Lines Matching refs:I
48 BN_add() adds I<a> and I<b> and places the result in I<r> (C<r=a+b>).
49 I<r> may be the same B<BIGNUM> as I<a> or I<b>.
51 BN_sub() subtracts I<b> from I<a> and places the result in I<r> (C<r=a-b>).
52 I<r> may be the same B<BIGNUM> as I<a> or I<b>.
54 BN_mul() multiplies I<a> and I<b> and places the result in I<r> (C<r=a*b>).
55 I<r> may be the same B<BIGNUM> as I<a> or I<b>.
58 BN_sqr() takes the square of I<a> and places the result in I<r>
59 (C<r=a^2>). I<r> and I<a> may be the same B<BIGNUM>.
62 BN_div() divides I<a> by I<d> and places the result in I<dv> and the
63 remainder in I<rem> (C<dv=a/d, rem=a%d>). Either of I<dv> and I<rem> may
65 The result is rounded towards zero; thus if I<a> is negative, the
69 BN_mod() corresponds to BN_div() with I<dv> set to B<NULL>.
71 BN_nnmod() reduces I<a> modulo I<m> and places the nonnegative
72 remainder in I<r>.
74 BN_mod_add() adds I<a> to I<b> modulo I<m> and places the nonnegative
75 result in I<r>.
77 BN_mod_sub() subtracts I<b> from I<a> modulo I<m> and places the
78 nonnegative result in I<r>.
80 BN_mod_mul() multiplies I<a> by I<b> and finds the nonnegative
81 remainder respective to modulus I<m> (C<r=(a*b) mod m>). I<r> may be
82 the same B<BIGNUM> as I<a> or I<b>. For more efficient algorithms for
87 BN_mod_sqr() takes the square of I<a> modulo B<m> and places the
88 result in I<r>.
90 BN_exp() raises I<a> to the I<p>-th power and places the result in I<r>
94 BN_mod_exp() computes I<a> to the I<p>-th power modulo I<m> (C<r=a^p %
99 BN_gcd() computes the greatest common divisor of I<a> and I<b> and
100 places the result in I<r>. I<r> may be the same B<BIGNUM> as I<a> or
101 I<b>.
103 For all functions, I<ctx> is a previously allocated B<BN_CTX> used for