1######################################################################## 2# Implement fast SHA-512 with AVX instructions. (x86_64) 3# 4# Copyright (C) 2013 Intel Corporation. 5# 6# Authors: 7# James Guilford <james.guilford@intel.com> 8# Kirk Yap <kirk.s.yap@intel.com> 9# David Cote <david.m.cote@intel.com> 10# Tim Chen <tim.c.chen@linux.intel.com> 11# 12# This software is available to you under a choice of one of two 13# licenses. You may choose to be licensed under the terms of the GNU 14# General Public License (GPL) Version 2, available from the file 15# COPYING in the main directory of this source tree, or the 16# OpenIB.org BSD license below: 17# 18# Redistribution and use in source and binary forms, with or 19# without modification, are permitted provided that the following 20# conditions are met: 21# 22# - Redistributions of source code must retain the above 23# copyright notice, this list of conditions and the following 24# disclaimer. 25# 26# - Redistributions in binary form must reproduce the above 27# copyright notice, this list of conditions and the following 28# disclaimer in the documentation and/or other materials 29# provided with the distribution. 30# 31# THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, 32# EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF 33# MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND 34# NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS 35# BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN 36# ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN 37# CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE 38# SOFTWARE. 39# 40######################################################################## 41# 42# This code is described in an Intel White-Paper: 43# "Fast SHA-512 Implementations on Intel Architecture Processors" 44# 45# To find it, surf to http://www.intel.com/p/en_US/embedded 46# and search for that title. 47# 48######################################################################## 49 50#include <linux/linkage.h> 51 52.text 53 54# Virtual Registers 55# ARG1 56digest = %rdi 57# ARG2 58msg = %rsi 59# ARG3 60msglen = %rdx 61T1 = %rcx 62T2 = %r8 63a_64 = %r9 64b_64 = %r10 65c_64 = %r11 66d_64 = %r12 67e_64 = %r13 68f_64 = %r14 69g_64 = %r15 70h_64 = %rbx 71tmp0 = %rax 72 73# Local variables (stack frame) 74 75# Message Schedule 76W_SIZE = 80*8 77# W[t] + K[t] | W[t+1] + K[t+1] 78WK_SIZE = 2*8 79 80frame_W = 0 81frame_WK = frame_W + W_SIZE 82frame_size = frame_WK + WK_SIZE 83 84# Useful QWORD "arrays" for simpler memory references 85# MSG, DIGEST, K_t, W_t are arrays 86# WK_2(t) points to 1 of 2 qwords at frame.WK depending on t being odd/even 87 88# Input message (arg1) 89#define MSG(i) 8*i(msg) 90 91# Output Digest (arg2) 92#define DIGEST(i) 8*i(digest) 93 94# SHA Constants (static mem) 95#define K_t(i) 8*i+K512(%rip) 96 97# Message Schedule (stack frame) 98#define W_t(i) 8*i+frame_W(%rsp) 99 100# W[t]+K[t] (stack frame) 101#define WK_2(i) 8*((i%2))+frame_WK(%rsp) 102 103.macro RotateState 104 # Rotate symbols a..h right 105 TMP = h_64 106 h_64 = g_64 107 g_64 = f_64 108 f_64 = e_64 109 e_64 = d_64 110 d_64 = c_64 111 c_64 = b_64 112 b_64 = a_64 113 a_64 = TMP 114.endm 115 116.macro RORQ p1 p2 117 # shld is faster than ror on Sandybridge 118 shld $(64-\p2), \p1, \p1 119.endm 120 121.macro SHA512_Round rnd 122 # Compute Round %%t 123 mov f_64, T1 # T1 = f 124 mov e_64, tmp0 # tmp = e 125 xor g_64, T1 # T1 = f ^ g 126 RORQ tmp0, 23 # 41 # tmp = e ror 23 127 and e_64, T1 # T1 = (f ^ g) & e 128 xor e_64, tmp0 # tmp = (e ror 23) ^ e 129 xor g_64, T1 # T1 = ((f ^ g) & e) ^ g = CH(e,f,g) 130 idx = \rnd 131 add WK_2(idx), T1 # W[t] + K[t] from message scheduler 132 RORQ tmp0, 4 # 18 # tmp = ((e ror 23) ^ e) ror 4 133 xor e_64, tmp0 # tmp = (((e ror 23) ^ e) ror 4) ^ e 134 mov a_64, T2 # T2 = a 135 add h_64, T1 # T1 = CH(e,f,g) + W[t] + K[t] + h 136 RORQ tmp0, 14 # 14 # tmp = ((((e ror23)^e)ror4)^e)ror14 = S1(e) 137 add tmp0, T1 # T1 = CH(e,f,g) + W[t] + K[t] + S1(e) 138 mov a_64, tmp0 # tmp = a 139 xor c_64, T2 # T2 = a ^ c 140 and c_64, tmp0 # tmp = a & c 141 and b_64, T2 # T2 = (a ^ c) & b 142 xor tmp0, T2 # T2 = ((a ^ c) & b) ^ (a & c) = Maj(a,b,c) 143 mov a_64, tmp0 # tmp = a 144 RORQ tmp0, 5 # 39 # tmp = a ror 5 145 xor a_64, tmp0 # tmp = (a ror 5) ^ a 146 add T1, d_64 # e(next_state) = d + T1 147 RORQ tmp0, 6 # 34 # tmp = ((a ror 5) ^ a) ror 6 148 xor a_64, tmp0 # tmp = (((a ror 5) ^ a) ror 6) ^ a 149 lea (T1, T2), h_64 # a(next_state) = T1 + Maj(a,b,c) 150 RORQ tmp0, 28 # 28 # tmp = ((((a ror5)^a)ror6)^a)ror28 = S0(a) 151 add tmp0, h_64 # a(next_state) = T1 + Maj(a,b,c) S0(a) 152 RotateState 153.endm 154 155.macro SHA512_2Sched_2Round_avx rnd 156 # Compute rounds t-2 and t-1 157 # Compute message schedule QWORDS t and t+1 158 159 # Two rounds are computed based on the values for K[t-2]+W[t-2] and 160 # K[t-1]+W[t-1] which were previously stored at WK_2 by the message 161 # scheduler. 162 # The two new schedule QWORDS are stored at [W_t(t)] and [W_t(t+1)]. 163 # They are then added to their respective SHA512 constants at 164 # [K_t(t)] and [K_t(t+1)] and stored at dqword [WK_2(t)] 165 # For brievity, the comments following vectored instructions only refer to 166 # the first of a pair of QWORDS. 167 # Eg. XMM4=W[t-2] really means XMM4={W[t-2]|W[t-1]} 168 # The computation of the message schedule and the rounds are tightly 169 # stitched to take advantage of instruction-level parallelism. 170 171 idx = \rnd - 2 172 vmovdqa W_t(idx), %xmm4 # XMM4 = W[t-2] 173 idx = \rnd - 15 174 vmovdqu W_t(idx), %xmm5 # XMM5 = W[t-15] 175 mov f_64, T1 176 vpsrlq $61, %xmm4, %xmm0 # XMM0 = W[t-2]>>61 177 mov e_64, tmp0 178 vpsrlq $1, %xmm5, %xmm6 # XMM6 = W[t-15]>>1 179 xor g_64, T1 180 RORQ tmp0, 23 # 41 181 vpsrlq $19, %xmm4, %xmm1 # XMM1 = W[t-2]>>19 182 and e_64, T1 183 xor e_64, tmp0 184 vpxor %xmm1, %xmm0, %xmm0 # XMM0 = W[t-2]>>61 ^ W[t-2]>>19 185 xor g_64, T1 186 idx = \rnd 187 add WK_2(idx), T1# 188 vpsrlq $8, %xmm5, %xmm7 # XMM7 = W[t-15]>>8 189 RORQ tmp0, 4 # 18 190 vpsrlq $6, %xmm4, %xmm2 # XMM2 = W[t-2]>>6 191 xor e_64, tmp0 192 mov a_64, T2 193 add h_64, T1 194 vpxor %xmm7, %xmm6, %xmm6 # XMM6 = W[t-15]>>1 ^ W[t-15]>>8 195 RORQ tmp0, 14 # 14 196 add tmp0, T1 197 vpsrlq $7, %xmm5, %xmm8 # XMM8 = W[t-15]>>7 198 mov a_64, tmp0 199 xor c_64, T2 200 vpsllq $(64-61), %xmm4, %xmm3 # XMM3 = W[t-2]<<3 201 and c_64, tmp0 202 and b_64, T2 203 vpxor %xmm3, %xmm2, %xmm2 # XMM2 = W[t-2]>>6 ^ W[t-2]<<3 204 xor tmp0, T2 205 mov a_64, tmp0 206 vpsllq $(64-1), %xmm5, %xmm9 # XMM9 = W[t-15]<<63 207 RORQ tmp0, 5 # 39 208 vpxor %xmm9, %xmm8, %xmm8 # XMM8 = W[t-15]>>7 ^ W[t-15]<<63 209 xor a_64, tmp0 210 add T1, d_64 211 RORQ tmp0, 6 # 34 212 xor a_64, tmp0 213 vpxor %xmm8, %xmm6, %xmm6 # XMM6 = W[t-15]>>1 ^ W[t-15]>>8 ^ 214 # W[t-15]>>7 ^ W[t-15]<<63 215 lea (T1, T2), h_64 216 RORQ tmp0, 28 # 28 217 vpsllq $(64-19), %xmm4, %xmm4 # XMM4 = W[t-2]<<25 218 add tmp0, h_64 219 RotateState 220 vpxor %xmm4, %xmm0, %xmm0 # XMM0 = W[t-2]>>61 ^ W[t-2]>>19 ^ 221 # W[t-2]<<25 222 mov f_64, T1 223 vpxor %xmm2, %xmm0, %xmm0 # XMM0 = s1(W[t-2]) 224 mov e_64, tmp0 225 xor g_64, T1 226 idx = \rnd - 16 227 vpaddq W_t(idx), %xmm0, %xmm0 # XMM0 = s1(W[t-2]) + W[t-16] 228 idx = \rnd - 7 229 vmovdqu W_t(idx), %xmm1 # XMM1 = W[t-7] 230 RORQ tmp0, 23 # 41 231 and e_64, T1 232 xor e_64, tmp0 233 xor g_64, T1 234 vpsllq $(64-8), %xmm5, %xmm5 # XMM5 = W[t-15]<<56 235 idx = \rnd + 1 236 add WK_2(idx), T1 237 vpxor %xmm5, %xmm6, %xmm6 # XMM6 = s0(W[t-15]) 238 RORQ tmp0, 4 # 18 239 vpaddq %xmm6, %xmm0, %xmm0 # XMM0 = s1(W[t-2]) + W[t-16] + s0(W[t-15]) 240 xor e_64, tmp0 241 vpaddq %xmm1, %xmm0, %xmm0 # XMM0 = W[t] = s1(W[t-2]) + W[t-7] + 242 # s0(W[t-15]) + W[t-16] 243 mov a_64, T2 244 add h_64, T1 245 RORQ tmp0, 14 # 14 246 add tmp0, T1 247 idx = \rnd 248 vmovdqa %xmm0, W_t(idx) # Store W[t] 249 vpaddq K_t(idx), %xmm0, %xmm0 # Compute W[t]+K[t] 250 vmovdqa %xmm0, WK_2(idx) # Store W[t]+K[t] for next rounds 251 mov a_64, tmp0 252 xor c_64, T2 253 and c_64, tmp0 254 and b_64, T2 255 xor tmp0, T2 256 mov a_64, tmp0 257 RORQ tmp0, 5 # 39 258 xor a_64, tmp0 259 add T1, d_64 260 RORQ tmp0, 6 # 34 261 xor a_64, tmp0 262 lea (T1, T2), h_64 263 RORQ tmp0, 28 # 28 264 add tmp0, h_64 265 RotateState 266.endm 267 268######################################################################## 269# void sha512_transform_avx(struct sha512_block_state *state, 270# const u8 *data, size_t nblocks); 271# Purpose: Updates the SHA512 digest stored at "state" with the message 272# stored in "data". 273# The size of the message pointed to by "data" must be an integer multiple 274# of SHA512 message blocks. 275# "nblocks" is the message length in SHA512 blocks. Must be >= 1. 276######################################################################## 277SYM_FUNC_START(sha512_transform_avx) 278 279 # Save GPRs 280 push %rbx 281 push %r12 282 push %r13 283 push %r14 284 push %r15 285 286 # Allocate Stack Space 287 push %rbp 288 mov %rsp, %rbp 289 sub $frame_size, %rsp 290 and $~(0x20 - 1), %rsp 291 292.Lupdateblock: 293 294 # Load state variables 295 mov DIGEST(0), a_64 296 mov DIGEST(1), b_64 297 mov DIGEST(2), c_64 298 mov DIGEST(3), d_64 299 mov DIGEST(4), e_64 300 mov DIGEST(5), f_64 301 mov DIGEST(6), g_64 302 mov DIGEST(7), h_64 303 304 t = 0 305 .rept 80/2 + 1 306 # (80 rounds) / (2 rounds/iteration) + (1 iteration) 307 # +1 iteration because the scheduler leads hashing by 1 iteration 308 .if t < 2 309 # BSWAP 2 QWORDS 310 vmovdqa XMM_QWORD_BSWAP(%rip), %xmm1 311 vmovdqu MSG(t), %xmm0 312 vpshufb %xmm1, %xmm0, %xmm0 # BSWAP 313 vmovdqa %xmm0, W_t(t) # Store Scheduled Pair 314 vpaddq K_t(t), %xmm0, %xmm0 # Compute W[t]+K[t] 315 vmovdqa %xmm0, WK_2(t) # Store into WK for rounds 316 .elseif t < 16 317 # BSWAP 2 QWORDS# Compute 2 Rounds 318 vmovdqu MSG(t), %xmm0 319 vpshufb %xmm1, %xmm0, %xmm0 # BSWAP 320 SHA512_Round t-2 # Round t-2 321 vmovdqa %xmm0, W_t(t) # Store Scheduled Pair 322 vpaddq K_t(t), %xmm0, %xmm0 # Compute W[t]+K[t] 323 SHA512_Round t-1 # Round t-1 324 vmovdqa %xmm0, WK_2(t)# Store W[t]+K[t] into WK 325 .elseif t < 79 326 # Schedule 2 QWORDS# Compute 2 Rounds 327 SHA512_2Sched_2Round_avx t 328 .else 329 # Compute 2 Rounds 330 SHA512_Round t-2 331 SHA512_Round t-1 332 .endif 333 t = t+2 334 .endr 335 336 # Update digest 337 add a_64, DIGEST(0) 338 add b_64, DIGEST(1) 339 add c_64, DIGEST(2) 340 add d_64, DIGEST(3) 341 add e_64, DIGEST(4) 342 add f_64, DIGEST(5) 343 add g_64, DIGEST(6) 344 add h_64, DIGEST(7) 345 346 # Advance to next message block 347 add $16*8, msg 348 dec msglen 349 jnz .Lupdateblock 350 351 # Restore Stack Pointer 352 mov %rbp, %rsp 353 pop %rbp 354 355 # Restore GPRs 356 pop %r15 357 pop %r14 358 pop %r13 359 pop %r12 360 pop %rbx 361 362 RET 363SYM_FUNC_END(sha512_transform_avx) 364 365######################################################################## 366### Binary Data 367 368.section .rodata.cst16.XMM_QWORD_BSWAP, "aM", @progbits, 16 369.align 16 370# Mask for byte-swapping a couple of qwords in an XMM register using (v)pshufb. 371XMM_QWORD_BSWAP: 372 .octa 0x08090a0b0c0d0e0f0001020304050607 373 374# Mergeable 640-byte rodata section. This allows linker to merge the table 375# with other, exactly the same 640-byte fragment of another rodata section 376# (if such section exists). 377.section .rodata.cst640.K512, "aM", @progbits, 640 378.align 64 379# K[t] used in SHA512 hashing 380K512: 381 .quad 0x428a2f98d728ae22,0x7137449123ef65cd 382 .quad 0xb5c0fbcfec4d3b2f,0xe9b5dba58189dbbc 383 .quad 0x3956c25bf348b538,0x59f111f1b605d019 384 .quad 0x923f82a4af194f9b,0xab1c5ed5da6d8118 385 .quad 0xd807aa98a3030242,0x12835b0145706fbe 386 .quad 0x243185be4ee4b28c,0x550c7dc3d5ffb4e2 387 .quad 0x72be5d74f27b896f,0x80deb1fe3b1696b1 388 .quad 0x9bdc06a725c71235,0xc19bf174cf692694 389 .quad 0xe49b69c19ef14ad2,0xefbe4786384f25e3 390 .quad 0x0fc19dc68b8cd5b5,0x240ca1cc77ac9c65 391 .quad 0x2de92c6f592b0275,0x4a7484aa6ea6e483 392 .quad 0x5cb0a9dcbd41fbd4,0x76f988da831153b5 393 .quad 0x983e5152ee66dfab,0xa831c66d2db43210 394 .quad 0xb00327c898fb213f,0xbf597fc7beef0ee4 395 .quad 0xc6e00bf33da88fc2,0xd5a79147930aa725 396 .quad 0x06ca6351e003826f,0x142929670a0e6e70 397 .quad 0x27b70a8546d22ffc,0x2e1b21385c26c926 398 .quad 0x4d2c6dfc5ac42aed,0x53380d139d95b3df 399 .quad 0x650a73548baf63de,0x766a0abb3c77b2a8 400 .quad 0x81c2c92e47edaee6,0x92722c851482353b 401 .quad 0xa2bfe8a14cf10364,0xa81a664bbc423001 402 .quad 0xc24b8b70d0f89791,0xc76c51a30654be30 403 .quad 0xd192e819d6ef5218,0xd69906245565a910 404 .quad 0xf40e35855771202a,0x106aa07032bbd1b8 405 .quad 0x19a4c116b8d2d0c8,0x1e376c085141ab53 406 .quad 0x2748774cdf8eeb99,0x34b0bcb5e19b48a8 407 .quad 0x391c0cb3c5c95a63,0x4ed8aa4ae3418acb 408 .quad 0x5b9cca4f7763e373,0x682e6ff3d6b2b8a3 409 .quad 0x748f82ee5defb2fc,0x78a5636f43172f60 410 .quad 0x84c87814a1f0ab72,0x8cc702081a6439ec 411 .quad 0x90befffa23631e28,0xa4506cebde82bde9 412 .quad 0xbef9a3f7b2c67915,0xc67178f2e372532b 413 .quad 0xca273eceea26619c,0xd186b8c721c0c207 414 .quad 0xeada7dd6cde0eb1e,0xf57d4f7fee6ed178 415 .quad 0x06f067aa72176fba,0x0a637dc5a2c898a6 416 .quad 0x113f9804bef90dae,0x1b710b35131c471b 417 .quad 0x28db77f523047d84,0x32caab7b40c72493 418 .quad 0x3c9ebe0a15c9bebc,0x431d67c49c100d4c 419 .quad 0x4cc5d4becb3e42b6,0x597f299cfc657e2a 420 .quad 0x5fcb6fab3ad6faec,0x6c44198c4a475817 421