/** * @file hci_ecc.c * HCI ECC emulation */ /* * Copyright (c) 2016 Intel Corporation * * SPDX-License-Identifier: Apache-2.0 */ #include #include #include #include #include #include #include #include #include #include #include #include #define BT_DBG_ENABLED IS_ENABLED(CONFIG_BT_DEBUG_HCI_CORE) #define LOG_MODULE_NAME bt_hci_ecc #include "common/log.h" #include "hci_ecc.h" #ifdef CONFIG_BT_HCI_RAW #include #include "hci_raw_internal.h" #else #include "hci_core.h" #endif /* NOTE: This is an advanced setting and should not be changed unless absolutely necessary */ #ifndef CONFIG_BT_HCI_ECC_STACK_SIZE #define CONFIG_BT_HCI_ECC_STACK_SIZE 1100 #endif static struct k_thread ecc_thread_data; static BT_STACK_NOINIT(ecc_thread_stack, 1100); /* based on Core Specification 4.2 Vol 3. Part H 2.3.5.6.1 */ static const bt_u32_t debug_private_key[8] = { 0xcd3c1abd, 0x5899b8a6, 0xeb40b799, 0x4aff607b, 0xd2103f50, 0x74c9b3e3, 0xa3c55f38, 0x3f49f6d4 }; #if defined(CONFIG_BT_USE_DEBUG_KEYS) static const u8_t debug_public_key[64] = { 0xe6, 0x9d, 0x35, 0x0e, 0x48, 0x01, 0x03, 0xcc, 0xdb, 0xfd, 0xf4, 0xac, 0x11, 0x91, 0xf4, 0xef, 0xb9, 0xa5, 0xf9, 0xe9, 0xa7, 0x83, 0x2c, 0x5e, 0x2c, 0xbe, 0x97, 0xf2, 0xd2, 0x03, 0xb0, 0x20, 0x8b, 0xd2, 0x89, 0x15, 0xd0, 0x8e, 0x1c, 0x74, 0x24, 0x30, 0xed, 0x8f, 0xc2, 0x45, 0x63, 0x76, 0x5c, 0x15, 0x52, 0x5a, 0xbf, 0x9a, 0x32, 0x63, 0x6d, 0xeb, 0x2a, 0x65, 0x49, 0x9c, 0x80, 0xdc }; #endif enum { PENDING_PUB_KEY, PENDING_DHKEY, /* Total number of flags - must be at the end of the enum */ NUM_FLAGS, }; static ATOMIC_DEFINE(flags, NUM_FLAGS); //static K_SEM_DEFINE(cmd_sem, 0, 1); static struct k_sem cmd_sem; static struct { u8_t private_key[32]; union { u8_t pk[64]; u8_t dhkey[32]; }; } ecc; static void send_cmd_status(u16_t opcode, u8_t status) { struct bt_hci_evt_cmd_status *evt; struct bt_hci_evt_hdr *hdr; struct net_buf *buf; BT_DBG("opcode %x status %x", opcode, status); buf = bt_buf_get_evt(BT_HCI_EVT_CMD_STATUS, false, K_FOREVER); bt_buf_set_type(buf, BT_BUF_EVT); hdr = net_buf_add(buf, sizeof(*hdr)); hdr->evt = BT_HCI_EVT_CMD_STATUS; hdr->len = sizeof(*evt); evt = net_buf_add(buf, sizeof(*evt)); evt->ncmd = 1U; evt->opcode = sys_cpu_to_le16(opcode); evt->status = status; bt_recv_prio(buf); } static u8_t generate_keys(void) { #if !defined(CONFIG_BT_USE_DEBUG_KEYS) do { int rc; rc = uECC_make_key(ecc.pk, ecc.private_key, &curve_secp256r1); if (rc == TC_CRYPTO_FAIL) { BT_ERR("Failed to create ECC public/private pair"); return BT_HCI_ERR_UNSPECIFIED; } /* make sure generated key isn't debug key */ } while (memcmp(ecc.private_key, debug_private_key, 32) == 0); #else sys_memcpy_swap(&ecc.pk, debug_public_key, 32); sys_memcpy_swap(&ecc.pk[32], &debug_public_key[32], 32); sys_memcpy_swap(ecc.private_key, debug_private_key, 32); #endif return 0; } static void emulate_le_p256_public_key_cmd(void) { struct bt_hci_evt_le_p256_public_key_complete *evt; struct bt_hci_evt_le_meta_event *meta; struct bt_hci_evt_hdr *hdr; struct net_buf *buf; u8_t status; BT_DBG(""); status = generate_keys(); buf = bt_buf_get_rx(BT_BUF_EVT, K_FOREVER); hdr = net_buf_add(buf, sizeof(*hdr)); hdr->evt = BT_HCI_EVT_LE_META_EVENT; hdr->len = sizeof(*meta) + sizeof(*evt); meta = net_buf_add(buf, sizeof(*meta)); meta->subevent = BT_HCI_EVT_LE_P256_PUBLIC_KEY_COMPLETE; evt = net_buf_add(buf, sizeof(*evt)); evt->status = status; if (status) { (void)memset(evt->key, 0, sizeof(evt->key)); } else { /* Convert X and Y coordinates from big-endian (provided * by crypto API) to little endian HCI. */ sys_memcpy_swap(evt->key, ecc.pk, 32); sys_memcpy_swap(&evt->key[32], &ecc.pk[32], 32); } atomic_clear_bit(flags, PENDING_PUB_KEY); bt_recv(buf); } static void emulate_le_generate_dhkey(void) { struct bt_hci_evt_le_generate_dhkey_complete *evt; struct bt_hci_evt_le_meta_event *meta; struct bt_hci_evt_hdr *hdr; struct net_buf *buf; int ret; ret = uECC_valid_public_key(ecc.pk, &curve_secp256r1); if (ret < 0) { BT_ERR("public key is not valid (ret %d)", ret); ret = TC_CRYPTO_FAIL; } else { ret = uECC_shared_secret(ecc.pk, ecc.private_key, ecc.dhkey, &curve_secp256r1); } if (ret == TC_CRYPTO_SUCCESS) { ret = 0; } else { ret = -1; } buf = bt_buf_get_rx(BT_BUF_EVT, K_FOREVER); hdr = net_buf_add(buf, sizeof(*hdr)); hdr->evt = BT_HCI_EVT_LE_META_EVENT; hdr->len = sizeof(*meta) + sizeof(*evt); meta = net_buf_add(buf, sizeof(*meta)); meta->subevent = BT_HCI_EVT_LE_GENERATE_DHKEY_COMPLETE; evt = net_buf_add(buf, sizeof(*evt)); if (ret) { evt->status = BT_HCI_ERR_UNSPECIFIED; (void)memset(evt->dhkey, 0, sizeof(evt->dhkey)); } else { evt->status = 0U; /* Convert from big-endian (provided by crypto API) to * little-endian HCI. */ sys_memcpy_swap(evt->dhkey, ecc.dhkey, sizeof(ecc.dhkey)); } atomic_clear_bit(flags, PENDING_DHKEY); bt_recv(buf); } static void ecc_thread(void *arg) { while (true) { k_sem_take(&cmd_sem, K_FOREVER); if (atomic_test_bit(flags, PENDING_PUB_KEY)) { emulate_le_p256_public_key_cmd(); } else if (atomic_test_bit(flags, PENDING_DHKEY)) { emulate_le_generate_dhkey(); } else { __ASSERT(0, "Unhandled ECC command"); } } } static void clear_ecc_events(struct net_buf *buf) { struct bt_hci_cp_le_set_event_mask *cmd; cmd = (void *)(buf->data + sizeof(struct bt_hci_cmd_hdr)); /* * don't enable controller ECC events as those will be generated from * emulation code */ cmd->events[0] &= ~0x80; /* LE Read Local P-256 PKey Compl */ cmd->events[1] &= ~0x01; /* LE Generate DHKey Compl Event */ } static void le_gen_dhkey(struct net_buf *buf) { struct bt_hci_cp_le_generate_dhkey *cmd; u8_t status; if (atomic_test_bit(flags, PENDING_PUB_KEY)) { status = BT_HCI_ERR_CMD_DISALLOWED; goto send_status; } if (buf->len < sizeof(struct bt_hci_cp_le_generate_dhkey)) { status = BT_HCI_ERR_INVALID_PARAM; goto send_status; } if (atomic_test_and_set_bit(flags, PENDING_DHKEY)) { status = BT_HCI_ERR_CMD_DISALLOWED; goto send_status; } cmd = (void *)buf->data; /* Convert X and Y coordinates from little-endian HCI to * big-endian (expected by the crypto API). */ sys_memcpy_swap(ecc.pk, cmd->key, 32); sys_memcpy_swap(&ecc.pk[32], &cmd->key[32], 32); k_sem_give(&cmd_sem); status = BT_HCI_ERR_SUCCESS; send_status: net_buf_unref(buf); send_cmd_status(BT_HCI_OP_LE_GENERATE_DHKEY, status); } static void le_p256_pub_key(struct net_buf *buf) { u8_t status; net_buf_unref(buf); if (atomic_test_bit(flags, PENDING_DHKEY)) { status = BT_HCI_ERR_CMD_DISALLOWED; } else if (atomic_test_and_set_bit(flags, PENDING_PUB_KEY)) { status = BT_HCI_ERR_CMD_DISALLOWED; } else { k_sem_give(&cmd_sem); status = BT_HCI_ERR_SUCCESS; } send_cmd_status(BT_HCI_OP_LE_P256_PUBLIC_KEY, status); } int bt_hci_ecc_send(struct net_buf *buf) { if (bt_buf_get_type(buf) == BT_BUF_CMD) { struct bt_hci_cmd_hdr *chdr = (void *)buf->data; switch (sys_le16_to_cpu(chdr->opcode)) { case BT_HCI_OP_LE_P256_PUBLIC_KEY: net_buf_pull(buf, sizeof(*chdr)); le_p256_pub_key(buf); return 0; case BT_HCI_OP_LE_GENERATE_DHKEY: net_buf_pull(buf, sizeof(*chdr)); le_gen_dhkey(buf); return 0; case BT_HCI_OP_LE_SET_EVENT_MASK: clear_ecc_events(buf); break; default: break; } } return bt_dev.drv->send(buf); } int default_CSPRNG(u8_t *dst, unsigned int len) { return !bt_rand(dst, len); } void bt_hci_ecc_init(void) { k_sem_init(&cmd_sem, 0, 1); k_thread_spawn(&ecc_thread_data, "ecc task", ecc_thread_stack, K_THREAD_STACK_SIZEOF(ecc_thread_stack), ecc_thread, NULL, 30); }