 spin_unlock(&hb->lock);
198 wake_up_q(&wake_q);
199 return ret;
200 }
201
futex_atomic_op_inuser(unsigned int encoded_op,u32 __user * uaddr)202 static int futex_atomic_op_inuser(unsigned int encoded_op, u32 __user *uaddr)
203 {
204 unsigned int op = (encoded_op & 0x70000000) >> 28;
205 unsigned int cmp = (encoded_op & 0x0f000000) >> 24;
206 int oparg = sign_extend32((encoded_op & 0x00fff000) >> 12, 11);
207 int cmparg = sign_extend32(encoded_op & 0x00000fff, 11);
208 int oldval, ret;
209
210 if (encoded_op & (FUTEX_OP_OPARG_SHIFT << 28)) {
211 if (oparg < 0 || oparg > 31) {
212 /*
213 * kill this print and return -EINVAL when userspace
214 * is sane again
215 */
216 pr_info_ratelimited("futex_wake_op: %s tries to shift op by %d; fix this program\n",
217 current->comm, oparg);
218 oparg &= 31;
219 }
220 oparg = 1 << oparg;
221 }
222
223 pagefault_disable();
224 ret = arch_futex_atomic_op_inuser(op, oparg, &oldval, uaddr);
225 pagefault_enable();
226 if (ret)
227 return ret;
228
229 switch (cmp) {
230 case FUTEX_OP_CMP_EQ:
231 return oldval == cmparg;
232 case FUTEX_OP_CMP_NE:
233 return oldval != cmparg;
234 case FUTEX_OP_CMP_LT:
235 return oldval < cmparg;
236 case FUTEX_OP_CMP_GE:
237 return oldval >= cmparg;
238 case FUTEX_OP_CMP_LE:
239 return oldval <= cmparg;
240 case FUTEX_OP_CMP_GT:
241 return oldval > cmparg;
242 default:
243 return -ENOSYS;
244 }
245 }
246
247 /*
248 * Wake up all waiters hashed on the physical page that is mapped
249 * to this virtual address:
250 */
futex_wake_op(u32 __user * uaddr1,unsigned int flags,u32 __user * uaddr2,int nr_wake,int nr_wake2,int op)251 int futex_wake_op(u32 __user *uaddr1, unsigned int flags, u32 __user *uaddr2,
252 int nr_wake, int nr_wake2, int op)
253 {
254 union futex_key key1 = FUTEX_KEY_INIT, key2 = FUTEX_KEY_INIT;
255 struct futex_q *this, *next;
256 int ret, op_ret;
257 DEFINE_WAKE_Q(wake_q);
258
259 retry:
260 ret = get_futex_key(uaddr1, flags, &key1, FUTEX_READ);
261 if (unlikely(ret != 0))
262 return ret;
263 ret = get_futex_key(uaddr2, flags, &key2, FUTEX_WRITE);
264 if (unlikely(ret != 0))
265 return ret;
266
267 retry_private:
268 if (1) {
269 CLASS(hb, hb1)(&key1);
270 CLASS(hb, hb2)(&key2);
271
272 double_lock_hb(hb1, hb2);
273 op_ret = futex_atomic_op_inuser(op, uaddr2);
274 if (unlikely(op_ret < 0)) {
275 double_unlock_hb(hb1, hb2);
276
277 if (!IS_ENABLED(CONFIG_MMU) ||
278 unlikely(op_ret != -EFAULT && op_ret != -EAGAIN)) {
279 /*
280 * we don't get EFAULT from MMU faults if we don't have
281 * an MMU, but we might get them from range checking
282 */
283 ret = op_ret;
284 return ret;
285 }
286
287 if (op_ret == -EFAULT) {
288 ret = fault_in_user_writeable(uaddr2);
289 if (ret)
290 return ret;
291 }
292
293 cond_resched();
294 if (!(flags & FLAGS_SHARED))
295 goto retry_private;
296 goto retry;
297 }
298
299 plist_for_each_entry_safe(this, next, &hb1->chain, list) {
300 if (futex_match(&this->key, &key1)) {
301 if (this->pi_state || this->rt_waiter) {
302 ret = -EINVAL;
303 goto out_unlock;
304 }
305 this->wake(&wake_q, this);
306 if (++ret >= nr_wake)
307 break;
308 }
309 }
310
311 if (op_ret > 0) {
312 op_ret = 0;
313 plist_for_each_entry_safe(this, next, &hb2->chain, list) {
314 if (futex_match(&this->key, &key2)) {
315 if (this->pi_state || this->rt_waiter) {
316 ret = -EINVAL;
317 goto out_unlock;
318 }
319 this->wake(&wake_q, this);
320 if (++op_ret >= nr_wake2)
321 break;
322 }
323 }
324 ret += op_ret;
325 }
326
327 out_unlock:
328 double_unlock_hb(hb1, hb2);
329 }
330 wake_up_q(&wake_q);
331 return ret;
332 }
333
334 static long futex_wait_restart(struct restart_block *restart);
335
336 /**
337 * futex_do_wait() - wait for wakeup, timeout, or signal
338 * @q: the futex_q to queue up on
339 * @timeout: the prepared hrtimer_sleeper, or null for no timeout
340 */
futex_do_wait(struct futex_q * q,struct hrtimer_sleeper * timeout)341 void futex_do_wait(struct futex_q *q, struct hrtimer_sleeper *timeout)
342 {
343 /* Arm the timer */
344 if (timeout)
345 hrtimer_sleeper_start_expires(timeout, HRTIMER_MODE_ABS);
346
347 /*
348 * If we have been removed from the hash list, then another task
349 * has tried to wake us, and we can skip the call to schedule().
350 */
351 if (likely(!plist_node_empty(&q->list))) {
352 /*
353 * If the timer has already expired, current will already be
354 * flagged for rescheduling. Only call schedule if there
355 * is no timeout, or if it has yet to expire.
356 */
357 if (!timeout || timeout->task)
358 schedule();
359 }
360 __set_current_state(TASK_RUNNING);
361 }
362
363 /**
364 * futex_unqueue_multiple - Remove various futexes from their hash bucket
365 * @v: The list of futexes to unqueue
366 * @count: Number of futexes in the list
367 *
368 * Helper to unqueue a list of futexes. This can't fail.
369 *
370 * Return:
371 * - >=0 - Index of the last futex that was awoken;
372 * - -1 - No futex was awoken
373 */
futex_unqueue_multiple(struct futex_vector * v,int count)374 int futex_unqueue_multiple(struct futex_vector *v, int count)
375 {
376 int ret = -1, i;
377
378 for (i = 0; i < count; i++) {
379 if (!futex_unqueue(&v[i].q))
380 ret = i;
381 }
382
383 return ret;
384 }
385
386 /**
387 * futex_wait_multiple_setup - Prepare to wait and enqueue multiple futexes
388 * @vs: The futex list to wait on
389 * @count: The size of the list
390 * @woken: Index of the last woken futex, if any. Used to notify the
391 * caller that it can return this index to userspace (return parameter)
392 *
393 * Prepare multiple futexes in a single step and enqueue them. This may fail if
394 * the futex list is invalid or if any futex was already awoken. On success the
395 * task is ready to interruptible sleep.
396 *
397 * Return:
398 * - 1 - One of the futexes was woken by another thread
399 * - 0 - Success
400 * - <0 - -EFAULT, -EWOULDBLOCK or -EINVAL
401 */
futex_wait_multiple_setup(struct futex_vector * vs,int count,int * woken)402 int futex_wait_multiple_setup(struct futex_vector *vs, int count, int *woken)
403 {
404 bool retry = false;
405 int ret, i;
406 u32 uval;
407
408 /*
409 * Make sure to have a reference on the private_hash such that we
410 * don't block on rehash after changing the task state below.
411 */
412 guard(private_hash)();
413
414 /*
415 * Enqueuing multiple futexes is tricky, because we need to enqueue
416 * each futex on the list before dealing with the next one to avoid
417 * deadlocking on the hash bucket. But, before enqueuing, we need to
418 * make sure that current->state is TASK_INTERRUPTIBLE, so we don't
419 * lose any wake events, which cannot be done before the get_futex_key
420 * of the next key, because it calls get_user_pages, which can sleep.
421 * Thus, we fetch the list of futexes keys in two steps, by first
422 * pinning all the memory keys in the futex key, and only then we read
423 * each key and queue the corresponding futex.
424 *
425 * Private futexes doesn't need to recalculate hash in retry, so skip
426 * get_futex_key() when retrying.
427 */
428 retry:
429 for (i = 0; i < count; i++) {
430 if (!(vs[i].w.flags & FLAGS_SHARED) && retry)
431 continue;
432
433 ret = get_futex_key(u64_to_user_ptr(vs[i].w.uaddr),
434 vs[i].w.flags,
435 &vs[i].q.key, FUTEX_READ);
436
437 if (unlikely(ret))
438 return ret;
439 }
440
441 set_current_state(TASK_INTERRUPTIBLE|TASK_FREEZABLE);
442
443 for (i = 0; i < count; i++) {
444 u32 __user *uaddr = (u32 __user *)(unsigned long)vs[i].w.uaddr;
445 struct futex_q *q = &vs[i].q;
446 u32 val = vs[i].w.val;
447
448 if (1) {
449 CLASS(hb, hb)(&q->key);
450
451 futex_q_lock(q, hb);
452 ret = futex_get_value_locked(&uval, uaddr);
453
454 if (!ret && uval == val) {
455 /*
456 * The bucket lock can't be held while dealing with the
457 * next futex. Queue each futex at this moment so hb can
458 * be unlocked.
459 */
460 futex_queue(q, hb, current);
461 continue;
462 }
463
464 futex_q_unlock(hb);
465 }
466 __set_current_state(TASK_RUNNING);
467
468 /*
469 * Even if something went wrong, if we find out that a futex
470 * was woken, we don't return error and return this index to
471 * userspace
472 */
473 *woken = futex_unqueue_multiple(vs, i);
474 if (*woken >= 0)
475 return 1;
476
477 if (ret) {
478 /*
479 * If we need to handle a page fault, we need to do so
480 * without any lock and any enqueued futex (otherwise
481 * we could lose some wakeup). So we do it here, after
482 * undoing all the work done so far. In success, we
483 * retry all the work.
484 */
485 if (get_user(uval, uaddr))
486 return -EFAULT;
487
488 retry = true;
489 goto retry;
490 }
491
492 if (uval != val)
493 return -EWOULDBLOCK;
494 }
495
496 return 0;
497 }
498
499 /**
500 * futex_sleep_multiple - Check sleeping conditions and sleep
501 * @vs: List of futexes to wait for
502 * @count: Length of vs
503 * @to: Timeout
504 *
505 * Sleep if and only if the timeout hasn't expired and no futex on the list has
506 * been woken up.
507 */
futex_sleep_multiple(struct futex_vector * vs,unsigned int count,struct hrtimer_sleeper * to)508 static void futex_sleep_multiple(struct futex_vector *vs, unsigned int count,
509 struct hrtimer_sleeper *to)
510 {
511 if (to && !to->task)
512 return;
513
514 for (; count; count--, vs++) {
515 if (!READ_ONCE(vs->q.lock_ptr))
516 return;
517 }
518
519 schedule();
520 }
521
522 /**
523 * futex_wait_multiple - Prepare to wait on and enqueue several futexes
524 * @vs: The list of futexes to wait on
525 * @count: The number of objects
526 * @to: Timeout before giving up and returning to userspace
527 *
528 * Entry point for the FUTEX_WAIT_MULTIPLE futex operation, this function
529 * sleeps on a group of futexes and returns on the first futex that is
530 * wake, or after the timeout has elapsed.
531 *
532 * Return:
533 * - >=0 - Hint to the futex that was awoken
534 * - <0 - On error
535 */
futex_wait_multiple(struct futex_vector * vs,unsigned int count,struct hrtimer_sleeper * to)536 int futex_wait_multiple(struct futex_vector *vs, unsigned int count,
537 struct hrtimer_sleeper *to)
538 {
539 int ret, hint = 0;
540
541 if (to)
542 hrtimer_sleeper_start_expires(to, HRTIMER_MODE_ABS);
543
544 while (1) {
545 ret = futex_wait_multiple_setup(vs, count, &hint);
546 if (ret) {
547 if (ret > 0) {
548 /* A futex was woken during setup */
549 ret = hint;
550 }
551 return ret;
552 }
553
554 futex_sleep_multiple(vs, count, to);
555
556 __set_current_state(TASK_RUNNING);
557
558 ret = futex_unqueue_multiple(vs, count);
559 if (ret >= 0)
560 return ret;
561
562 if (to && !to->task)
563 return -ETIMEDOUT;
564 else if (signal_pending(current))
565 return -ERESTARTSYS;
566 /*
567 * The final case is a spurious wakeup, for
568 * which just retry.
569 */
570 }
571 }
572
573 /**
574 * futex_wait_setup() - Prepare to wait on a futex
575 * @uaddr: the futex userspace address
576 * @val: the expected value
577 * @flags: futex flags (FLAGS_SHARED, etc.)
578 * @q: the associated futex_q
579 * @key2: the second futex_key if used for requeue PI
580 * @task: Task queueing this futex
581 *
582 * Setup the futex_q and locate the hash_bucket. Get the futex value and
583 * compare it with the expected value. Handle atomic faults internally.
584 * Return with the hb lock held on success, and unlocked on failure.
585 *
586 * Return:
587 * - 0 - uaddr contains val and hb has been locked;
588 * - <0 - On error and the hb is unlocked. A possible reason: the uaddr can not
589 * be read, does not contain the expected value or is not properly aligned.
590 */
futex_wait_setup(u32 __user * uaddr,u32 val,unsigned int flags,struct futex_q * q,union futex_key * key2,struct task_struct * task)591 int futex_wait_setup(u32 __user *uaddr, u32 val, unsigned int flags,
592 struct futex_q *q, union futex_key *key2,
593 struct task_struct *task)
594 {
595 u32 uval;
596 int ret;
597
598 /*
599 * Access the page AFTER the hash-bucket is locked.
600 * Order is important:
601 *
602 * Userspace waiter: val = var; if (cond(val)) futex_wait(&var, val);
603 * Userspace waker: if (cond(var)) { var = new; futex_wake(&var); }
604 *
605 * The basic logical guarantee of a futex is that it blocks ONLY
606 * if cond(var) is known to be true at the time of blocking, for
607 * any cond. If we locked the hash-bucket after testing *uaddr, that
608 * would open a race condition where we could block indefinitely with
609 * cond(var) false, which would violate the guarantee.
610 *
611 * On the other hand, we insert q and release the hash-bucket only
612 * after testing *uaddr. This guarantees that futex_wait() will NOT
613 * absorb a wakeup if *uaddr does not match the desired values
614 * while the syscall executes.
615 */
616 retry:
617 ret = get_futex_key(uaddr, flags, &q->key, FUTEX_READ);
618 if (unlikely(ret != 0))
619 return ret;
620
621 retry_private:
622 if (1) {
623 CLASS(hb, hb)(&q->key);
624
625 futex_q_lock(q, hb);
626
627 ret = futex_get_value_locked(&uval, uaddr);
628
629 if (ret) {
630 futex_q_unlock(hb);
631
632 ret = get_user(uval, uaddr);
633 if (ret)
634 return ret;
635
636 if (!(flags & FLAGS_SHARED))
637 goto retry_private;
638
639 goto retry;
640 }
641
642 if (uval != val) {
643 futex_q_unlock(hb);
644 return -EWOULDBLOCK;
645 }
646
647 if (key2 && futex_match(&q->key, key2)) {
648 futex_q_unlock(hb);
649 return -EINVAL;
650 }
651
652 /*
653 * The task state is guaranteed to be set before another task can
654 * wake it. set_current_state() is implemented using smp_store_mb() and
655 * futex_queue() calls spin_unlock() upon completion, both serializing
656 * access to the hash list and forcing another memory barrier.
657 */
658 if (task == current)
659 set_current_state(TASK_INTERRUPTIBLE|TASK_FREEZABLE);
660 futex_queue(q, hb, task);
661 }
662
663 return ret;
664 }
665
__futex_wait(u32 __user * uaddr,unsigned int flags,u32 val,struct hrtimer_sleeper * to,u32 bitset)666 int __futex_wait(u32 __user *uaddr, unsigned int flags, u32 val,
667 struct hrtimer_sleeper *to, u32 bitset)
668 {
669 struct futex_q q = futex_q_init;
670 int ret;
671
672 if (!bitset)
673 return -EINVAL;
674
675 q.bitset = bitset;
676
677 retry:
678 /*
679 * Prepare to wait on uaddr. On success, it holds hb->lock and q
680 * is initialized.
681 */
682 ret = futex_wait_setup(uaddr, val, flags, &q, NULL, current);
683 if (ret)
684 return ret;
685
686 /* futex_queue and wait for wakeup, timeout, or a signal. */
687 futex_do_wait(&q, to);
688
689 /* If we were woken (and unqueued), we succeeded, whatever. */
690 if (!futex_unqueue(&q))
691 return 0;
692
693 if (to && !to->task)
694 return -ETIMEDOUT;
695
696 /*
697 * We expect signal_pending(current), but we might be the
698 * victim of a spurious wakeup as well.
699 */
700 if (!signal_pending(current))
701 goto retry;
702
703 return -ERESTARTSYS;
704 }
705
futex_wait(u32 __user * uaddr,unsigned int flags,u32 val,ktime_t * abs_time,u32 bitset)706 int futex_wait(u32 __user *uaddr, unsigned int flags, u32 val, ktime_t *abs_time, u32 bitset)
707 {
708 struct hrtimer_sleeper timeout, *to;
709 struct restart_block *restart;
710 int ret;
711
712 to = futex_setup_timer(abs_time, &timeout, flags,
713 current->timer_slack_ns);
714
715 ret = __futex_wait(uaddr, flags, val, to, bitset);
716
717 /* No timeout, nothing to clean up. */
718 if (!to)
719 return ret;
720
721 hrtimer_cancel(&to->timer);
722 destroy_hrtimer_on_stack(&to->timer);
723
724 if (ret == -ERESTARTSYS) {
725 restart = ¤t->restart_block;
726 restart->futex.uaddr = uaddr;
727 restart->futex.val = val;
728 restart->futex.time = *abs_time;
729 restart->futex.bitset = bitset;
730 restart->futex.flags = flags | FLAGS_HAS_TIMEOUT;
731
732 return set_restart_fn(restart, futex_wait_restart);
733 }
734
735 return ret;
736 }
737
futex_wait_restart(struct restart_block * restart)738 static long futex_wait_restart(struct restart_block *restart)
739 {
740 u32 __user *uaddr = restart->futex.uaddr;
741 ktime_t t, *tp = NULL;
742
743 if (restart->futex.flags & FLAGS_HAS_TIMEOUT) {
744 t = restart->futex.time;
745 tp = &t;
746 }
747 restart->fn = do_no_restart_syscall;
748
749 return (long)futex_wait(uaddr, restart->futex.flags,
750 restart->futex.val, tp, restart->futex.bitset);
751 }
752
753