1 /*
2  * Copyright (c) 2020 Raspberry Pi (Trading) Ltd.
3  *
4  * SPDX-License-Identifier: BSD-3-Clause
5  */
6 
7 #include "pico.h"
8 #include "hardware/regs/clocks.h"
9 #include "hardware/platform_defs.h"
10 #include "hardware/clocks.h"
11 #include "hardware/watchdog.h"
12 #include "hardware/pll.h"
13 #include "hardware/xosc.h"
14 #include "hardware/irq.h"
15 #include "hardware/gpio.h"
16 
17 // The RTC clock frequency is 48MHz divided by power of 2 (to ensure an integer
18 // division ratio will be used in the clocks block).  A divisor of 1024 generates
19 // an RTC clock tick of 46875Hz.  This frequency is relatively close to the
20 // customary 32 or 32.768kHz 'slow clock' crystals and provides good timing resolution.
21 #define RTC_CLOCK_FREQ_HZ       (USB_CLK_KHZ * KHZ / 1024)
22 
23 check_hw_layout(clocks_hw_t, clk[clk_adc].selected, CLOCKS_CLK_ADC_SELECTED_OFFSET);
24 check_hw_layout(clocks_hw_t, fc0.result, CLOCKS_FC0_RESULT_OFFSET);
25 check_hw_layout(clocks_hw_t, ints, CLOCKS_INTS_OFFSET);
26 
27 static uint32_t configured_freq[CLK_COUNT];
28 
29 static resus_callback_t _resus_callback;
30 
31 // Clock muxing consists of two components:
32 // - A glitchless mux, which can be switched freely, but whose inputs must be
33 //   free-running
34 // - An auxiliary (glitchy) mux, whose output glitches when switched, but has
35 //   no constraints on its inputs
36 // Not all clocks have both types of mux.
has_glitchless_mux(enum clock_index clk_index)37 static inline bool has_glitchless_mux(enum clock_index clk_index) {
38     return clk_index == clk_sys || clk_index == clk_ref;
39 }
40 
clock_stop(enum clock_index clk_index)41 void clock_stop(enum clock_index clk_index) {
42     clock_hw_t *clock = &clocks_hw->clk[clk_index];
43     hw_clear_bits(&clock->ctrl, CLOCKS_CLK_USB_CTRL_ENABLE_BITS);
44     configured_freq[clk_index] = 0;
45 }
46 
47 /// \tag::clock_configure[]
clock_configure(enum clock_index clk_index,uint32_t src,uint32_t auxsrc,uint32_t src_freq,uint32_t freq)48 bool clock_configure(enum clock_index clk_index, uint32_t src, uint32_t auxsrc, uint32_t src_freq, uint32_t freq) {
49     uint32_t div;
50 
51     assert(src_freq >= freq);
52 
53     if (freq > src_freq)
54         return false;
55 
56     // Div register is 24.8 int.frac divider so multiply by 2^8 (left shift by 8)
57     div = (uint32_t) (((uint64_t) src_freq << CLOCKS_CLK_GPOUT0_DIV_INT_LSB) / freq);
58 
59     clock_hw_t *clock = &clocks_hw->clk[clk_index];
60 
61     // If increasing divisor, set divisor before source. Otherwise set source
62     // before divisor. This avoids a momentary overspeed when e.g. switching
63     // to a faster source and increasing divisor to compensate.
64     if (div > clock->div)
65         clock->div = div;
66 
67     // If switching a glitchless slice (ref or sys) to an aux source, switch
68     // away from aux *first* to avoid passing glitches when changing aux mux.
69     // Assume (!!!) glitchless source 0 is no faster than the aux source.
70     if (has_glitchless_mux(clk_index) && src == CLOCKS_CLK_SYS_CTRL_SRC_VALUE_CLKSRC_CLK_SYS_AUX) {
71         hw_clear_bits(&clock->ctrl, CLOCKS_CLK_REF_CTRL_SRC_BITS);
72         while (!(clock->selected & 1u))
73             tight_loop_contents();
74     }
75     // If no glitchless mux, cleanly stop the clock to avoid glitches
76     // propagating when changing aux mux. Note it would be a really bad idea
77     // to do this on one of the glitchless clocks (clk_sys, clk_ref).
78     else {
79         // Disable clock. On clk_ref and clk_sys this does nothing,
80         // all other clocks have the ENABLE bit in the same position.
81         hw_clear_bits(&clock->ctrl, CLOCKS_CLK_GPOUT0_CTRL_ENABLE_BITS);
82         if (configured_freq[clk_index] > 0) {
83             // Delay for 3 cycles of the target clock, for ENABLE propagation.
84             // Note XOSC_COUNT is not helpful here because XOSC is not
85             // necessarily running, nor is timer...:
86             uint delay_cyc = configured_freq[clk_sys] / configured_freq[clk_index] + 1;
87             busy_wait_at_least_cycles(delay_cyc * 3);
88         }
89     }
90 
91     // Set aux mux first, and then glitchless mux if this clock has one
92     hw_write_masked(&clock->ctrl,
93         (auxsrc << CLOCKS_CLK_SYS_CTRL_AUXSRC_LSB),
94         CLOCKS_CLK_SYS_CTRL_AUXSRC_BITS
95     );
96 
97     if (has_glitchless_mux(clk_index)) {
98         hw_write_masked(&clock->ctrl,
99             src << CLOCKS_CLK_REF_CTRL_SRC_LSB,
100             CLOCKS_CLK_REF_CTRL_SRC_BITS
101         );
102         while (!(clock->selected & (1u << src)))
103             tight_loop_contents();
104     }
105 
106     // Enable clock. On clk_ref and clk_sys this does nothing,
107     // all other clocks have the ENABLE bit in the same position.
108     hw_set_bits(&clock->ctrl, CLOCKS_CLK_GPOUT0_CTRL_ENABLE_BITS);
109 
110     // Now that the source is configured, we can trust that the user-supplied
111     // divisor is a safe value.
112     clock->div = div;
113 
114     // Store the configured frequency
115     configured_freq[clk_index] = (uint32_t)(((uint64_t) src_freq << 8) / div);
116 
117     return true;
118 }
119 /// \end::clock_configure[]
120 
clocks_init(void)121 void clocks_init(void) {
122     // Start tick in watchdog, the argument is in 'cycles per microsecond' i.e. MHz
123     watchdog_start_tick(XOSC_KHZ / KHZ);
124 
125     // Everything is 48MHz on FPGA apart from RTC. Otherwise set to 0 and will be set in clock configure
126     if (running_on_fpga()) {
127         for (uint i = 0; i < CLK_COUNT; i++) {
128             configured_freq[i] = 48 * MHZ;
129         }
130         configured_freq[clk_rtc] = RTC_CLOCK_FREQ_HZ;
131         return;
132     }
133 
134     // Disable resus that may be enabled from previous software
135     clocks_hw->resus.ctrl = 0;
136 
137     // Enable the xosc
138     xosc_init();
139 
140     // Before we touch PLLs, switch sys and ref cleanly away from their aux sources.
141     hw_clear_bits(&clocks_hw->clk[clk_sys].ctrl, CLOCKS_CLK_SYS_CTRL_SRC_BITS);
142     while (clocks_hw->clk[clk_sys].selected != 0x1)
143         tight_loop_contents();
144     hw_clear_bits(&clocks_hw->clk[clk_ref].ctrl, CLOCKS_CLK_REF_CTRL_SRC_BITS);
145     while (clocks_hw->clk[clk_ref].selected != 0x1)
146         tight_loop_contents();
147 
148     /// \tag::pll_init[]
149     pll_init(pll_sys, PLL_COMMON_REFDIV, PLL_SYS_VCO_FREQ_KHZ * KHZ, PLL_SYS_POSTDIV1, PLL_SYS_POSTDIV2);
150     pll_init(pll_usb, PLL_COMMON_REFDIV, PLL_USB_VCO_FREQ_KHZ * KHZ, PLL_USB_POSTDIV1, PLL_USB_POSTDIV2);
151     /// \end::pll_init[]
152 
153     // Configure clocks
154     // CLK_REF = XOSC (usually) 12MHz / 1 = 12MHz
155     clock_configure(clk_ref,
156                     CLOCKS_CLK_REF_CTRL_SRC_VALUE_XOSC_CLKSRC,
157                     0, // No aux mux
158                     XOSC_KHZ * KHZ,
159                     XOSC_KHZ * KHZ);
160 
161     /// \tag::configure_clk_sys[]
162     // CLK SYS = PLL SYS (usually) 125MHz / 1 = 125MHz
163     clock_configure(clk_sys,
164                     CLOCKS_CLK_SYS_CTRL_SRC_VALUE_CLKSRC_CLK_SYS_AUX,
165                     CLOCKS_CLK_SYS_CTRL_AUXSRC_VALUE_CLKSRC_PLL_SYS,
166                     SYS_CLK_KHZ * KHZ,
167                     SYS_CLK_KHZ * KHZ);
168     /// \end::configure_clk_sys[]
169 
170     // CLK USB = PLL USB 48MHz / 1 = 48MHz
171     clock_configure(clk_usb,
172                     0, // No GLMUX
173                     CLOCKS_CLK_USB_CTRL_AUXSRC_VALUE_CLKSRC_PLL_USB,
174                     USB_CLK_KHZ * KHZ,
175                     USB_CLK_KHZ * KHZ);
176 
177     // CLK ADC = PLL USB 48MHZ / 1 = 48MHz
178     clock_configure(clk_adc,
179                     0, // No GLMUX
180                     CLOCKS_CLK_ADC_CTRL_AUXSRC_VALUE_CLKSRC_PLL_USB,
181                     USB_CLK_KHZ * KHZ,
182                     USB_CLK_KHZ * KHZ);
183 
184     // CLK RTC = PLL USB 48MHz / 1024 = 46875Hz
185     clock_configure(clk_rtc,
186                     0, // No GLMUX
187                     CLOCKS_CLK_RTC_CTRL_AUXSRC_VALUE_CLKSRC_PLL_USB,
188                     USB_CLK_KHZ * KHZ,
189                     RTC_CLOCK_FREQ_HZ);
190 
191     // CLK PERI = clk_sys. Used as reference clock for Peripherals. No dividers so just select and enable
192     // Normally choose clk_sys or clk_usb
193     clock_configure(clk_peri,
194                     0,
195                     CLOCKS_CLK_PERI_CTRL_AUXSRC_VALUE_CLK_SYS,
196                     SYS_CLK_KHZ * KHZ,
197                     SYS_CLK_KHZ * KHZ);
198 }
199 
200 /// \tag::clock_get_hz[]
clock_get_hz(enum clock_index clk_index)201 uint32_t clock_get_hz(enum clock_index clk_index) {
202     return configured_freq[clk_index];
203 }
204 /// \end::clock_get_hz[]
205 
clock_set_reported_hz(enum clock_index clk_index,uint hz)206 void clock_set_reported_hz(enum clock_index clk_index, uint hz) {
207     configured_freq[clk_index] = hz;
208 }
209 
210 /// \tag::frequency_count_khz[]
frequency_count_khz(uint src)211 uint32_t frequency_count_khz(uint src) {
212     fc_hw_t *fc = &clocks_hw->fc0;
213 
214     // If frequency counter is running need to wait for it. It runs even if the source is NULL
215     while(fc->status & CLOCKS_FC0_STATUS_RUNNING_BITS) {
216         tight_loop_contents();
217     }
218 
219     // Set reference freq
220     fc->ref_khz = clock_get_hz(clk_ref) / 1000;
221 
222     // FIXME: Don't pick random interval. Use best interval
223     fc->interval = 10;
224 
225     // No min or max
226     fc->min_khz = 0;
227     fc->max_khz = 0xffffffff;
228 
229     // Set SRC which automatically starts the measurement
230     fc->src = src;
231 
232     while(!(fc->status & CLOCKS_FC0_STATUS_DONE_BITS)) {
233         tight_loop_contents();
234     }
235 
236     // Return the result
237     return fc->result >> CLOCKS_FC0_RESULT_KHZ_LSB;
238 }
239 /// \end::frequency_count_khz[]
240 
clocks_handle_resus(void)241 static void clocks_handle_resus(void) {
242     // Set clk_sys back to the ref clock rather than it being forced to clk_ref
243     // by resus. Call the user's resus callback if they have set one
244 
245     // CLK SYS = CLK_REF. Must be running for this code to be running
246     uint clk_ref_freq = clock_get_hz(clk_ref);
247     clock_configure(clk_sys,
248                     CLOCKS_CLK_SYS_CTRL_SRC_VALUE_CLK_REF,
249                     0,
250                     clk_ref_freq,
251                     clk_ref_freq);
252 
253     // Assert we have been resussed
254     assert(clocks_hw->resus.status & CLOCKS_CLK_SYS_RESUS_STATUS_RESUSSED_BITS);
255 
256     // Now we have fixed clk_sys we can safely remove the resus
257     hw_set_bits(&clocks_hw->resus.ctrl, CLOCKS_CLK_SYS_RESUS_CTRL_CLEAR_BITS);
258     hw_clear_bits(&clocks_hw->resus.ctrl, CLOCKS_CLK_SYS_RESUS_CTRL_CLEAR_BITS);
259 
260     // Now we should no longer be resussed
261     assert(!(clocks_hw->resus.status & CLOCKS_CLK_SYS_RESUS_STATUS_RESUSSED_BITS));
262 
263     // Call the user's callback to notify them of the resus event
264     if (_resus_callback) {
265         _resus_callback();
266     }
267 }
268 
clocks_irq_handler(void)269 static void clocks_irq_handler(void) {
270     // Clocks interrupt handler. Only resus but handle irq
271     // defensively just in case.
272     uint32_t ints = clocks_hw->ints;
273 
274     if (ints & CLOCKS_INTE_CLK_SYS_RESUS_BITS) {
275         ints &= ~CLOCKS_INTE_CLK_SYS_RESUS_BITS;
276         clocks_handle_resus();
277     }
278 
279 #ifndef NDEBUG
280     if (ints) {
281         panic("Unexpected clocks irq\n");
282     }
283 #endif
284 }
285 
clocks_enable_resus(resus_callback_t resus_callback)286 void clocks_enable_resus(resus_callback_t resus_callback) {
287     // Restart clk_sys if it is stopped by forcing it
288     // to the default source of clk_ref. If clk_ref stops running this will
289     // not work.
290 
291     // Store user's resus callback
292     _resus_callback = resus_callback;
293 
294     irq_set_exclusive_handler(CLOCKS_IRQ, clocks_irq_handler);
295 
296     // Enable the resus interrupt in clocks
297     clocks_hw->inte = CLOCKS_INTE_CLK_SYS_RESUS_BITS;
298 
299     // Enable the clocks irq
300     irq_set_enabled(CLOCKS_IRQ, true);
301 
302     // 2 * clk_ref freq / clk_sys_min_freq;
303     // assume clk_ref is 3MHz and we want clk_sys to be no lower than 1MHz
304     uint timeout = 2 * 3 * 1;
305 
306     // Enable resus with the maximum timeout
307     clocks_hw->resus.ctrl = CLOCKS_CLK_SYS_RESUS_CTRL_ENABLE_BITS | timeout;
308 }
309 
clock_gpio_init_int_frac(uint gpio,uint src,uint32_t div_int,uint8_t div_frac)310 void clock_gpio_init_int_frac(uint gpio, uint src, uint32_t div_int, uint8_t div_frac) {
311     // Bit messy but it's as much code to loop through a lookup
312     // table. The sources for each gpout generators are the same
313     // so just call with the sources from GP0
314     uint gpclk = 0;
315     if      (gpio == 21) gpclk = clk_gpout0;
316     else if (gpio == 23) gpclk = clk_gpout1;
317     else if (gpio == 24) gpclk = clk_gpout2;
318     else if (gpio == 25) gpclk = clk_gpout3;
319     else {
320         invalid_params_if(CLOCKS, true);
321     }
322 
323     // Set up the gpclk generator
324     clocks_hw->clk[gpclk].ctrl = (src << CLOCKS_CLK_GPOUT0_CTRL_AUXSRC_LSB) |
325                                  CLOCKS_CLK_GPOUT0_CTRL_ENABLE_BITS;
326     clocks_hw->clk[gpclk].div = (div_int << CLOCKS_CLK_GPOUT0_DIV_INT_LSB) | div_frac;
327 
328     // Set gpio pin to gpclock function
329     gpio_set_function(gpio, GPIO_FUNC_GPCK);
330 }
331 
332 static const uint8_t gpin0_src[CLK_COUNT] = {
333     CLOCKS_CLK_GPOUT0_CTRL_AUXSRC_VALUE_CLKSRC_GPIN0, // CLK_GPOUT0
334     CLOCKS_CLK_GPOUT1_CTRL_AUXSRC_VALUE_CLKSRC_GPIN0, // CLK_GPOUT1
335     CLOCKS_CLK_GPOUT2_CTRL_AUXSRC_VALUE_CLKSRC_GPIN0, // CLK_GPOUT2
336     CLOCKS_CLK_GPOUT3_CTRL_AUXSRC_VALUE_CLKSRC_GPIN0, // CLK_GPOUT3
337     CLOCKS_CLK_REF_CTRL_AUXSRC_VALUE_CLKSRC_GPIN0,    // CLK_REF
338     CLOCKS_CLK_SYS_CTRL_AUXSRC_VALUE_CLKSRC_GPIN0,    // CLK_SYS
339     CLOCKS_CLK_PERI_CTRL_AUXSRC_VALUE_CLKSRC_GPIN0,   // CLK_PERI
340     CLOCKS_CLK_USB_CTRL_AUXSRC_VALUE_CLKSRC_GPIN0,    // CLK_USB
341     CLOCKS_CLK_ADC_CTRL_AUXSRC_VALUE_CLKSRC_GPIN0,    // CLK_ADC
342     CLOCKS_CLK_RTC_CTRL_AUXSRC_VALUE_CLKSRC_GPIN0,    // CLK_RTC
343 };
344 
345 // Assert GPIN1 is GPIN0 + 1
346 static_assert(CLOCKS_CLK_GPOUT0_CTRL_AUXSRC_VALUE_CLKSRC_GPIN1 == (CLOCKS_CLK_GPOUT0_CTRL_AUXSRC_VALUE_CLKSRC_GPIN0 + 1), "hw mismatch");
347 static_assert(CLOCKS_CLK_GPOUT1_CTRL_AUXSRC_VALUE_CLKSRC_GPIN1 == (CLOCKS_CLK_GPOUT1_CTRL_AUXSRC_VALUE_CLKSRC_GPIN0 + 1), "hw mismatch");
348 static_assert(CLOCKS_CLK_GPOUT2_CTRL_AUXSRC_VALUE_CLKSRC_GPIN1 == (CLOCKS_CLK_GPOUT2_CTRL_AUXSRC_VALUE_CLKSRC_GPIN0 + 1), "hw mismatch");
349 static_assert(CLOCKS_CLK_GPOUT3_CTRL_AUXSRC_VALUE_CLKSRC_GPIN1 == (CLOCKS_CLK_GPOUT3_CTRL_AUXSRC_VALUE_CLKSRC_GPIN0 + 1), "hw mismatch");
350 static_assert(CLOCKS_CLK_REF_CTRL_AUXSRC_VALUE_CLKSRC_GPIN1    == (CLOCKS_CLK_REF_CTRL_AUXSRC_VALUE_CLKSRC_GPIN0    + 1), "hw mismatch");
351 static_assert(CLOCKS_CLK_SYS_CTRL_AUXSRC_VALUE_CLKSRC_GPIN1    == (CLOCKS_CLK_SYS_CTRL_AUXSRC_VALUE_CLKSRC_GPIN0    + 1), "hw mismatch");
352 static_assert(CLOCKS_CLK_PERI_CTRL_AUXSRC_VALUE_CLKSRC_GPIN1   == (CLOCKS_CLK_PERI_CTRL_AUXSRC_VALUE_CLKSRC_GPIN0   + 1), "hw mismatch");
353 static_assert(CLOCKS_CLK_USB_CTRL_AUXSRC_VALUE_CLKSRC_GPIN1    == (CLOCKS_CLK_USB_CTRL_AUXSRC_VALUE_CLKSRC_GPIN0    + 1), "hw mismatch");
354 static_assert(CLOCKS_CLK_ADC_CTRL_AUXSRC_VALUE_CLKSRC_GPIN1    == (CLOCKS_CLK_ADC_CTRL_AUXSRC_VALUE_CLKSRC_GPIN0    + 1), "hw mismatch");
355 static_assert(CLOCKS_CLK_RTC_CTRL_AUXSRC_VALUE_CLKSRC_GPIN1    == (CLOCKS_CLK_RTC_CTRL_AUXSRC_VALUE_CLKSRC_GPIN0    + 1), "hw mismatch");
356 
clock_configure_gpin(enum clock_index clk_index,uint gpio,uint32_t src_freq,uint32_t freq)357 bool clock_configure_gpin(enum clock_index clk_index, uint gpio, uint32_t src_freq, uint32_t freq) {
358     // Configure a clock to run from a GPIO input
359     uint gpin = 0;
360     if      (gpio == 20) gpin = 0;
361     else if (gpio == 22) gpin = 1;
362     else {
363         invalid_params_if(CLOCKS, true);
364     }
365 
366     // Work out sources. GPIN is always an auxsrc
367     uint src = 0;
368 
369     // GPIN1 == GPIN0 + 1
370     uint auxsrc = gpin0_src[clk_index] + gpin;
371 
372     if (has_glitchless_mux(clk_index)) {
373         // AUX src is always 1
374         src = 1;
375     }
376 
377     // Set the GPIO function
378     gpio_set_function(gpio, GPIO_FUNC_GPCK);
379 
380     // Now we have the src, auxsrc, and configured the gpio input
381     // call clock configure to run the clock from a gpio
382     return clock_configure(clk_index, src, auxsrc, src_freq, freq);
383 }
384