1 /*
2 * Copyright (c) 2020 Raspberry Pi (Trading) Ltd.
3 *
4 * SPDX-License-Identifier: BSD-3-Clause
5 */
6
7 #include "hardware/timer.h"
8 #include "hardware/irq.h"
9 #include "hardware/sync.h"
10 #include "hardware/claim.h"
11
12 check_hw_layout(timer_hw_t, ints, TIMER_INTS_OFFSET);
13
14 static hardware_alarm_callback_t alarm_callbacks[NUM_TIMERS];
15 static uint32_t target_hi[NUM_TIMERS];
16 static uint8_t timer_callbacks_pending;
17
18 static_assert(NUM_TIMERS <= 4, "");
19 static uint8_t claimed;
20
hardware_alarm_claim(uint alarm_num)21 void hardware_alarm_claim(uint alarm_num) {
22 check_hardware_alarm_num_param(alarm_num);
23 hw_claim_or_assert(&claimed, alarm_num, "Hardware alarm %d already claimed");
24 }
25
hardware_alarm_unclaim(uint alarm_num)26 void hardware_alarm_unclaim(uint alarm_num) {
27 check_hardware_alarm_num_param(alarm_num);
28 hw_claim_clear(&claimed, alarm_num);
29 }
30
hardware_alarm_is_claimed(uint alarm_num)31 bool hardware_alarm_is_claimed(uint alarm_num) {
32 check_hardware_alarm_num_param(alarm_num);
33 return hw_is_claimed(&claimed, alarm_num);
34 }
35
hardware_alarm_claim_unused(bool required)36 int hardware_alarm_claim_unused(bool required) {
37 return hw_claim_unused_from_range(&claimed, required, 0, NUM_TIMERS - 1, "No timers available");
38 }
39
40 /// tag::time_us_64[]
time_us_64()41 uint64_t time_us_64() {
42 // Need to make sure that the upper 32 bits of the timer
43 // don't change, so read that first
44 uint32_t hi = timer_hw->timerawh;
45 uint32_t lo;
46 do {
47 // Read the lower 32 bits
48 lo = timer_hw->timerawl;
49 // Now read the upper 32 bits again and
50 // check that it hasn't incremented. If it has loop around
51 // and read the lower 32 bits again to get an accurate value
52 uint32_t next_hi = timer_hw->timerawh;
53 if (hi == next_hi) break;
54 hi = next_hi;
55 } while (true);
56 return ((uint64_t) hi << 32u) | lo;
57 }
58 /// end::time_us_64[]
59
60 /// \tag::busy_wait[]
busy_wait_us_32(uint32_t delay_us)61 void busy_wait_us_32(uint32_t delay_us) {
62 if (0 <= (int32_t)delay_us) {
63 // we only allow 31 bits, otherwise we could have a race in the loop below with
64 // values very close to 2^32
65 uint32_t start = timer_hw->timerawl;
66 while (timer_hw->timerawl - start < delay_us) {
67 tight_loop_contents();
68 }
69 } else {
70 busy_wait_us(delay_us);
71 }
72 }
73
busy_wait_us(uint64_t delay_us)74 void busy_wait_us(uint64_t delay_us) {
75 uint64_t base = time_us_64();
76 uint64_t target = base + delay_us;
77 if (target < base) {
78 target = (uint64_t)-1;
79 }
80 absolute_time_t t;
81 update_us_since_boot(&t, target);
82 busy_wait_until(t);
83 }
84
busy_wait_ms(uint32_t delay_ms)85 void busy_wait_ms(uint32_t delay_ms)
86 {
87 if (delay_ms <= 0x7fffffffu / 1000) {
88 busy_wait_us_32(delay_ms * 1000);
89 } else {
90 busy_wait_us(delay_ms * 1000ull);
91 }
92 }
93
busy_wait_until(absolute_time_t t)94 void busy_wait_until(absolute_time_t t) {
95 uint64_t target = to_us_since_boot(t);
96 uint32_t hi_target = (uint32_t)(target >> 32u);
97 uint32_t hi = timer_hw->timerawh;
98 while (hi < hi_target) {
99 hi = timer_hw->timerawh;
100 tight_loop_contents();
101 }
102 while (hi == hi_target && timer_hw->timerawl < (uint32_t) target) {
103 hi = timer_hw->timerawh;
104 tight_loop_contents();
105 }
106 }
107 /// \end::busy_wait[]
108
harware_alarm_irq_number(uint alarm_num)109 static inline uint harware_alarm_irq_number(uint alarm_num) {
110 return TIMER_IRQ_0 + alarm_num;
111 }
112
hardware_alarm_irq_handler(void)113 static void hardware_alarm_irq_handler(void) {
114 // Determine which timer this IRQ is for
115 uint alarm_num = __get_current_exception() - VTABLE_FIRST_IRQ - TIMER_IRQ_0;
116 check_hardware_alarm_num_param(alarm_num);
117
118 hardware_alarm_callback_t callback = NULL;
119
120 spin_lock_t *lock = spin_lock_instance(PICO_SPINLOCK_ID_TIMER);
121 uint32_t save = spin_lock_blocking(lock);
122 // Clear the timer IRQ (inside lock, because we check whether we have handled the IRQ yet in alarm_set by looking at the interrupt status
123 timer_hw->intr = 1u << alarm_num;
124 // Clear any forced IRQ
125 hw_clear_bits(&timer_hw->intf, 1u << alarm_num);
126
127 // make sure the IRQ is still valid
128 if (timer_callbacks_pending & (1u << alarm_num)) {
129 // Now check whether we have a timer event to handle that isn't already obsolete (this could happen if we
130 // were already in the IRQ handler before someone else changed the timer setup
131 if (timer_hw->timerawh >= target_hi[alarm_num]) {
132 // we have reached the right high word as well as low word value
133 callback = alarm_callbacks[alarm_num];
134 timer_callbacks_pending &= (uint8_t)~(1u << alarm_num);
135 } else {
136 // try again in 2^32 us
137 timer_hw->alarm[alarm_num] = timer_hw->alarm[alarm_num]; // re-arm the timer
138 }
139 }
140
141 spin_unlock(lock, save);
142
143 if (callback) {
144 callback(alarm_num);
145 }
146 }
147
hardware_alarm_set_callback(uint alarm_num,hardware_alarm_callback_t callback)148 void hardware_alarm_set_callback(uint alarm_num, hardware_alarm_callback_t callback) {
149 // todo check current core owner
150 // note this should probably be subsumed by irq_set_exclusive_handler anyway, since that
151 // should disallow IRQ handlers on both cores
152 check_hardware_alarm_num_param(alarm_num);
153 uint irq_num = harware_alarm_irq_number(alarm_num);
154 spin_lock_t *lock = spin_lock_instance(PICO_SPINLOCK_ID_TIMER);
155 uint32_t save = spin_lock_blocking(lock);
156 if (callback) {
157 if (hardware_alarm_irq_handler != irq_get_vtable_handler(irq_num)) {
158 // note that set_exclusive will silently allow you to set the handler to the same thing
159 // since it is idempotent, which means we don't need to worry about locking ourselves
160 irq_set_exclusive_handler(irq_num, hardware_alarm_irq_handler);
161 irq_set_enabled(irq_num, true);
162 // Enable interrupt in block and at processor
163 hw_set_bits(&timer_hw->inte, 1u << alarm_num);
164 }
165 alarm_callbacks[alarm_num] = callback;
166 } else {
167 alarm_callbacks[alarm_num] = NULL;
168 timer_callbacks_pending &= (uint8_t)~(1u << alarm_num);
169 irq_remove_handler(irq_num, hardware_alarm_irq_handler);
170 irq_set_enabled(irq_num, false);
171 }
172 spin_unlock(lock, save);
173 }
174
hardware_alarm_set_target(uint alarm_num,absolute_time_t target)175 bool hardware_alarm_set_target(uint alarm_num, absolute_time_t target) {
176 bool missed;
177 uint64_t now = time_us_64();
178 uint64_t t = to_us_since_boot(target);
179 if (now >= t) {
180 missed = true;
181 } else {
182 missed = false;
183
184 // 1) actually set the hardware timer
185 spin_lock_t *lock = spin_lock_instance(PICO_SPINLOCK_ID_TIMER);
186 uint32_t save = spin_lock_blocking(lock);
187 uint8_t old_timer_callbacks_pending = timer_callbacks_pending;
188 timer_callbacks_pending |= (uint8_t)(1u << alarm_num);
189 timer_hw->intr = 1u << alarm_num; // clear any IRQ
190 timer_hw->alarm[alarm_num] = (uint32_t) t;
191 // Set the alarm. Writing time should arm it
192 target_hi[alarm_num] = (uint32_t)(t >> 32u);
193
194 // 2) check for races
195 if (!(timer_hw->armed & 1u << alarm_num)) {
196 // not armed, so has already fired .. IRQ must be pending (we are still under lock)
197 assert(timer_hw->ints & 1u << alarm_num);
198 } else {
199 if (time_us_64() >= t) {
200 // we are already at or past the right time; there is no point in us racing against the IRQ
201 // we are about to generate. note however that, if there was already a timer pending before,
202 // then we still let the IRQ fire, as whatever it was, is not handled by our setting missed=true here
203 missed = true;
204 if (timer_callbacks_pending != old_timer_callbacks_pending) {
205 // disarm the timer
206 timer_hw->armed = 1u << alarm_num;
207 // clear the IRQ...
208 timer_hw->intr = 1u << alarm_num;
209 // ... including anything pending on the processor - perhaps unnecessary, but
210 // our timer flag says we aren't expecting anything.
211 irq_clear(harware_alarm_irq_number(alarm_num));
212 // and clear our flag so that if the IRQ handler is already active (because it is on
213 // the other core) it will also skip doing anything
214 timer_callbacks_pending = old_timer_callbacks_pending;
215 }
216 }
217 }
218 spin_unlock(lock, save);
219 // note at this point any pending timer IRQ can likely run
220 }
221 return missed;
222 }
223
hardware_alarm_cancel(uint alarm_num)224 void hardware_alarm_cancel(uint alarm_num) {
225 check_hardware_alarm_num_param(alarm_num);
226
227 spin_lock_t *lock = spin_lock_instance(PICO_SPINLOCK_ID_TIMER);
228 uint32_t save = spin_lock_blocking(lock);
229 timer_hw->armed = 1u << alarm_num;
230 timer_callbacks_pending &= (uint8_t)~(1u << alarm_num);
231 spin_unlock(lock, save);
232 }
233
hardware_alarm_force_irq(uint alarm_num)234 void hardware_alarm_force_irq(uint alarm_num) {
235 check_hardware_alarm_num_param(alarm_num);
236 spin_lock_t *lock = spin_lock_instance(PICO_SPINLOCK_ID_TIMER);
237 uint32_t save = spin_lock_blocking(lock);
238 timer_callbacks_pending |= (uint8_t)(1u << alarm_num);
239 spin_unlock(lock, save);
240 hw_set_bits(&timer_hw->intf, 1u << alarm_num);
241 }