1 /*
2 * Copyright (c) 2020 Raspberry Pi (Trading) Ltd.
3 *
4 * SPDX-License-Identifier: BSD-3-Clause
5 */
6
7 #include "pico/multicore.h"
8 #include "hardware/sync.h"
9 #include "hardware/irq.h"
10 #include "hardware/structs/scb.h"
11 #include "hardware/structs/sio.h"
12 #include "hardware/regs/psm.h"
13 #include "hardware/claim.h"
14 #if PICO_USE_STACK_GUARDS
15 #include "pico/runtime.h"
16 #endif
17
18 // note that these are not reset by core reset, however for now, I think people resetting cores
19 // and then relying on multicore_lockout for that core without re-initializing, is probably
20 // something we can live with breaking.
21 //
22 // whilst we could clear this in core 1 reset path, that doesn't necessarily catch all,
23 // and means pulling in this array even if multicore_lockout is not used.
24 static bool lockout_victim_initialized[NUM_CORES];
25
multicore_fifo_push_blocking_inline(uint32_t data)26 static inline void multicore_fifo_push_blocking_inline(uint32_t data) {
27 // We wait for the fifo to have some space
28 while (!multicore_fifo_wready())
29 tight_loop_contents();
30
31 sio_hw->fifo_wr = data;
32
33 // Fire off an event to the other core
34 __sev();
35 }
36
multicore_fifo_push_blocking(uint32_t data)37 void multicore_fifo_push_blocking(uint32_t data) {
38 multicore_fifo_push_blocking_inline(data);
39 }
40
multicore_fifo_push_timeout_us(uint32_t data,uint64_t timeout_us)41 bool multicore_fifo_push_timeout_us(uint32_t data, uint64_t timeout_us) {
42 absolute_time_t end_time = make_timeout_time_us(timeout_us);
43 // We wait for the fifo to have some space
44 while (!multicore_fifo_wready()) {
45 tight_loop_contents();
46 if (time_reached(end_time)) return false;
47 }
48
49 sio_hw->fifo_wr = data;
50
51 // Fire off an event to the other core
52 __sev();
53 return true;
54 }
55
multicore_fifo_pop_blocking_inline(void)56 static inline uint32_t multicore_fifo_pop_blocking_inline(void) {
57 // If nothing there yet, we wait for an event first,
58 // to try and avoid too much busy waiting
59 while (!multicore_fifo_rvalid())
60 __wfe();
61
62 return sio_hw->fifo_rd;
63 }
64
multicore_fifo_pop_blocking()65 uint32_t multicore_fifo_pop_blocking() {
66 return multicore_fifo_pop_blocking_inline();
67 }
68
multicore_fifo_pop_timeout_us(uint64_t timeout_us,uint32_t * out)69 bool multicore_fifo_pop_timeout_us(uint64_t timeout_us, uint32_t *out) {
70 absolute_time_t end_time = make_timeout_time_us(timeout_us);
71 // If nothing there yet, we wait for an event first,
72 // to try and avoid too much busy waiting
73 while (!multicore_fifo_rvalid()) {
74 __wfe();
75 if (time_reached(end_time)) return false;
76 }
77
78 *out = sio_hw->fifo_rd;
79 return true;
80 }
81
82 // Default stack for core1 ... if multicore_launch_core1 is not included then .stack1 section will be garbage collected
83 static uint32_t __attribute__((section(".stack1"))) core1_stack[PICO_CORE1_STACK_SIZE / sizeof(uint32_t)];
84
core1_trampoline(void)85 static void __attribute__ ((naked)) core1_trampoline(void) {
86 pico_default_asm ("pop {r0, r1, pc}");
87 }
88
core1_wrapper(int (* entry)(void),void * stack_base)89 int core1_wrapper(int (*entry)(void), void *stack_base) {
90 #if PICO_USE_STACK_GUARDS
91 // install core1 stack guard
92 runtime_install_stack_guard(stack_base);
93 #else
94 __unused void *ignore = stack_base;
95 #endif
96 irq_init_priorities();
97 return (*entry)();
98 }
99
multicore_reset_core1()100 void multicore_reset_core1() {
101 // Use atomic aliases just in case core 1 is also manipulating some PSM state
102 io_rw_32 *power_off = (io_rw_32 *) (PSM_BASE + PSM_FRCE_OFF_OFFSET);
103 io_rw_32 *power_off_set = hw_set_alias(power_off);
104 io_rw_32 *power_off_clr = hw_clear_alias(power_off);
105
106 // Hard-reset core 1.
107 // Reading back confirms the core 1 reset is in the correct state, but also
108 // forces APB IO bridges to fence on any internal store buffering
109 *power_off_set = PSM_FRCE_OFF_PROC1_BITS;
110 while (!(*power_off & PSM_FRCE_OFF_PROC1_BITS)) tight_loop_contents();
111
112 // Bring core 1 back out of reset. It will drain its own mailbox FIFO, then push
113 // a 0 to our mailbox to tell us it has done this.
114 *power_off_clr = PSM_FRCE_OFF_PROC1_BITS;
115 }
116
multicore_launch_core1_with_stack(void (* entry)(void),uint32_t * stack_bottom,size_t stack_size_bytes)117 void multicore_launch_core1_with_stack(void (*entry)(void), uint32_t *stack_bottom, size_t stack_size_bytes) {
118 assert(!(stack_size_bytes & 3u));
119 uint32_t *stack_ptr = stack_bottom + stack_size_bytes / sizeof(uint32_t);
120 // push 2 values onto top of stack for core1_trampoline
121 stack_ptr -= 3;
122 stack_ptr[0] = (uintptr_t) entry;
123 stack_ptr[1] = (uintptr_t) stack_bottom;
124 stack_ptr[2] = (uintptr_t) core1_wrapper;
125 #if PICO_VTABLE_PER_CORE
126 #warning PICO_VTABLE_PER_CORE==1 is not currently supported in pico_multicore
127 panic_unsupported();
128 #endif
129 multicore_launch_core1_raw(core1_trampoline, stack_ptr, scb_hw->vtor);
130 }
131
multicore_launch_core1(void (* entry)(void))132 void multicore_launch_core1(void (*entry)(void)) {
133 extern uint32_t __StackOneBottom;
134 uint32_t *stack_limit = (uint32_t *) &__StackOneBottom;
135 // hack to reference core1_stack although that pointer is wrong.... core1_stack should always be <= stack_limit, if not boom!
136 uint32_t *stack = core1_stack <= stack_limit ? stack_limit : (uint32_t *) -1;
137 multicore_launch_core1_with_stack(entry, stack, sizeof(core1_stack));
138 }
139
multicore_launch_core1_raw(void (* entry)(void),uint32_t * sp,uint32_t vector_table)140 void multicore_launch_core1_raw(void (*entry)(void), uint32_t *sp, uint32_t vector_table) {
141 // Allow for the fact that the caller may have already enabled the FIFO IRQ for their
142 // own purposes (expecting FIFO content after core 1 is launched). We must disable
143 // the IRQ during the handshake, then restore afterwards.
144 bool enabled = irq_is_enabled(SIO_IRQ_PROC0);
145 irq_set_enabled(SIO_IRQ_PROC0, false);
146
147 // Values to be sent in order over the FIFO from core 0 to core 1
148 //
149 // vector_table is value for VTOR register
150 // sp is initial stack pointer (SP)
151 // entry is the initial program counter (PC) (don't forget to set the thumb bit!)
152 const uint32_t cmd_sequence[] =
153 {0, 0, 1, (uintptr_t) vector_table, (uintptr_t) sp, (uintptr_t) entry};
154
155 uint seq = 0;
156 do {
157 uint cmd = cmd_sequence[seq];
158 // Always drain the READ FIFO (from core 1) before sending a 0
159 if (!cmd) {
160 multicore_fifo_drain();
161 // Execute a SEV as core 1 may be waiting for FIFO space via WFE
162 __sev();
163 }
164 multicore_fifo_push_blocking(cmd);
165 uint32_t response = multicore_fifo_pop_blocking();
166 // Move to next state on correct response (echo-d value) otherwise start over
167 seq = cmd == response ? seq + 1 : 0;
168 } while (seq < count_of(cmd_sequence));
169
170 irq_set_enabled(SIO_IRQ_PROC0, enabled);
171 }
172
173 #define LOCKOUT_MAGIC_START 0x73a8831eu
174 #define LOCKOUT_MAGIC_END (~LOCKOUT_MAGIC_START)
175
176 static_assert(SIO_IRQ_PROC1 == SIO_IRQ_PROC0 + 1, "");
177
178 static mutex_t lockout_mutex;
179 static bool lockout_in_progress;
180
181 // note this method is in RAM because lockout is used when writing to flash
182 // it only makes inline calls
__not_in_flash_func(multicore_lockout_handler)183 static void __isr __not_in_flash_func(multicore_lockout_handler)(void) {
184 multicore_fifo_clear_irq();
185 while (multicore_fifo_rvalid()) {
186 if (sio_hw->fifo_rd == LOCKOUT_MAGIC_START) {
187 uint32_t save = save_and_disable_interrupts();
188 multicore_fifo_push_blocking_inline(LOCKOUT_MAGIC_START);
189 while (multicore_fifo_pop_blocking_inline() != LOCKOUT_MAGIC_END) {
190 tight_loop_contents(); // not tight but endless potentially
191 }
192 restore_interrupts(save);
193 multicore_fifo_push_blocking_inline(LOCKOUT_MAGIC_END);
194 }
195 }
196 }
197
check_lockout_mutex_init(void)198 static void check_lockout_mutex_init(void) {
199 // use known available lock - we only need it briefly
200 uint32_t save = hw_claim_lock();
201 if (!mutex_is_initialized(&lockout_mutex)) {
202 mutex_init(&lockout_mutex);
203 }
204 hw_claim_unlock(save);
205 }
206
multicore_lockout_victim_init(void)207 void multicore_lockout_victim_init(void) {
208 check_lockout_mutex_init();
209 uint core_num = get_core_num();
210 irq_set_exclusive_handler(SIO_IRQ_PROC0 + core_num, multicore_lockout_handler);
211 irq_set_enabled(SIO_IRQ_PROC0 + core_num, true);
212 lockout_victim_initialized[core_num] = true;
213 }
214
multicore_lockout_handshake(uint32_t magic,absolute_time_t until)215 static bool multicore_lockout_handshake(uint32_t magic, absolute_time_t until) {
216 uint irq_num = SIO_IRQ_PROC0 + get_core_num();
217 bool enabled = irq_is_enabled(irq_num);
218 if (enabled) irq_set_enabled(irq_num, false);
219 bool rc = false;
220 do {
221 int64_t next_timeout_us = absolute_time_diff_us(get_absolute_time(), until);
222 if (next_timeout_us < 0) {
223 break;
224 }
225 multicore_fifo_push_timeout_us(magic, (uint64_t)next_timeout_us);
226 next_timeout_us = absolute_time_diff_us(get_absolute_time(), until);
227 if (next_timeout_us < 0) {
228 break;
229 }
230 uint32_t word = 0;
231 if (!multicore_fifo_pop_timeout_us((uint64_t)next_timeout_us, &word)) {
232 break;
233 }
234 if (word == magic) {
235 rc = true;
236 }
237 } while (!rc);
238 if (enabled) irq_set_enabled(irq_num, true);
239 return rc;
240 }
241
multicore_lockout_start_block_until(absolute_time_t until)242 static bool multicore_lockout_start_block_until(absolute_time_t until) {
243 check_lockout_mutex_init();
244 if (!mutex_enter_block_until(&lockout_mutex, until)) {
245 return false;
246 }
247 hard_assert(!lockout_in_progress);
248 bool rc = multicore_lockout_handshake(LOCKOUT_MAGIC_START, until);
249 lockout_in_progress = rc;
250 mutex_exit(&lockout_mutex);
251 return rc;
252 }
253
multicore_lockout_start_timeout_us(uint64_t timeout_us)254 bool multicore_lockout_start_timeout_us(uint64_t timeout_us) {
255 return multicore_lockout_start_block_until(make_timeout_time_us(timeout_us));
256 }
257
multicore_lockout_start_blocking(void)258 void multicore_lockout_start_blocking(void) {
259 multicore_lockout_start_block_until(at_the_end_of_time);
260 }
261
multicore_lockout_end_block_until(absolute_time_t until)262 static bool multicore_lockout_end_block_until(absolute_time_t until) {
263 assert(mutex_is_initialized(&lockout_mutex));
264 if (!mutex_enter_block_until(&lockout_mutex, until)) {
265 return false;
266 }
267 assert(lockout_in_progress);
268 bool rc = multicore_lockout_handshake(LOCKOUT_MAGIC_END, until);
269 if (rc) {
270 lockout_in_progress = false;
271 }
272 mutex_exit(&lockout_mutex);
273 return rc;
274 }
275
multicore_lockout_end_timeout_us(uint64_t timeout_us)276 bool multicore_lockout_end_timeout_us(uint64_t timeout_us) {
277 return multicore_lockout_end_block_until(make_timeout_time_us(timeout_us));
278 }
279
multicore_lockout_end_blocking(void)280 void multicore_lockout_end_blocking(void) {
281 multicore_lockout_end_block_until(at_the_end_of_time);
282 }
283
multicore_lockout_victim_is_initialized(uint core_num)284 bool multicore_lockout_victim_is_initialized(uint core_num) {
285 return lockout_victim_initialized[core_num];
286 }