1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * sched_clock() for unstable CPU clocks
4  *
5  *  Copyright (C) 2008 Red Hat, Inc., Peter Zijlstra
6  *
7  *  Updates and enhancements:
8  *    Copyright (C) 2008 Red Hat, Inc. Steven Rostedt <srostedt@redhat.com>
9  *
10  * Based on code by:
11  *   Ingo Molnar <mingo@redhat.com>
12  *   Guillaume Chazarain <guichaz@gmail.com>
13  *
14  *
15  * What this file implements:
16  *
17  * cpu_clock(i) provides a fast (execution time) high resolution
18  * clock with bounded drift between CPUs. The value of cpu_clock(i)
19  * is monotonic for constant i. The timestamp returned is in nanoseconds.
20  *
21  * ######################### BIG FAT WARNING ##########################
22  * # when comparing cpu_clock(i) to cpu_clock(j) for i != j, time can #
23  * # go backwards !!                                                  #
24  * ####################################################################
25  *
26  * There is no strict promise about the base, although it tends to start
27  * at 0 on boot (but people really shouldn't rely on that).
28  *
29  * cpu_clock(i)       -- can be used from any context, including NMI.
30  * local_clock()      -- is cpu_clock() on the current CPU.
31  *
32  * sched_clock_cpu(i)
33  *
34  * How it is implemented:
35  *
36  * The implementation either uses sched_clock() when
37  * !CONFIG_HAVE_UNSTABLE_SCHED_CLOCK, which means in that case the
38  * sched_clock() is assumed to provide these properties (mostly it means
39  * the architecture provides a globally synchronized highres time source).
40  *
41  * Otherwise it tries to create a semi stable clock from a mixture of other
42  * clocks, including:
43  *
44  *  - GTOD (clock monotonic)
45  *  - sched_clock()
46  *  - explicit idle events
47  *
48  * We use GTOD as base and use sched_clock() deltas to improve resolution. The
49  * deltas are filtered to provide monotonicity and keeping it within an
50  * expected window.
51  *
52  * Furthermore, explicit sleep and wakeup hooks allow us to account for time
53  * that is otherwise invisible (TSC gets stopped).
54  *
55  */
56 
57 #include <linux/sched/clock.h>
58 #include "sched.h"
59 
60 /*
61  * Scheduler clock - returns current time in nanosec units.
62  * This is default implementation.
63  * Architectures and sub-architectures can override this.
64  */
sched_clock(void)65 notrace unsigned long long __weak sched_clock(void)
66 {
67 	return (unsigned long long)(jiffies - INITIAL_JIFFIES)
68 					* (NSEC_PER_SEC / HZ);
69 }
70 EXPORT_SYMBOL_GPL(sched_clock);
71 
72 static DEFINE_STATIC_KEY_FALSE(sched_clock_running);
73 
74 #ifdef CONFIG_HAVE_UNSTABLE_SCHED_CLOCK
75 /*
76  * We must start with !__sched_clock_stable because the unstable -> stable
77  * transition is accurate, while the stable -> unstable transition is not.
78  *
79  * Similarly we start with __sched_clock_stable_early, thereby assuming we
80  * will become stable, such that there's only a single 1 -> 0 transition.
81  */
82 static DEFINE_STATIC_KEY_FALSE(__sched_clock_stable);
83 static int __sched_clock_stable_early = 1;
84 
85 /*
86  * We want: ktime_get_ns() + __gtod_offset == sched_clock() + __sched_clock_offset
87  */
88 __read_mostly u64 __sched_clock_offset;
89 static __read_mostly u64 __gtod_offset;
90 
91 struct sched_clock_data {
92 	u64			tick_raw;
93 	u64			tick_gtod;
94 	u64			clock;
95 };
96 
97 static DEFINE_PER_CPU_SHARED_ALIGNED(struct sched_clock_data, sched_clock_data);
98 
this_scd(void)99 static __always_inline struct sched_clock_data *this_scd(void)
100 {
101 	return this_cpu_ptr(&sched_clock_data);
102 }
103 
cpu_sdc(int cpu)104 notrace static inline struct sched_clock_data *cpu_sdc(int cpu)
105 {
106 	return &per_cpu(sched_clock_data, cpu);
107 }
108 
sched_clock_stable(void)109 notrace int sched_clock_stable(void)
110 {
111 	return static_branch_likely(&__sched_clock_stable);
112 }
113 
__scd_stamp(struct sched_clock_data * scd)114 notrace static void __scd_stamp(struct sched_clock_data *scd)
115 {
116 	scd->tick_gtod = ktime_get_ns();
117 	scd->tick_raw = sched_clock();
118 }
119 
__set_sched_clock_stable(void)120 notrace static void __set_sched_clock_stable(void)
121 {
122 	struct sched_clock_data *scd;
123 
124 	/*
125 	 * Since we're still unstable and the tick is already running, we have
126 	 * to disable IRQs in order to get a consistent scd->tick* reading.
127 	 */
128 	local_irq_disable();
129 	scd = this_scd();
130 	/*
131 	 * Attempt to make the (initial) unstable->stable transition continuous.
132 	 */
133 	__sched_clock_offset = (scd->tick_gtod + __gtod_offset) - (scd->tick_raw);
134 	local_irq_enable();
135 
136 	printk(KERN_INFO "sched_clock: Marking stable (%lld, %lld)->(%lld, %lld)\n",
137 			scd->tick_gtod, __gtod_offset,
138 			scd->tick_raw,  __sched_clock_offset);
139 
140 	static_branch_enable(&__sched_clock_stable);
141 	tick_dep_clear(TICK_DEP_BIT_CLOCK_UNSTABLE);
142 }
143 
144 /*
145  * If we ever get here, we're screwed, because we found out -- typically after
146  * the fact -- that TSC wasn't good. This means all our clocksources (including
147  * ktime) could have reported wrong values.
148  *
149  * What we do here is an attempt to fix up and continue sort of where we left
150  * off in a coherent manner.
151  *
152  * The only way to fully avoid random clock jumps is to boot with:
153  * "tsc=unstable".
154  */
__sched_clock_work(struct work_struct * work)155 notrace static void __sched_clock_work(struct work_struct *work)
156 {
157 	struct sched_clock_data *scd;
158 	int cpu;
159 
160 	/* take a current timestamp and set 'now' */
161 	preempt_disable();
162 	scd = this_scd();
163 	__scd_stamp(scd);
164 	scd->clock = scd->tick_gtod + __gtod_offset;
165 	preempt_enable();
166 
167 	/* clone to all CPUs */
168 	for_each_possible_cpu(cpu)
169 		per_cpu(sched_clock_data, cpu) = *scd;
170 
171 	printk(KERN_WARNING "TSC found unstable after boot, most likely due to broken BIOS. Use 'tsc=unstable'.\n");
172 	printk(KERN_INFO "sched_clock: Marking unstable (%lld, %lld)<-(%lld, %lld)\n",
173 			scd->tick_gtod, __gtod_offset,
174 			scd->tick_raw,  __sched_clock_offset);
175 
176 	static_branch_disable(&__sched_clock_stable);
177 }
178 
179 static DECLARE_WORK(sched_clock_work, __sched_clock_work);
180 
__clear_sched_clock_stable(void)181 notrace static void __clear_sched_clock_stable(void)
182 {
183 	if (!sched_clock_stable())
184 		return;
185 
186 	tick_dep_set(TICK_DEP_BIT_CLOCK_UNSTABLE);
187 	schedule_work(&sched_clock_work);
188 }
189 
clear_sched_clock_stable(void)190 notrace void clear_sched_clock_stable(void)
191 {
192 	__sched_clock_stable_early = 0;
193 
194 	smp_mb(); /* matches sched_clock_init_late() */
195 
196 	if (static_key_count(&sched_clock_running.key) == 2)
197 		__clear_sched_clock_stable();
198 }
199 
__sched_clock_gtod_offset(void)200 notrace static void __sched_clock_gtod_offset(void)
201 {
202 	struct sched_clock_data *scd = this_scd();
203 
204 	__scd_stamp(scd);
205 	__gtod_offset = (scd->tick_raw + __sched_clock_offset) - scd->tick_gtod;
206 }
207 
sched_clock_init(void)208 void __init sched_clock_init(void)
209 {
210 	/*
211 	 * Set __gtod_offset such that once we mark sched_clock_running,
212 	 * sched_clock_tick() continues where sched_clock() left off.
213 	 *
214 	 * Even if TSC is buggered, we're still UP at this point so it
215 	 * can't really be out of sync.
216 	 */
217 	local_irq_disable();
218 	__sched_clock_gtod_offset();
219 	local_irq_enable();
220 
221 	static_branch_inc(&sched_clock_running);
222 }
223 /*
224  * We run this as late_initcall() such that it runs after all built-in drivers,
225  * notably: acpi_processor and intel_idle, which can mark the TSC as unstable.
226  */
sched_clock_init_late(void)227 static int __init sched_clock_init_late(void)
228 {
229 	static_branch_inc(&sched_clock_running);
230 	/*
231 	 * Ensure that it is impossible to not do a static_key update.
232 	 *
233 	 * Either {set,clear}_sched_clock_stable() must see sched_clock_running
234 	 * and do the update, or we must see their __sched_clock_stable_early
235 	 * and do the update, or both.
236 	 */
237 	smp_mb(); /* matches {set,clear}_sched_clock_stable() */
238 
239 	if (__sched_clock_stable_early)
240 		__set_sched_clock_stable();
241 
242 	return 0;
243 }
244 late_initcall(sched_clock_init_late);
245 
246 /*
247  * min, max except they take wrapping into account
248  */
249 
wrap_min(u64 x,u64 y)250 static __always_inline u64 wrap_min(u64 x, u64 y)
251 {
252 	return (s64)(x - y) < 0 ? x : y;
253 }
254 
wrap_max(u64 x,u64 y)255 static __always_inline u64 wrap_max(u64 x, u64 y)
256 {
257 	return (s64)(x - y) > 0 ? x : y;
258 }
259 
260 /*
261  * update the percpu scd from the raw @now value
262  *
263  *  - filter out backward motion
264  *  - use the GTOD tick value to create a window to filter crazy TSC values
265  */
sched_clock_local(struct sched_clock_data * scd)266 static __always_inline u64 sched_clock_local(struct sched_clock_data *scd)
267 {
268 	u64 now, clock, old_clock, min_clock, max_clock, gtod;
269 	s64 delta;
270 
271 again:
272 	now = sched_clock_noinstr();
273 	delta = now - scd->tick_raw;
274 	if (unlikely(delta < 0))
275 		delta = 0;
276 
277 	old_clock = scd->clock;
278 
279 	/*
280 	 * scd->clock = clamp(scd->tick_gtod + delta,
281 	 *		      max(scd->tick_gtod, scd->clock),
282 	 *		      scd->tick_gtod + TICK_NSEC);
283 	 */
284 
285 	gtod = scd->tick_gtod + __gtod_offset;
286 	clock = gtod + delta;
287 	min_clock = wrap_max(gtod, old_clock);
288 	max_clock = wrap_max(old_clock, gtod + TICK_NSEC);
289 
290 	clock = wrap_max(clock, min_clock);
291 	clock = wrap_min(clock, max_clock);
292 
293 	if (!raw_try_cmpxchg64(&scd->clock, &old_clock, clock))
294 		goto again;
295 
296 	return clock;
297 }
298 
local_clock_noinstr(void)299 noinstr u64 local_clock_noinstr(void)
300 {
301 	u64 clock;
302 
303 	if (static_branch_likely(&__sched_clock_stable))
304 		return sched_clock_noinstr() + __sched_clock_offset;
305 
306 	if (!static_branch_likely(&sched_clock_running))
307 		return sched_clock_noinstr();
308 
309 	clock = sched_clock_local(this_scd());
310 
311 	return clock;
312 }
313 
local_clock(void)314 u64 local_clock(void)
315 {
316 	u64 now;
317 	preempt_disable_notrace();
318 	now = local_clock_noinstr();
319 	preempt_enable_notrace();
320 	return now;
321 }
322 EXPORT_SYMBOL_GPL(local_clock);
323 
sched_clock_remote(struct sched_clock_data * scd)324 static notrace u64 sched_clock_remote(struct sched_clock_data *scd)
325 {
326 	struct sched_clock_data *my_scd = this_scd();
327 	u64 this_clock, remote_clock;
328 	u64 *ptr, old_val, val;
329 
330 #if BITS_PER_LONG != 64
331 again:
332 	/*
333 	 * Careful here: The local and the remote clock values need to
334 	 * be read out atomic as we need to compare the values and
335 	 * then update either the local or the remote side. So the
336 	 * cmpxchg64 below only protects one readout.
337 	 *
338 	 * We must reread via sched_clock_local() in the retry case on
339 	 * 32-bit kernels as an NMI could use sched_clock_local() via the
340 	 * tracer and hit between the readout of
341 	 * the low 32-bit and the high 32-bit portion.
342 	 */
343 	this_clock = sched_clock_local(my_scd);
344 	/*
345 	 * We must enforce atomic readout on 32-bit, otherwise the
346 	 * update on the remote CPU can hit in between the readout of
347 	 * the low 32-bit and the high 32-bit portion.
348 	 */
349 	remote_clock = cmpxchg64(&scd->clock, 0, 0);
350 #else
351 	/*
352 	 * On 64-bit kernels the read of [my]scd->clock is atomic versus the
353 	 * update, so we can avoid the above 32-bit dance.
354 	 */
355 	sched_clock_local(my_scd);
356 again:
357 	this_clock = my_scd->clock;
358 	remote_clock = scd->clock;
359 #endif
360 
361 	/*
362 	 * Use the opportunity that we have both locks
363 	 * taken to couple the two clocks: we take the
364 	 * larger time as the latest time for both
365 	 * runqueues. (this creates monotonic movement)
366 	 */
367 	if (likely((s64)(remote_clock - this_clock) < 0)) {
368 		ptr = &scd->clock;
369 		old_val = remote_clock;
370 		val = this_clock;
371 	} else {
372 		/*
373 		 * Should be rare, but possible:
374 		 */
375 		ptr = &my_scd->clock;
376 		old_val = this_clock;
377 		val = remote_clock;
378 	}
379 
380 	if (!try_cmpxchg64(ptr, &old_val, val))
381 		goto again;
382 
383 	return val;
384 }
385 
386 /*
387  * Similar to cpu_clock(), but requires local IRQs to be disabled.
388  *
389  * See cpu_clock().
390  */
sched_clock_cpu(int cpu)391 notrace u64 sched_clock_cpu(int cpu)
392 {
393 	struct sched_clock_data *scd;
394 	u64 clock;
395 
396 	if (sched_clock_stable())
397 		return sched_clock() + __sched_clock_offset;
398 
399 	if (!static_branch_likely(&sched_clock_running))
400 		return sched_clock();
401 
402 	preempt_disable_notrace();
403 	scd = cpu_sdc(cpu);
404 
405 	if (cpu != smp_processor_id())
406 		clock = sched_clock_remote(scd);
407 	else
408 		clock = sched_clock_local(scd);
409 	preempt_enable_notrace();
410 
411 	return clock;
412 }
413 EXPORT_SYMBOL_GPL(sched_clock_cpu);
414 
sched_clock_tick(void)415 notrace void sched_clock_tick(void)
416 {
417 	struct sched_clock_data *scd;
418 
419 	if (sched_clock_stable())
420 		return;
421 
422 	if (!static_branch_likely(&sched_clock_running))
423 		return;
424 
425 	lockdep_assert_irqs_disabled();
426 
427 	scd = this_scd();
428 	__scd_stamp(scd);
429 	sched_clock_local(scd);
430 }
431 
sched_clock_tick_stable(void)432 notrace void sched_clock_tick_stable(void)
433 {
434 	if (!sched_clock_stable())
435 		return;
436 
437 	/*
438 	 * Called under watchdog_lock.
439 	 *
440 	 * The watchdog just found this TSC to (still) be stable, so now is a
441 	 * good moment to update our __gtod_offset. Because once we find the
442 	 * TSC to be unstable, any computation will be computing crap.
443 	 */
444 	local_irq_disable();
445 	__sched_clock_gtod_offset();
446 	local_irq_enable();
447 }
448 
449 /*
450  * We are going deep-idle (IRQs are disabled):
451  */
sched_clock_idle_sleep_event(void)452 notrace void sched_clock_idle_sleep_event(void)
453 {
454 	sched_clock_cpu(smp_processor_id());
455 }
456 EXPORT_SYMBOL_GPL(sched_clock_idle_sleep_event);
457 
458 /*
459  * We just idled; resync with ktime.
460  */
sched_clock_idle_wakeup_event(void)461 notrace void sched_clock_idle_wakeup_event(void)
462 {
463 	unsigned long flags;
464 
465 	if (sched_clock_stable())
466 		return;
467 
468 	if (unlikely(timekeeping_suspended))
469 		return;
470 
471 	local_irq_save(flags);
472 	sched_clock_tick();
473 	local_irq_restore(flags);
474 }
475 EXPORT_SYMBOL_GPL(sched_clock_idle_wakeup_event);
476 
477 #else /* !CONFIG_HAVE_UNSTABLE_SCHED_CLOCK: */
478 
sched_clock_init(void)479 void __init sched_clock_init(void)
480 {
481 	static_branch_inc(&sched_clock_running);
482 	local_irq_disable();
483 	generic_sched_clock_init();
484 	local_irq_enable();
485 }
486 
sched_clock_cpu(int cpu)487 notrace u64 sched_clock_cpu(int cpu)
488 {
489 	if (!static_branch_likely(&sched_clock_running))
490 		return 0;
491 
492 	return sched_clock();
493 }
494 
495 #endif /* !CONFIG_HAVE_UNSTABLE_SCHED_CLOCK */
496 
497 /*
498  * Running clock - returns the time that has elapsed while a guest has been
499  * running.
500  * On a guest this value should be local_clock minus the time the guest was
501  * suspended by the hypervisor (for any reason).
502  * On bare metal this function should return the same as local_clock.
503  * Architectures and sub-architectures can override this.
504  */
running_clock(void)505 notrace u64 __weak running_clock(void)
506 {
507 	return local_clock();
508 }
509