1 /*
2  * Copyright (c) 2009 Corey Tabaka
3  *
4  * Use of this source code is governed by a MIT-style
5  * license that can be found in the LICENSE file or at
6  * https://opensource.org/licenses/MIT
7  */
8 #include <sys/types.h>
9 #include <lk/err.h>
10 #include <lk/reg.h>
11 #include <lk/debug.h>
12 #include <lk/trace.h>
13 #include <assert.h>
14 #include <kernel/thread.h>
15 #include <kernel/spinlock.h>
16 #include <platform.h>
17 #include <platform/interrupts.h>
18 #include <platform/console.h>
19 #include <platform/timer.h>
20 #include <platform/pc.h>
21 #include <platform/pc/timer.h>
22 #include "platform_p.h"
23 #include <arch/x86.h>
24 #include <inttypes.h>
25 
26 #define LOCAL_TRACE 0
27 
28 // TODO: switch this logic to lib/fixed_point math
29 
30 static platform_timer_callback t_callback;
31 static void *callback_arg;
32 static spin_lock_t lock = SPIN_LOCK_INITIAL_VALUE;
33 
34 static uint64_t ticks_per_ms;
35 
36 // next callback event time in 32.32 fixed point milliseconds
37 static uint64_t next_trigger_time;
38 
39 // if periodic, the delta to set to the next event. if oneshot, 0
40 static uint64_t next_trigger_delta;
41 
42 // time in 32.32 fixed point milliseconds
43 static volatile uint64_t timer_current_time;
44 // delta time per periodic tick in 32.32
45 static uint64_t timer_delta_time;
46 
47 #define INTERNAL_FREQ 1193182ULL
48 #define INTERNAL_FREQ_3X 3579546ULL
49 #define INTERNAL_FREQ_TICKS_PER_MS (INTERNAL_FREQ / 1000u)
50 
51 /* Maximum amount of time that can be program on the timer to schedule the next
52  *  interrupt, in milliseconds */
53 #define MAX_TIMER_INTERVAL 55
54 
pit_current_time(void)55 lk_time_t pit_current_time(void) {
56     spin_lock_saved_state_t state;
57     spin_lock_irqsave(&lock, state);
58 
59     lk_time_t time = (lk_time_t) (timer_current_time >> 32);
60 
61     spin_unlock_irqrestore(&lock, state);
62 
63     return time;
64 }
65 
pit_current_time_hires(void)66 lk_bigtime_t pit_current_time_hires(void) {
67     spin_lock_saved_state_t state;
68     spin_lock_irqsave(&lock, state);
69 
70     lk_bigtime_t time = (lk_bigtime_t) ((timer_current_time >> 22) * 1000) >> 10;
71 
72     spin_unlock_irqrestore(&lock, state);
73 
74     return time;
75 }
76 
pit_timer_tick(void * arg)77 static enum handler_return pit_timer_tick(void *arg) {
78     if (next_trigger_time != 0 || next_trigger_delta) {
79         LTRACEF("ntt %#" PRIx64 ", ntd %#" PRIx64 "\n", next_trigger_time, next_trigger_delta);
80     }
81 
82     spin_lock(&lock);
83     timer_current_time += timer_delta_time;
84     spin_unlock(&lock);
85 
86     lk_time_t time = current_time();
87 
88     if (t_callback && next_trigger_time != 0 && timer_current_time >= next_trigger_time) {
89         if (next_trigger_delta != 0) {
90             uint64_t delta = timer_current_time - next_trigger_time;
91             next_trigger_time = timer_current_time + next_trigger_delta - delta;
92         } else {
93             next_trigger_time = 0;
94         }
95 
96         return t_callback(callback_arg, time);
97     } else {
98         return INT_NO_RESCHEDULE;
99     }
100 }
101 
set_pit_frequency(uint32_t frequency)102 static void set_pit_frequency(uint32_t frequency) {
103     uint32_t count, remainder;
104 
105     LTRACEF("frequency %u\n", frequency);
106 
107     /* figure out the correct divisor for the desired frequency */
108     if (frequency <= 18) {
109         count = 0xffff;
110     } else if (frequency >= INTERNAL_FREQ) {
111         count = 1;
112     } else {
113         count = INTERNAL_FREQ_3X / frequency;
114         remainder = INTERNAL_FREQ_3X % frequency;
115 
116         if (remainder >= INTERNAL_FREQ_3X / 2) {
117             count += 1;
118         }
119 
120         count /= 3;
121         remainder = count % 3;
122 
123         if (remainder >= 1) {
124             count += 1;
125         }
126     }
127 
128     uint16_t divisor = count & 0xffff;
129 
130     /*
131      * funky math that i don't feel like explaining. essentially 32.32 fixed
132      * point representation of the configured timer delta.
133      */
134     timer_delta_time = (3685982306ULL * count) >> 10;
135 
136     LTRACEF("dt %#x.%08x\n", (uint32_t)(timer_delta_time >> 32), (uint32_t)(timer_delta_time & 0xffffffff));
137     LTRACEF("divisor %" PRIu16 "\n", divisor);
138 
139     /*
140      * setup the Programmable Interval Timer
141      * timer 0, mode 2, binary counter, LSB followed by MSB
142      */
143     outp(I8253_CONTROL_REG, 0x34);
144     outp(I8253_DATA_REG, divisor & 0xff); // LSB
145     outp(I8253_DATA_REG, divisor >> 8); // MSB
146 }
147 
pit_init(void)148 void pit_init(void) {
149     // start the PIT at 1Khz in free-running mode to keep a time base
150     timer_current_time = 0;
151     ticks_per_ms = INTERNAL_FREQ/1000;
152     set_pit_frequency(1000); // ~1ms granularity
153     register_int_handler(INT_PIT, &pit_timer_tick, NULL);
154     unmask_interrupt(INT_PIT);
155 }
156 
pit_set_periodic_timer(platform_timer_callback callback,void * arg,lk_time_t interval)157 status_t pit_set_periodic_timer(platform_timer_callback callback, void *arg, lk_time_t interval) {
158     LTRACEF("pit_set_periodic_timer: interval %u\n", interval);
159 
160     spin_lock_saved_state_t state;
161     spin_lock_irqsave(&lock, state);
162 
163     t_callback = callback;
164     callback_arg = arg;
165 
166     next_trigger_delta = (uint64_t) interval << 32;
167     next_trigger_time = timer_current_time + next_trigger_delta;
168 
169     unmask_interrupt(INT_PIT);
170     spin_unlock_irqrestore(&lock, state);
171 
172     return NO_ERROR;
173 }
174 
pit_set_oneshot_timer(platform_timer_callback callback,void * arg,lk_time_t interval)175 status_t pit_set_oneshot_timer(platform_timer_callback callback, void *arg, lk_time_t interval) {
176     LTRACEF("pit_set_oneshot_timer: interval %u\n", interval);
177 
178     spin_lock_saved_state_t state;
179     spin_lock_irqsave(&lock, state);
180 
181     t_callback = callback;
182     callback_arg = arg;
183 
184     next_trigger_delta = 0;
185     next_trigger_time = timer_current_time + ((uint64_t)interval << 32);
186 
187     unmask_interrupt(INT_PIT);
188     spin_unlock_irqrestore(&lock, state);
189 
190     return NO_ERROR;
191 }
192 
pit_cancel_timer(void)193 void pit_cancel_timer(void) {
194     LTRACE;
195 
196     spin_lock_saved_state_t state;
197     spin_lock_irqsave(&lock, state);
198 
199     next_trigger_time = 0;
200 
201     spin_unlock_irqrestore(&lock, state);
202 }
203 
pit_stop_timer(void)204 void pit_stop_timer(void) {
205     LTRACE;
206 
207     spin_lock_saved_state_t state;
208     spin_lock_irqsave(&lock, state);
209 
210     next_trigger_time = 0;
211     next_trigger_delta = 0;
212 
213     // stop the PIT
214     outp(I8253_CONTROL_REG, 0x34);
215     outp(I8253_DATA_REG, 0); // LSB
216     outp(I8253_DATA_REG, 0); // MSB
217     mask_interrupt(INT_PIT);
218 
219     spin_unlock_irqrestore(&lock, state);
220 }
221 
pit_calibrate_tsc(void)222 uint64_t pit_calibrate_tsc(void) {
223     DEBUG_ASSERT(arch_ints_disabled());
224 
225     uint64_t tsc_ticks[5] = {0};
226     uint32_t countdown_ms[5] = {0};
227 
228     uint64_t tsc_freq = 0;
229     for (uint i = 0; i < countof(tsc_ticks); i++) {
230         // calibrate the tsc frequency using the PIT
231         countdown_ms[i] = 2 * (i + 1);
232 
233         uint16_t pic_ticks = INTERNAL_FREQ_TICKS_PER_MS * countdown_ms[i];
234         outp(I8253_CONTROL_REG, 0x30);
235         outp(I8253_DATA_REG, pic_ticks & 0xff); // LSB
236         outp(I8253_DATA_REG, pic_ticks >> 8); // MSB
237 
238         // read the tsc
239         uint64_t tsc_start = __builtin_ia32_rdtsc();
240 
241         // wait for countdown_ms
242         uint8_t status = 0;
243         do {
244             // Send a read-back command that latches the status of ch0
245             outp(I8253_CONTROL_REG, 0xe2);
246             status = inp(I8253_DATA_REG);
247             // Wait for bit 7 (output) to go high and for bit 6 (null count) to go low
248         } while ((status & 0xc0) != 0x80);
249 
250         uint64_t tsc_end = __builtin_ia32_rdtsc();
251         tsc_ticks[i] = tsc_end - tsc_start;
252     }
253 
254     // find the best time
255     uint best_index = 0;
256     for (uint i = 1; i < countof(tsc_ticks); i++) {
257         if (tsc_ticks[i] < tsc_ticks[best_index]) {
258             best_index = i;
259         }
260     }
261 
262     // calculate the tsc frequency
263     tsc_freq = (tsc_ticks[best_index] * 1000) / countdown_ms[best_index];
264     dprintf(INFO, "PIT: calibrated TSC frequency: %" PRIu64 "Hz\n", tsc_freq);
265 
266     // put the PIT back to 1ms countdown
267     set_pit_frequency(1000);
268 
269     return tsc_freq;
270 }
271 
pit_calibrate_lapic(uint32_t (* lapic_read_tick)(void))272 uint32_t pit_calibrate_lapic(uint32_t (*lapic_read_tick)(void)) {
273     DEBUG_ASSERT(arch_ints_disabled());
274 
275     uint64_t lapic_ticks[5] = {0};
276     uint32_t countdown_ms[5] = {0};
277 
278     for (uint i = 0; i < countof(lapic_ticks); i++) {
279         // calibrate the tsc frequency using the PIT
280         countdown_ms[i] = 2 * (i + 1);
281 
282         uint16_t pic_ticks = INTERNAL_FREQ_TICKS_PER_MS * countdown_ms[i];
283         outp(I8253_CONTROL_REG, 0x30);
284         outp(I8253_DATA_REG, pic_ticks & 0xff); // LSB
285         outp(I8253_DATA_REG, pic_ticks >> 8); // MSB
286 
287         // read the tsc
288         uint32_t tick_start = lapic_read_tick();
289 
290         // wait for countdown_ms
291         uint8_t status = 0;
292         do {
293             // Send a read-back command that latches the status of ch0
294             outp(I8253_CONTROL_REG, 0xe2);
295             status = inp(I8253_DATA_REG);
296             // Wait for bit 7 (output) to go high and for bit 6 (null count) to go low
297         } while ((status & 0xc0) != 0x80);
298 
299         uint32_t tick_end = lapic_read_tick();
300         lapic_ticks[i] = tick_start - tick_end;
301     }
302 
303     // find the best time
304     uint best_index = 0;
305     for (uint i = 1; i < countof(lapic_ticks); i++) {
306         if (lapic_ticks[i] < lapic_ticks[best_index]) {
307             best_index = i;
308         }
309     }
310 
311     // calculate the tsc frequency
312     uint32_t freq = (lapic_ticks[best_index] * 1000) / countdown_ms[best_index];
313     dprintf(INFO, "PIT: calibrated local apic frequency: %" PRIu32 "Hz\n", freq);
314 
315     // put the PIT back to 1ms countdown
316     set_pit_frequency(1000);
317 
318     return freq;
319 }