/****************************************************************************** * @file csky_math.h * @brief Public header file for CSI DSP Library. * @version V1.0 * @date 20. Dec 2016 ******************************************************************************/ /* --------------------------------------------------------------------------- * Copyright (C) 2016 CSKY Limited. All rights reserved. * * Redistribution and use of this software in source and binary forms, * with or without modification, are permitted provided that the following * conditions are met: * * Redistributions of source code must retain the above copyright notice, * this list of conditions and the following disclaimer. * * Redistributions in binary form must reproduce the above copyright notice, * this list of conditions and the following disclaimer in the documentation * and/or other materials provided with the distribution. * * Neither the name of CSKY Ltd. nor the names of CSKY's contributors may * be used to endorse or promote products derived from this software without * specific prior written permission of CSKY Ltd. * * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" * AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, * THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, * OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF * THE POSSIBILITY OF SUCH DAMAGE. * -------------------------------------------------------------------------- */ /** * @defgroup groupMath Basic Math Functions */ /** * @defgroup groupFastMath Fast Math Functions * This set of functions provides a fast approximation to sine, cosine, and square root. * As compared to most of the other functions in the CSI math library, the fast math functions * operate on individual values and not arrays. * There are separate functions for Q15, Q31, and floating-point data. * */ /** * @defgroup groupCmplxMath Complex Math Functions * This set of functions operates on complex data vectors. * The data in the complex arrays is stored in an interleaved fashion * (real, imag, real, imag, ...). * In the API functions, the number of samples in a complex array refers * to the number of complex values; the array contains twice this number of * real values. */ /** * @defgroup groupFilters Filtering Functions */ /** * @defgroup groupMatrix Matrix Functions * * This set of functions provides basic matrix math operations. * The functions operate on matrix data structures. For example, * the type * definition for the floating-point matrix structure is shown * below: *
 *     typedef struct
 *     {
 *       uint16_t numRows;     // number of rows of the matrix.
 *       uint16_t numCols;     // number of columns of the matrix.
 *       float32_t *pData;     // points to the data of the matrix.
 *     } csky_matrix_instance_f32;
 * 
* There are similar definitions for Q15 and Q31 data types. * * The structure specifies the size of the matrix and then points to * an array of data. The array is of size numRows X numCols * and the values are arranged in row order. That is, the * matrix element (i, j) is stored at: *
 *     pData[i*numCols + j]
 * 
* * \par Init Functions * There is an associated initialization function for each type of matrix * data structure. * The initialization function sets the values of the internal structure fields. * Refer to the function csky_mat_init_f32(), csky_mat_init_q31() * and csky_mat_init_q15() for floating-point, Q31 and Q15 types, respectively. * * \par * Use of the initialization function is optional. However, if initialization function is used * then the instance structure cannot be placed into a const data section. * To place the instance structure in a const data * section, manually initialize the data structure. For example: *
 * csky_matrix_instance_f32 S = {nRows, nColumns, pData};
 * csky_matrix_instance_q31 S = {nRows, nColumns, pData};
 * csky_matrix_instance_q15 S = {nRows, nColumns, pData};
 * 
* where nRows specifies the number of rows, nColumns * specifies the number of columns, and pData points to the * data array. * * \par Size Checking * By default all of the matrix functions perform size checking on the input and * output matrices. For example, the matrix addition function verifies that the * two input matrices and the output matrix all have the same number of rows and * columns. If the size check fails the functions return: *
 *     CSKY_MATH_SIZE_MISMATCH
 * 
* Otherwise the functions return *
 *     CSKY_MATH_SUCCESS
 * 
* There is some overhead associated with this matrix size checking. * The matrix size checking is enabled via the \#define *
 *     CSKY_MATH_MATRIX_CHECK
 * 
* within the library project settings. By default this macro is defined * and size checking is enabled. By changing the project settings and * undefining this macro size checking is eliminated and the functions * run a bit faster. With size checking disabled the functions always * return CSKY_MATH_SUCCESS. */ /** * @defgroup groupTransforms Transform Functions */ /** * @defgroup groupController Controller Functions */ /** * @defgroup groupStats Statistics Functions */ /** * @defgroup groupSupport Support Functions */ /** * @defgroup groupInterpolation Interpolation Functions * These functions perform 1- and 2-dimensional interpolation of data. * Linear interpolation is used for 1-dimensional data and * bilinear interpolation is used for 2-dimensional data. */ /** * @defgroup groupYunvoice Yunvoice Functions * These functions are designed for Yunvoice project, which are modified * according to the CEVA DSP functions. So, one can porting the software * from CEVA to CSKY straightforwardly. */ /** * @defgroup groupExamples Examples */ #ifndef _CSKY_MATH_H #define _CSKY_MATH_H #define __CSI_GENERIC /* disable NVIC and Systick functions */ #include "csi_core.h" #include #undef __CSI_GENERIC /* enable NVIC and Systick functions */ #include "string.h" #include "math.h" #ifdef __cplusplus extern "C" { #endif /** * @brief Macros required for reciprocal calculation in Normalized LMS */ #define DELTA_Q31 (0x100) #define DELTA_Q15 0x5 #define INDEX_MASK 0x0000003F #ifndef PI #define PI 3.14159265358979f #endif /** * @brief Macros required for SINE and COSINE Fast math approximations */ #define FAST_MATH_TABLE_SIZE 512 #define FAST_MATH_Q31_SHIFT (32 - 10) #define FAST_MATH_Q15_SHIFT (16 - 10) #define CONTROLLER_Q31_SHIFT (32 - 9) #define TABLE_SIZE 256 #define TABLE_SPACING_Q31 0x400000 #define TABLE_SPACING_Q15 0x80 /** * @brief Macros required for SINE and COSINE Controller functions */ /* 1.31(q31) Fixed value of 2/360 */ /* -1 to +1 is divided into 360 values so total spacing is (2/360) */ #define INPUT_SPACING 0xB60B61 /** * @brief Macro for Unaligned Support */ #ifndef UNALIGNED_SUPPORT_DISABLE #define ALIGN4 #else #define ALIGN4 __attribute__((aligned(4))) #endif /* #ifndef UNALIGNED_SUPPORT_DISABLE */ __ALWAYS_STATIC_INLINE int32_t __SSAT_31(int32_t x) { int32_t res = x; if (x > 0x3fffffff) { res = 0x3fffffff; } else if (x < -1073741824) { res = -1073741824; } return res; } __ALWAYS_STATIC_INLINE int32_t __SSAT_16(int32_t x) { int32_t res = x; if (x > 0x7fff) { res = 0x7fff; } else if (x < -32768) { res = -32768; } return res; } __ALWAYS_STATIC_INLINE int32_t __SSAT_8(int32_t x) { int32_t res = x; if (x > 0x7f) { res = 0x7f; } else if (x < -128) { res = -128; } return res; } #ifdef CSKY_SIMD /* SMMLAR */ __ALWAYS_STATIC_INLINE int32_t multAcc_32x32_keep32_R(int32_t a, int32_t x, int32_t y) { __ASM volatile("mula.s32.rhs %0, %1, %2\n\t" :"=r" (a), "=r" (x), "=r" (y) : "0" (a), "1" (x), "2" (y)); return a; } /* SMMLSR */ __ALWAYS_STATIC_INLINE int32_t multSub_32x32_keep32_R(int32_t a, int32_t x, int32_t y) { __ASM volatile("muls.s32.rhs %0, %1, %2\n\t" :"=r" (a), "=r" (x), "=r" (y): "0" (a), "1" (x), "2" (y)); return a; } /* SMMULR */ __ALWAYS_STATIC_INLINE int32_t mult_32x32_keep32_R(int32_t x, int32_t y) { int32_t a; __ASM volatile("mul.s32.rh %0, %1, %2\n\t" :"=r" (a), "=r" (x), "=r" (y): "1" (x), "2" (y)); return a; } /* SMMLA */ __ALWAYS_STATIC_INLINE int32_t multAcc_32x32_keep32(int32_t a, int32_t x, int32_t y) { __ASM volatile("mula.s32.hs %0, %1, %2\n\t" :"=r" (a), "=r" (x), "=r" (y): "0" (a), "1" (x), "2" (y)); return a; } /* SMMLS */ __ALWAYS_STATIC_INLINE int32_t multSub_32x32_keep32(int32_t a, int32_t x, int32_t y) { __ASM volatile("muls.s32.hs %0, %1, %2\n\t" :"=r" (a), "=r" (x), "=r" (y): "0" (a), "1" (x), "2" (y)); return a; } /* SMMUL */ __ALWAYS_STATIC_INLINE int32_t mult_32x32_keep32(int32_t x, int32_t y) { int32_t a; __ASM volatile("mul.s32.h %0, %1, %2\n\t" :"=r" (a), "=r" (x), "=r" (y): "0" (a), "1" (x), "2" (y)); return a; } __ALWAYS_STATIC_INLINE int32_t multAcc_16x16_keep32(int32_t a, int16_t x, int16_t y) { __ASM volatile("mulall.s16 %0, %1, %2\n\t" :"=r" (a), "=r" (x), "=r" (y): "0" (a), "1" (x), "2" (y)); return a; } __ALWAYS_STATIC_INLINE int64_t multAcc_16x16_keep64(int64_t a, int16_t x, int16_t y) { __ASM volatile("mulall.s16.e %0, %1, %2\n\t" :"=r" (a), "=r" (x), "=r" (y): "0" (a), "1" (x), "2" (y)); return a; } __ALWAYS_STATIC_INLINE int64_t mult_32x32_keep64(int32_t x, int32_t y) { int64_t a; __ASM volatile("mul.s32 %0, %1, %2\n\t" :"=r" (a), "=r" (x), "=r" (y): "1" (x), "2" (y)); return a; } __ALWAYS_STATIC_INLINE int64_t multAcc_32x32_keep64(int64_t a, int32_t x, int32_t y) { __ASM volatile("mula.s32 %0, %1, %2\n\t" :"=r" (a), "=r" (x), "=r" (y): "0" (a), "1" (x), "2" (y)); return a; } __ALWAYS_STATIC_INLINE int32_t mult_32x32_dext_31(int32_t x, int32_t y) { int64_t tmp1; int32_t tmp2; __ASM volatile("mul.s32 %0, %1, %2\n\t" "dexti %3, %0, %R0, 31" :"=r" (tmp1), "=r" (x), "=r" (y), "=r" (tmp2): "1" (x), "2" (y)); return tmp2; } __ALWAYS_STATIC_INLINE int32_t mult_32x32_dext_30(int32_t x, int32_t y) { int64_t tmp1; int32_t tmp2; __ASM volatile("mul.s32 %0, %1, %2\n\t" "dexti %3, %0, %R0, 30" :"=r" (tmp1), "=r" (x), "=r" (y), "=r" (tmp2): "1" (x), "2" (y)); return tmp2; } __ALWAYS_STATIC_INLINE int32_t mult_32x32_dext_4(int32_t x, int32_t y) { int64_t tmp1; int32_t tmp2; __ASM volatile("mul.s32 %0, %1, %2\n\t" "dexti %3, %0, %R0, 4" :"=r" (tmp1), "=r" (x), "=r" (y), "=r" (tmp2): "1" (x), "2" (y)); return tmp2; } __ALWAYS_STATIC_INLINE int32_t mult_32x32_dext_33(int32_t x, int32_t y) { int64_t tmp1; int32_t tmp2; __ASM volatile("mul.s32 %0, %1, %2\n\t" "asri %3, %R0, 1" :"=r" (tmp1), "=r" (x), "=r" (y), "=r" (tmp2): "1" (x), "2" (y)); return tmp2; } __ALWAYS_STATIC_INLINE int32_t dext_31(int64_t x) { int32_t tmp1; __ASM volatile( "dexti %0, %1, %R1, 31" :"=r" (tmp1), "=r" (x) : "1" (x)); return tmp1; } __ALWAYS_STATIC_INLINE int32_t mult_l16xl16_keep32(int32_t x, int32_t y) { int32_t a; __ASM volatile("mulll.s16 %0, %1, %2\n\t" :"=r" (a), "=r" (x), "=r" (y): "1" (x), "2" (y)); return a; } __ALWAYS_STATIC_INLINE int32_t mult_h16xl16_keep32(int32_t x, int32_t y) { int32_t a; __ASM volatile("mulhl.s16 %0, %1, %2\n\t" :"=r" (a), "=r" (x), "=r" (y): "1" (x), "2" (y)); return a; } __ALWAYS_STATIC_INLINE int32_t mult_h16xh16_keep32(int32_t x, int32_t y) { int32_t a; __ASM volatile("mulhh.s16 %0, %1, %2\n\t" :"=r" (a), "=r" (x), "=r" (y): "1" (x), "2" (y)); return a; } #endif /** * @brief Error status returned by some functions in the library. */ typedef enum { CSKY_MATH_SUCCESS = 0, /**< No error */ CSKY_MATH_ARGUMENT_ERROR = -1, /**< One or more arguments are incorrect */ CSKY_MATH_LENGTH_ERROR = -2, /**< Length of data buffer is incorrect */ CSKY_MATH_SIZE_MISMATCH = -3, /**< Size of matrices is not compatible with the operation. */ CSKY_MATH_NANINF = -4, /**< Not-a-number (NaN) or infinity is generated */ CSKY_MATH_SINGULAR = -5, /**< Generated by matrix inversion if the input matrix is singular and cannot be inverted. */ CSKY_MATH_TEST_FAILURE = -6 /**< Test Failed */ } csky_status; /** * @brief 8-bit fractional data type in 1.7 format. */ typedef int8_t q7_t; /** * @brief 16-bit fractional data type in 1.15 format. */ typedef int16_t q15_t; /** * @brief 32-bit fractional data type in 1.31 format. */ typedef int32_t q31_t; /** * @brief 64-bit fractional data type in 1.63 format. */ typedef int64_t q63_t; /** * @brief 32-bit floating-point type definition. */ typedef float float32_t; /** * @brief 64-bit floating-point type definition. */ typedef double float64_t; /** * @brief 32-bit fractional complex data type in 1.31 format. */ typedef struct { q31_t re; q31_t im; } cq31_t; /** * @brief 16-bit fractional complex data type in 1.15 format. */ typedef struct { q15_t re; q15_t im; } cq15_t; /** * @brief definition to read/write two 16 bit values. */ #define __SIMD32_TYPE int32_t #define CSI_UNUSED __attribute__((unused)) #define __SIMD32(addr) (*(__SIMD32_TYPE **) & (addr)) #define __SIMD32_CONST(addr) ((__SIMD32_TYPE *)(addr)) #define _SIMD32_OFFSET(addr) (*(__SIMD32_TYPE *) (addr)) #define __SIMD64(addr) (*(int64_t **) & (addr)) #if defined (CSKY_MATH_NO_SIMD) /** * @brief definition to pack two 16 bit values. */ #define __PKHBT(ARG1, ARG2, ARG3) ( (((int32_t)(ARG1) << 0) & (int32_t)0x0000FFFF) | \ (((int32_t)(ARG2) << ARG3) & (int32_t)0xFFFF0000) ) #define __PKHTB(ARG1, ARG2, ARG3) ( (((int32_t)(ARG1) << 0) & (int32_t)0xFFFF0000) | \ (((int32_t)(ARG2) >> ARG3) & (int32_t)0x0000FFFF) ) #endif /** * @brief definition to pack four 8 bit values. */ #ifndef CSKY_MATH_BIG_ENDIAN #define __PACKq7(v0,v1,v2,v3) ( (((int32_t)(v0) << 0) & (int32_t)0x000000FF) | \ (((int32_t)(v1) << 8) & (int32_t)0x0000FF00) | \ (((int32_t)(v2) << 16) & (int32_t)0x00FF0000) | \ (((int32_t)(v3) << 24) & (int32_t)0xFF000000) ) #else #define __PACKq7(v0,v1,v2,v3) ( (((int32_t)(v3) << 0) & (int32_t)0x000000FF) | \ (((int32_t)(v2) << 8) & (int32_t)0x0000FF00) | \ (((int32_t)(v1) << 16) & (int32_t)0x00FF0000) | \ (((int32_t)(v0) << 24) & (int32_t)0xFF000000) ) #endif /** * @brief Clips Q63 to Q31 values. */ static __INLINE q31_t clip_q63_to_q31( q63_t x) { return ((q31_t) (x >> 32) != ((q31_t) x >> 31)) ? ((0x7FFFFFFF ^ ((q31_t) (x >> 63)))) : (q31_t) x; } /** * @brief Instance structure for the Q7 FIR filter. */ typedef struct { uint16_t numTaps; /**< number of filter coefficients in the filter. */ q7_t *pState; /**< points to the state variable array. The array is of length numTaps+blockSize-1. */ q7_t *pCoeffs; /**< points to the coefficient array. The array is of length numTaps.*/ } csky_fir_instance_q7; /** * @brief Instance structure for the Q15 FIR filter. */ typedef struct { uint16_t numTaps; /**< number of filter coefficients in the filter. */ q15_t *pState; /**< points to the state variable array. The array is of length numTaps+blockSize-1. */ q15_t *pCoeffs; /**< points to the coefficient array. The array is of length numTaps.*/ } csky_fir_instance_q15; /** * @brief Instance structure for the Q31 FIR filter. */ typedef struct { uint16_t numTaps; /**< number of filter coefficients in the filter. */ q31_t *pState; /**< points to the state variable array. The array is of length numTaps+blockSize-1. */ q31_t *pCoeffs; /**< points to the coefficient array. The array is of length numTaps. */ } csky_fir_instance_q31; /** * @brief Instance structure for the floating-point FIR filter. */ typedef struct { uint16_t numTaps; /**< number of filter coefficients in the filter. */ float32_t *pState; /**< points to the state variable array. The array is of length numTaps+blockSize-1. */ float32_t *pCoeffs; /**< points to the coefficient array. The array is of length numTaps. */ } csky_fir_instance_f32; void csky_fir_q7( const csky_fir_instance_q7 * S, q7_t * pSrc, q7_t * pDst, uint32_t blockSize); void csky_fir_init_q7( csky_fir_instance_q7 * S, uint16_t numTaps, q7_t * pCoeffs, q7_t * pState, uint32_t blockSize); void csky_fir_q15( const csky_fir_instance_q15 * S, q15_t * pSrc, q15_t * pDst, uint32_t blockSize); void csky_fir_fast_q15( const csky_fir_instance_q15 * S, q15_t * pSrc, q15_t * pDst, uint32_t blockSize); csky_status csky_fir_init_q15( csky_fir_instance_q15 * S, uint16_t numTaps, q15_t * pCoeffs, q15_t * pState, uint32_t blockSize); void csky_fir_q31( const csky_fir_instance_q31 * S, q31_t * pSrc, q31_t * pDst, uint32_t blockSize); void csky_fir_fast_q31( const csky_fir_instance_q31 * S, q31_t * pSrc, q31_t * pDst, uint32_t blockSize); void csky_fir_init_q31( csky_fir_instance_q31 * S, uint16_t numTaps, q31_t * pCoeffs, q31_t * pState, uint32_t blockSize); void csky_fir_f32( const csky_fir_instance_f32 * S, float32_t * pSrc, float32_t * pDst, uint32_t blockSize); void csky_fir_init_f32( csky_fir_instance_f32 * S, uint16_t numTaps, float32_t * pCoeffs, float32_t * pState, uint32_t blockSize); /** * @brief Instance structure for the Q15 Biquad cascade filter. */ typedef struct { int8_t numStages; /**< number of 2nd order stages in the filter. Overall order is 2*numStages. */ q15_t *pState; /**< Points to the array of state coefficients. The array is of length 4*numStages. */ q15_t *pCoeffs; /**< Points to the array of coefficients. The array is of length 5*numStages. */ int8_t postShift; /**< Additional shift, in bits, applied to each output sample. */ } csky_biquad_casd_df1_inst_q15; /** * @brief Instance structure for the Q31 Biquad cascade filter. */ typedef struct { uint32_t numStages; /**< number of 2nd order stages in the filter. Overall order is 2*numStages. */ q31_t *pState; /**< Points to the array of state coefficients. The array is of length 4*numStages. */ q31_t *pCoeffs; /**< Points to the array of coefficients. The array is of length 5*numStages. */ uint8_t postShift; /**< Additional shift, in bits, applied to each output sample. */ } csky_biquad_casd_df1_inst_q31; /** * @brief Instance structure for the Q31 Biquad cascade filter. */ /** * @brief Instance structure for the floating-point Biquad cascade filter. */ typedef struct { uint32_t numStages; /**< number of 2nd order stages in the filter. Overall order is 2*numStages. */ float32_t *pState; /**< Points to the array of state coefficients. The array is of length 4*numStages. */ float32_t *pCoeffs; /**< Points to the array of coefficients. The array is of length 5*numStages. */ } csky_biquad_casd_df1_inst_f32; void csky_biquad_cascade_df1_q15( const csky_biquad_casd_df1_inst_q15 * S, q15_t * pSrc, q15_t * pDst, uint32_t blockSize); void csky_biquad_cascade_df1_init_q15( csky_biquad_casd_df1_inst_q15 * S, uint8_t numStages, q15_t * pCoeffs, q15_t * pState, int8_t postShift); void csky_biquad_cascade_df1_fast_q15( const csky_biquad_casd_df1_inst_q15 * S, q15_t * pSrc, q15_t * pDst, uint32_t blockSize); void csky_biquad_cascade_df1_q31( const csky_biquad_casd_df1_inst_q31 * S, q31_t * pSrc, q31_t * pDst, uint32_t blockSize); void csky_biquad_cascade_df1_fast_q31( const csky_biquad_casd_df1_inst_q31 * S, q31_t * pSrc, q31_t * pDst, uint32_t blockSize); void csky_biquad_cascade_df1_init_q31( csky_biquad_casd_df1_inst_q31 * S, uint8_t numStages, q31_t * pCoeffs, q31_t * pState, int8_t postShift); void csky_biquad_cascade_df1_f32( const csky_biquad_casd_df1_inst_f32 * S, float32_t * pSrc, float32_t * pDst, uint32_t blockSize); void csky_biquad_cascade_df1_init_f32( csky_biquad_casd_df1_inst_f32 * S, uint8_t numStages, float32_t * pCoeffs, float32_t * pState); /** * @brief Instance structure for the floating-point matrix structure. */ typedef struct { uint16_t numRows; /**< number of rows of the matrix. */ uint16_t numCols; /**< number of columns of the matrix. */ float32_t *pData; /**< points to the data of the matrix. */ } csky_matrix_instance_f32; /** * @brief Instance structure for the floating-point matrix structure. */ typedef struct { uint16_t numRows; /**< number of rows of the matrix. */ uint16_t numCols; /**< number of columns of the matrix. */ float64_t *pData; /**< points to the data of the matrix. */ } csky_matrix_instance_f64; /** * @brief Instance structure for the Q15 matrix structure. */ typedef struct { uint16_t numRows; /**< number of rows of the matrix. */ uint16_t numCols; /**< number of columns of the matrix. */ q15_t *pData; /**< points to the data of the matrix. */ } csky_matrix_instance_q15; /** * @brief Instance structure for the Q31 matrix structure. */ typedef struct { uint16_t numRows; /**< number of rows of the matrix. */ uint16_t numCols; /**< number of columns of the matrix. */ q31_t *pData; /**< points to the data of the matrix. */ } csky_matrix_instance_q31; csky_status csky_mat_add_f32( const csky_matrix_instance_f32 * pSrcA, const csky_matrix_instance_f32 * pSrcB, csky_matrix_instance_f32 * pDst); csky_status csky_mat_add_q15( const csky_matrix_instance_q15 * pSrcA, const csky_matrix_instance_q15 * pSrcB, csky_matrix_instance_q15 * pDst); csky_status csky_mat_add_q31( const csky_matrix_instance_q31 * pSrcA, const csky_matrix_instance_q31 * pSrcB, csky_matrix_instance_q31 * pDst); csky_status csky_mat_cmplx_mult_f32( const csky_matrix_instance_f32 * pSrcA, const csky_matrix_instance_f32 * pSrcB, csky_matrix_instance_f32 * pDst); csky_status csky_mat_cmplx_mult_q15( const csky_matrix_instance_q15 * pSrcA, const csky_matrix_instance_q15 * pSrcB, csky_matrix_instance_q15 * pDst); csky_status csky_mat_cmplx_mult_q31( const csky_matrix_instance_q31 * pSrcA, const csky_matrix_instance_q31 * pSrcB, csky_matrix_instance_q31 * pDst); csky_status csky_mat_trans_f32( const csky_matrix_instance_f32 * pSrc, csky_matrix_instance_f32 * pDst); csky_status csky_mat_trans_q15( const csky_matrix_instance_q15 * pSrc, csky_matrix_instance_q15 * pDst); csky_status csky_mat_trans_q31( const csky_matrix_instance_q31 * pSrc, csky_matrix_instance_q31 * pDst); csky_status csky_mat_mult_f32( const csky_matrix_instance_f32 * pSrcA, const csky_matrix_instance_f32 * pSrcB, csky_matrix_instance_f32 * pDst); csky_status csky_mat_mult_q15( const csky_matrix_instance_q15 * pSrcA, const csky_matrix_instance_q15 * pSrcB, csky_matrix_instance_q15 * pDst); csky_status csky_mat_mult_fast_q15( const csky_matrix_instance_q15 * pSrcA, const csky_matrix_instance_q15 * pSrcB, csky_matrix_instance_q15 * pDst); csky_status csky_mat_mult_q31( const csky_matrix_instance_q31 * pSrcA, const csky_matrix_instance_q31 * pSrcB, csky_matrix_instance_q31 * pDst); csky_status csky_mat_mult_trans_q31( const csky_matrix_instance_q31 * pSrcA, const csky_matrix_instance_q31 * pSrcB, csky_matrix_instance_q31 * pDst); csky_status csky_mat_mult_fast_q31( const csky_matrix_instance_q31 * pSrcA, const csky_matrix_instance_q31 * pSrcB, csky_matrix_instance_q31 * pDst); csky_status csky_mat_sub_f32( const csky_matrix_instance_f32 * pSrcA, const csky_matrix_instance_f32 * pSrcB, csky_matrix_instance_f32 * pDst); csky_status csky_mat_sub_q15( const csky_matrix_instance_q15 * pSrcA, const csky_matrix_instance_q15 * pSrcB, csky_matrix_instance_q15 * pDst); csky_status csky_mat_sub_q31( const csky_matrix_instance_q31 * pSrcA, const csky_matrix_instance_q31 * pSrcB, csky_matrix_instance_q31 * pDst); csky_status csky_mat_scale_f32( const csky_matrix_instance_f32 * pSrc, float32_t scale, csky_matrix_instance_f32 * pDst); csky_status csky_mat_scale_q15( const csky_matrix_instance_q15 * pSrc, q15_t scaleFract, int32_t shift, csky_matrix_instance_q15 * pDst); csky_status csky_mat_scale_q31( const csky_matrix_instance_q31 * pSrc, q31_t scaleFract, int32_t shift, csky_matrix_instance_q31 * pDst); void csky_mat_init_q31( csky_matrix_instance_q31 * S, uint16_t nRows, uint16_t nColumns, q31_t * pData); void csky_mat_init_q15( csky_matrix_instance_q15 * S, uint16_t nRows, uint16_t nColumns, q15_t * pData); void csky_mat_init_f32( csky_matrix_instance_f32 * S, uint16_t nRows, uint16_t nColumns, float32_t * pData); /** * @brief Instance structure for the Q15 PID Control. */ typedef struct { q15_t A0; /**< The derived gain, A0 = Kp + Ki + Kd . */ q15_t A1; q15_t A2; q15_t state[3]; /**< The state array of length 3. */ q15_t Kp; /**< The proportional gain. */ q15_t Ki; /**< The integral gain. */ q15_t Kd; /**< The derivative gain. */ } csky_pid_instance_q15; /** * @brief Instance structure for the Q31 PID Control. */ typedef struct { q31_t A0; /**< The derived gain, A0 = Kp + Ki + Kd . */ q31_t A1; /**< The derived gain, A1 = -Kp - 2Kd. */ q31_t A2; /**< The derived gain, A2 = Kd . */ q31_t state[3]; /**< The state array of length 3. */ q31_t Kp; /**< The proportional gain. */ q31_t Ki; /**< The integral gain. */ q31_t Kd; /**< The derivative gain. */ } csky_pid_instance_q31; /** * @brief Instance structure for the floating-point PID Control. */ typedef struct { float32_t A0; /**< The derived gain, A0 = Kp + Ki + Kd . */ float32_t A1; /**< The derived gain, A1 = -Kp - 2Kd. */ float32_t A2; /**< The derived gain, A2 = Kd . */ float32_t state[3]; /**< The state array of length 3. */ float32_t Kp; /**< The proportional gain. */ float32_t Ki; /**< The integral gain. */ float32_t Kd; /**< The derivative gain. */ } csky_pid_instance_f32; void csky_pid_init_f32( csky_pid_instance_f32 * S, int32_t resetStateFlag); void csky_pid_reset_f32( csky_pid_instance_f32 * S); void csky_pid_init_q31( csky_pid_instance_q31 * S, int32_t resetStateFlag); void csky_pid_reset_q31( csky_pid_instance_q31 * S); void csky_pid_init_q15( csky_pid_instance_q15 * S, int32_t resetStateFlag); void csky_pid_reset_q15( csky_pid_instance_q15 * S); /** * @brief Instance structure for the floating-point Linear Interpolate function. */ typedef struct { uint32_t nValues; /**< nValues */ float32_t x1; /**< x1 */ float32_t xSpacing; /**< xSpacing */ float32_t *pYData; /**< pointer to the table of Y values */ } csky_linear_interp_instance_f32; /** * @brief Instance structure for the floating-point bilinear interpolation function. */ typedef struct { uint16_t numRows; /**< number of rows in the data table. */ uint16_t numCols; /**< number of columns in the data table. */ float32_t *pData; /**< points to the data table. */ } csky_bilinear_interp_instance_f32; /** * @brief Instance structure for the Q31 bilinear interpolation function. */ typedef struct { uint16_t numRows; /**< number of rows in the data table. */ uint16_t numCols; /**< number of columns in the data table. */ q31_t *pData; /**< points to the data table. */ } csky_bilinear_interp_instance_q31; /** * @brief Instance structure for the Q15 bilinear interpolation function. */ typedef struct { uint16_t numRows; /**< number of rows in the data table. */ uint16_t numCols; /**< number of columns in the data table. */ q15_t *pData; /**< points to the data table. */ } csky_bilinear_interp_instance_q15; /** * @brief Instance structure for the Q15 bilinear interpolation function. */ typedef struct { uint16_t numRows; /**< number of rows in the data table. */ uint16_t numCols; /**< number of columns in the data table. */ q7_t *pData; /**< points to the data table. */ } csky_bilinear_interp_instance_q7; void csky_mult_q7( q7_t * pSrcA, q7_t * pSrcB, q7_t * pDst, uint32_t blockSize); void csky_mult_q15( q15_t * pSrcA, q15_t * pSrcB, q15_t * pDst, uint32_t blockSize); void csky_mult_rnd_q15( q15_t * pSrcA, q15_t * pSrcB, q15_t * pDst, uint32_t blockSize); void csky_mult_q31( q31_t * pSrcA, q31_t * pSrcB, q31_t * pDst, uint32_t blockSize); void csky_mult_f32( float32_t * pSrcA, float32_t * pSrcB, float32_t * pDst, uint32_t blockSize); /** * @brief Instance structure for the Q15 CFFT/CIFFT function. */ typedef struct { uint16_t fftLen; /**< length of the FFT. */ uint8_t ifftFlag; /**< flag that selects forward (ifftFlag=0) or inverse (ifftFlag=1) transform. */ uint8_t bitReverseFlag; /**< flag that enables (bitReverseFlag=1) or disables (bitReverseFlag=0) bit reversal of output. */ q15_t *pTwiddle; /**< points to the Sin twiddle factor table. */ uint16_t *pBitRevTable; /**< points to the bit reversal table. */ uint16_t twidCoefModifier; /**< twiddle coefficient modifier that supports different size FFTs with the same twiddle factor table. */ uint16_t bitRevFactor; /**< bit reversal modifier that supports different size FFTs with the same bit reversal table. */ } csky_cfft_radix2_instance_q15; /** * @brief Instance structure for the Q15 CFFT/CIFFT function. */ typedef struct { uint16_t fftLen; /**< length of the FFT. */ uint8_t ifftFlag; /**< flag that selects forward (ifftFlag=0) or inverse (ifftFlag=1) transform. */ uint8_t bitReverseFlag; /**< flag that enables (bitReverseFlag=1) or disables (bitReverseFlag=0) bit reversal of output. */ q15_t *pTwiddle; /**< points to the twiddle factor table. */ uint16_t *pBitRevTable; /**< points to the bit reversal table. */ uint16_t twidCoefModifier; /**< twiddle coefficient modifier that supports different size FFTs with the same twiddle factor table. */ uint16_t bitRevFactor; /**< bit reversal modifier that supports different size FFTs with the same bit reversal table. */ } csky_cfft_radix4_instance_q15; /** * @brief Instance structure for the Radix-2 Q31 CFFT/CIFFT function. */ typedef struct { uint16_t fftLen; /**< length of the FFT. */ uint8_t ifftFlag; /**< flag that selects forward (ifftFlag=0) or inverse (ifftFlag=1) transform. */ uint8_t bitReverseFlag; /**< flag that enables (bitReverseFlag=1) or disables (bitReverseFlag=0) bit reversal of output. */ q31_t *pTwiddle; /**< points to the Twiddle factor table. */ uint16_t *pBitRevTable; /**< points to the bit reversal table. */ uint16_t twidCoefModifier; /**< twiddle coefficient modifier that supports different size FFTs with the same twiddle factor table. */ uint16_t bitRevFactor; /**< bit reversal modifier that supports different size FFTs with the same bit reversal table. */ } csky_cfft_radix2_instance_q31; /** * @brief Instance structure for the Q31 CFFT/CIFFT function. */ typedef struct { uint16_t fftLen; /**< length of the FFT. */ uint8_t ifftFlag; /**< flag that selects forward (ifftFlag=0) or inverse (ifftFlag=1) transform. */ uint8_t bitReverseFlag; /**< flag that enables (bitReverseFlag=1) or disables (bitReverseFlag=0) bit reversal of output. */ q31_t *pTwiddle; /**< points to the twiddle factor table. */ uint16_t *pBitRevTable; /**< points to the bit reversal table. */ uint16_t twidCoefModifier; /**< twiddle coefficient modifier that supports different size FFTs with the same twiddle factor table. */ uint16_t bitRevFactor; /**< bit reversal modifier that supports different size FFTs with the same bit reversal table. */ } csky_cfft_radix4_instance_q31; /** * @brief Instance structure for the floating-point CFFT/CIFFT function. */ typedef struct { uint16_t fftLen; /**< length of the FFT. */ uint8_t ifftFlag; /**< flag that selects forward (ifftFlag=0) or inverse (ifftFlag=1) transform. */ uint8_t bitReverseFlag; /**< flag that enables (bitReverseFlag=1) or disables (bitReverseFlag=0) bit reversal of output. */ float32_t *pTwiddle; /**< points to the Twiddle factor table. */ uint16_t *pBitRevTable; /**< points to the bit reversal table. */ uint16_t twidCoefModifier; /**< twiddle coefficient modifier that supports different size FFTs with the same twiddle factor table. */ uint16_t bitRevFactor; /**< bit reversal modifier that supports different size FFTs with the same bit reversal table. */ float32_t onebyfftLen; /**< value of 1/fftLen. */ } csky_cfft_radix2_instance_f32; /** * @brief Instance structure for the floating-point CFFT/CIFFT function. */ typedef struct { uint16_t fftLen; /**< length of the FFT. */ uint8_t ifftFlag; /**< flag that selects forward (ifftFlag=0) or inverse (ifftFlag=1) transform. */ uint8_t bitReverseFlag; /**< flag that enables (bitReverseFlag=1) or disables (bitReverseFlag=0) bit reversal of output. */ float32_t *pTwiddle; /**< points to the Twiddle factor table. */ uint16_t *pBitRevTable; /**< points to the bit reversal table. */ uint16_t twidCoefModifier; /**< twiddle coefficient modifier that supports different size FFTs with the same twiddle factor table. */ uint16_t bitRevFactor; /**< bit reversal modifier that supports different size FFTs with the same bit reversal table. */ float32_t onebyfftLen; /**< value of 1/fftLen. */ } csky_cfft_radix4_instance_f32; /** * @brief Instance structure for the fixed-point CFFT/CIFFT function. */ typedef struct { uint16_t fftLen; /**< length of the FFT. */ const q15_t *pTwiddle; /**< points to the Twiddle factor table. */ const uint16_t *pBitRevTable; /**< points to the bit reversal table. */ uint16_t bitRevLength; /**< bit reversal table length. */ } csky_cfft_instance_q15; void csky_cfft_q15( const csky_cfft_instance_q15 * S, q15_t * p1, uint8_t ifftFlag, uint8_t bitReverseFlag); /** * @brief Instance structure for the fixed-point CFFT/CIFFT function. */ typedef struct { uint16_t fftLen; /**< length of the FFT. */ const q31_t *pTwiddle; /**< points to the Twiddle factor table. */ const uint16_t *pBitRevTable; /**< points to the bit reversal table. */ uint16_t bitRevLength; /**< bit reversal table length. */ } csky_cfft_instance_q31; void csky_cfft_q31( const csky_cfft_instance_q31 * S, q31_t * p1, uint8_t ifftFlag, uint8_t bitReverseFlag); /** * @brief Instance structure for the floating-point CFFT/CIFFT function. */ typedef struct { uint16_t fftLen; /**< length of the FFT. */ const float32_t *pTwiddle; /**< points to the Twiddle factor table. */ const uint16_t *pBitRevTable; /**< points to the bit reversal table. */ uint16_t bitRevLength; /**< bit reversal table length. */ } csky_cfft_instance_f32; void csky_cfft_f32( const csky_cfft_instance_f32 * S, float32_t * p1, uint8_t ifftFlag, uint8_t bitReverseFlag); /** * @brief Instance structure for the Q15 RFFT/RIFFT function. */ typedef struct { uint32_t fftLenReal; /**< length of the real FFT. */ uint8_t ifftFlagR; /**< flag that selects forward (ifftFlagR=0) or inverse (ifftFlagR=1) transform. */ uint8_t bitReverseFlagR; /**< flag that enables (bitReverseFlagR=1) or disables (bitReverseFlagR=0) bit reversal of output. */ uint32_t twidCoefRModifier; /**< twiddle coefficient modifier that supports different size FFTs with the same twiddle factor table. */ q15_t *pTwiddleAReal; /**< points to the real twiddle factor table. */ const csky_cfft_instance_q15 *pCfft; /**< points to the complex FFT instance. */ } csky_rfft_instance_q15; csky_status csky_rfft_init_q15( csky_rfft_instance_q15 * S, uint32_t fftLenReal, uint32_t ifftFlagR, uint32_t bitReverseFlag); void csky_rfft_q15( const csky_rfft_instance_q15 * S, q15_t * pSrc, q15_t * pDst); /** * @brief Instance structure for the Q31 RFFT/RIFFT function. */ typedef struct { uint32_t fftLenReal; /**< length of the real FFT. */ uint8_t ifftFlagR; /**< flag that selects forward (ifftFlagR=0) or inverse (ifftFlagR=1) transform. */ uint8_t bitReverseFlagR; /**< flag that enables (bitReverseFlagR=1) or disables (bitReverseFlagR=0) bit reversal of output. */ uint32_t twidCoefRModifier; /**< twiddle coefficient modifier that supports different size FFTs with the same twiddle factor table. */ q31_t *pTwiddleAReal; /**< points to the real twiddle factor table. */ const csky_cfft_instance_q31 *pCfft; /**< points to the complex FFT instance. */ } csky_rfft_instance_q31; csky_status csky_rfft_init_q31( csky_rfft_instance_q31 * S, uint32_t fftLenReal, uint32_t ifftFlagR, uint32_t bitReverseFlag); void csky_rfft_q31( const csky_rfft_instance_q31 * S, q31_t * pSrc, q31_t * pDst); /** * @brief Instance structure for the floating-point RFFT/RIFFT function. */ typedef struct { uint32_t fftLenReal; /**< length of the real FFT. */ uint16_t fftLenBy2; /**< length of the complex FFT. */ uint8_t ifftFlagR; /**< flag that selects forward (ifftFlagR=0) or inverse (ifftFlagR=1) transform. */ uint8_t bitReverseFlagR; /**< flag that enables (bitReverseFlagR=1) or disables (bitReverseFlagR=0) bit reversal of output. */ uint32_t twidCoefRModifier; /**< twiddle coefficient modifier that supports different size FFTs with the same twiddle factor table. */ float32_t *pTwiddleAReal; /**< points to the real twiddle factor table. */ float32_t *pTwiddleBReal; /**< points to the imag twiddle factor table. */ csky_cfft_radix4_instance_f32 *pCfft; /**< points to the complex FFT instance. */ } csky_rfft_instance_f32; csky_status csky_rfft_init_f32( csky_rfft_instance_f32 * S, csky_cfft_radix4_instance_f32 * S_CFFT, uint32_t fftLenReal, uint32_t ifftFlagR, uint32_t bitReverseFlag); void csky_rfft_f32( const csky_rfft_instance_f32 * S, float32_t * pSrc, float32_t * pDst); /** * @brief Instance structure for the floating-point RFFT/RIFFT function. */ typedef struct { csky_cfft_instance_f32 Sint; /**< Internal CFFT structure. */ uint16_t fftLenRFFT; /**< length of the real sequence */ float32_t * pTwiddleRFFT; /**< Twiddle factors real stage */ } csky_rfft_fast_instance_f32 ; csky_status csky_rfft_fast_init_f32 ( csky_rfft_fast_instance_f32 * S, uint16_t fftLen); void csky_rfft_fast_f32( csky_rfft_fast_instance_f32 * S, float32_t * p, float32_t * pOut, uint8_t ifftFlag); /** * @brief Instance structure for the floating-point DCT4/IDCT4 function. */ typedef struct { uint16_t N; /**< length of the DCT4. */ uint16_t Nby2; /**< half of the length of the DCT4. */ float32_t normalize; /**< normalizing factor. */ float32_t *pTwiddle; /**< points to the twiddle factor table. */ float32_t *pCosFactor; /**< points to the cosFactor table. */ csky_rfft_fast_instance_f32 *pRfft; /**< points to the real FFT fast instance. */ csky_cfft_radix4_instance_f32 *pCfft; /**< points to the complex FFT instance. */ } csky_dct4_instance_f32; csky_status csky_dct4_init_f32( csky_dct4_instance_f32 * S, csky_rfft_fast_instance_f32 * S_RFFT, csky_cfft_radix4_instance_f32 * S_CFFT, uint16_t N, uint16_t Nby2, float32_t normalize); void csky_dct4_f32( const csky_dct4_instance_f32 * S, float32_t * pState, float32_t * pInlineBuffer); /** * @brief Instance structure for the Q31 DCT4/IDCT4 function. */ typedef struct { uint16_t N; /**< length of the DCT4. */ uint16_t Nby2; /**< half of the length of the DCT4. */ q31_t normalize; /**< normalizing factor. */ q31_t *pTwiddle; /**< points to the twiddle factor table. */ q31_t *pCosFactor; /**< points to the cosFactor table. */ csky_rfft_instance_q31 *pRfft; /**< points to the real FFT instance. */ csky_cfft_radix4_instance_q31 *pCfft; /**< points to the complex FFT instance. */ } csky_dct4_instance_q31; csky_status csky_dct4_init_q31( csky_dct4_instance_q31 * S, csky_rfft_instance_q31 * S_RFFT, csky_cfft_radix4_instance_q31 * S_CFFT, uint16_t N, uint16_t Nby2, q31_t normalize); void csky_dct4_q31( const csky_dct4_instance_q31 * S, q31_t * pState, q31_t * pInlineBuffer); /** * @brief Instance structure for the Q15 DCT4/IDCT4 function. */ typedef struct { uint16_t N; /**< length of the DCT4. */ uint16_t Nby2; /**< half of the length of the DCT4. */ q15_t normalize; /**< normalizing factor. */ q15_t *pTwiddle; /**< points to the twiddle factor table. */ q15_t *pCosFactor; /**< points to the cosFactor table. */ csky_rfft_instance_q15 *pRfft; /**< points to the real FFT instance. */ csky_cfft_radix4_instance_q15 *pCfft; /**< points to the complex FFT instance. */ } csky_dct4_instance_q15; csky_status csky_dct4_init_q15( csky_dct4_instance_q15 * S, csky_rfft_instance_q15 * S_RFFT, csky_cfft_radix4_instance_q15 * S_CFFT, uint16_t N, uint16_t Nby2, q15_t normalize); void csky_dct4_q15( const csky_dct4_instance_q15 * S, q15_t * pState, q15_t * pInlineBuffer); void csky_add_f32( float32_t * pSrcA, float32_t * pSrcB, float32_t * pDst, uint32_t blockSize); void csky_add_q7( q7_t * pSrcA, q7_t * pSrcB, q7_t * pDst, uint32_t blockSize); void csky_add_q15( q15_t * pSrcA, q15_t * pSrcB, q15_t * pDst, uint32_t blockSize); void csky_add_q31( q31_t * pSrcA, q31_t * pSrcB, q31_t * pDst, uint32_t blockSize); void csky_sub_f32( float32_t * pSrcA, float32_t * pSrcB, float32_t * pDst, uint32_t blockSize); void csky_sub_q7( q7_t * pSrcA, q7_t * pSrcB, q7_t * pDst, uint32_t blockSize); void csky_sub_q15( q15_t * pSrcA, q15_t * pSrcB, q15_t * pDst, uint32_t blockSize); void csky_sub_q31( q31_t * pSrcA, q31_t * pSrcB, q31_t * pDst, uint32_t blockSize); void csky_scale_f32( float32_t * pSrc, float32_t scale, float32_t * pDst, uint32_t blockSize); void csky_scale_q7( q7_t * pSrc, q7_t scaleFract, int8_t shift, q7_t * pDst, uint32_t blockSize); void csky_scale_q15( q15_t * pSrc, q15_t scaleFract, int8_t shift, q15_t * pDst, uint32_t blockSize); void csky_scale_q31( q31_t * pSrc, q31_t scaleFract, int8_t shift, q31_t * pDst, uint32_t blockSize); void csky_abs_q7( q7_t * pSrc, q7_t * pDst, uint32_t blockSize); void csky_abs_f32( float32_t * pSrc, float32_t * pDst, uint32_t blockSize); void csky_abs_q15( q15_t * pSrc, q15_t * pDst, uint32_t blockSize); void csky_abs_q31( q31_t * pSrc, q31_t * pDst, uint32_t blockSize); void csky_abs_max_q15( q15_t * pSrc, q15_t * pDst, uint32_t blockSize); void csky_abs_max_q31( q31_t * pSrc, q31_t * pDst, uint32_t blockSize); void csky_dot_prod_f32( float32_t * pSrcA, float32_t * pSrcB, uint32_t blockSize, float32_t * result); void csky_dot_prod_q7( q7_t * pSrcA, q7_t * pSrcB, uint32_t blockSize, q31_t * result); void csky_dot_prod_q15( q15_t * pSrcA, q15_t * pSrcB, uint32_t blockSize, q63_t * result); void csky_dot_prod_q31( q31_t * pSrcA, q31_t * pSrcB, uint32_t blockSize, q63_t * result); void csky_shift_q7( q7_t * pSrc, int8_t shiftBits, q7_t * pDst, uint32_t blockSize); void csky_shift_q15( q15_t * pSrc, int8_t shiftBits, q15_t * pDst, uint32_t blockSize); void csky_shift_q31( q31_t * pSrc, int8_t shiftBits, q31_t * pDst, uint32_t blockSize); void csky_offset_f32( float32_t * pSrc, float32_t offset, float32_t * pDst, uint32_t blockSize); void csky_offset_q7( q7_t * pSrc, q7_t offset, q7_t * pDst, uint32_t blockSize); void csky_offset_q15( q15_t * pSrc, q15_t offset, q15_t * pDst, uint32_t blockSize); void csky_offset_q31( q31_t * pSrc, q31_t offset, q31_t * pDst, uint32_t blockSize); void csky_negate_f32( float32_t * pSrc, float32_t * pDst, uint32_t blockSize); void csky_negate_q7( q7_t * pSrc, q7_t * pDst, uint32_t blockSize); void csky_negate_q15( q15_t * pSrc, q15_t * pDst, uint32_t blockSize); void csky_negate_q31( q31_t * pSrc, q31_t * pDst, uint32_t blockSize); void csky_copy_f32( float32_t * pSrc, float32_t * pDst, uint32_t blockSize); void csky_copy_q7( q7_t * pSrc, q7_t * pDst, uint32_t blockSize); void csky_copy_q15( q15_t * pSrc, q15_t * pDst, uint32_t blockSize); void csky_copy_q31( q31_t * pSrc, q31_t * pDst, uint32_t blockSize); void csky_fill_f32( float32_t value, float32_t * pDst, uint32_t blockSize); void csky_fill_q7( q7_t value, q7_t * pDst, uint32_t blockSize); void csky_fill_q15( q15_t value, q15_t * pDst, uint32_t blockSize); void csky_fill_q31( q31_t value, q31_t * pDst, uint32_t blockSize); void csky_conv_f32( float32_t * pSrcA, uint32_t srcALen, float32_t * pSrcB, uint32_t srcBLen, float32_t * pDst); void csky_conv_opt_q15( q15_t * pSrcA, uint32_t srcALen, q15_t * pSrcB, uint32_t srcBLen, q15_t * pDst, q15_t * pScratch1, q15_t * pScratch2); void csky_conv_q15( q15_t * pSrcA, uint32_t srcALen, q15_t * pSrcB, uint32_t srcBLen, q15_t * pDst); void csky_conv_fast_q15( q15_t * pSrcA, uint32_t srcALen, q15_t * pSrcB, uint32_t srcBLen, q15_t * pDst); void csky_conv_fast_opt_q15( q15_t * pSrcA, uint32_t srcALen, q15_t * pSrcB, uint32_t srcBLen, q15_t * pDst, q15_t * pScratch1, q15_t * pScratch2); void csky_conv_q31( q31_t * pSrcA, uint32_t srcALen, q31_t * pSrcB, uint32_t srcBLen, q31_t * pDst); void csky_conv_fast_q31( q31_t * pSrcA, uint32_t srcALen, q31_t * pSrcB, uint32_t srcBLen, q31_t * pDst); void csky_conv_opt_q7( q7_t * pSrcA, uint32_t srcALen, q7_t * pSrcB, uint32_t srcBLen, q7_t * pDst, q15_t * pScratch1, q15_t * pScratch2); void csky_conv_q7( q7_t * pSrcA, uint32_t srcALen, q7_t * pSrcB, uint32_t srcBLen, q7_t * pDst); csky_status csky_conv_partial_f32( float32_t * pSrcA, uint32_t srcALen, float32_t * pSrcB, uint32_t srcBLen, float32_t * pDst, uint32_t firstIndex, uint32_t numPoints); csky_status csky_conv_partial_opt_q15( q15_t * pSrcA, uint32_t srcALen, q15_t * pSrcB, uint32_t srcBLen, q15_t * pDst, uint32_t firstIndex, uint32_t numPoints, q15_t * pScratch1, q15_t * pScratch2); csky_status csky_conv_partial_q15( q15_t * pSrcA, uint32_t srcALen, q15_t * pSrcB, uint32_t srcBLen, q15_t * pDst, uint32_t firstIndex, uint32_t numPoints); csky_status csky_conv_partial_fast_q15( q15_t * pSrcA, uint32_t srcALen, q15_t * pSrcB, uint32_t srcBLen, q15_t * pDst, uint32_t firstIndex, uint32_t numPoints); csky_status csky_conv_partial_fast_opt_q15( q15_t * pSrcA, uint32_t srcALen, q15_t * pSrcB, uint32_t srcBLen, q15_t * pDst, uint32_t firstIndex, uint32_t numPoints, q15_t * pScratch1, q15_t * pScratch2); csky_status csky_conv_partial_q31( q31_t * pSrcA, uint32_t srcALen, q31_t * pSrcB, uint32_t srcBLen, q31_t * pDst, uint32_t firstIndex, uint32_t numPoints); csky_status csky_conv_partial_fast_q31( q31_t * pSrcA, uint32_t srcALen, q31_t * pSrcB, uint32_t srcBLen, q31_t * pDst, uint32_t firstIndex, uint32_t numPoints); csky_status csky_conv_partial_opt_q7( q7_t * pSrcA, uint32_t srcALen, q7_t * pSrcB, uint32_t srcBLen, q7_t * pDst, uint32_t firstIndex, uint32_t numPoints, q15_t * pScratch1, q15_t * pScratch2); csky_status csky_conv_partial_q7( q7_t * pSrcA, uint32_t srcALen, q7_t * pSrcB, uint32_t srcBLen, q7_t * pDst, uint32_t firstIndex, uint32_t numPoints); /** * functions for the yunVoice functions. */ q15_t csky_dsp_lib_vec_max_abs16( q15_t * A, uint32_t N); q31_t csky_dsp_lib_vec_max_abs32( q31_t * A, uint32_t N); void csky_dsp_lib_vec_abs16( q15_t * A, uint32_t N, q15_t * C); void csky_dsp_lib_vec_abs32( q31_t * A, uint32_t N, q31_t * C); void csky_dsp_lib_vec_add16( q15_t * A, q15_t * B, uint32_t N, q15_t * C); void csky_dsp_lib_vec_add32( q31_t * A, q31_t * B, uint32_t N, q31_t * C); void csky_dsp_lib_vec_cx_conj_q15( q15_t * A, uint32_t N, q15_t * B); void csky_dsp_lib_vec_cx_conj_q31( q31_t * A, uint32_t N, q31_t * C); q31_t csky_dsp_lib_vec_dot_q15( q15_t * A, q15_t * B, uint32_t N); q31_t csky_dsp_lib_vec_dot_q31( q31_t * A, q31_t * B, uint32_t N); void csky_dsp_lib_mat_cx_add16( cq15_t * A, cq15_t * B, uint32_t N, uint32_t M, cq15_t * C); void csky_dsp_lib_mat_cx_add32( cq31_t * A, cq31_t * B, uint32_t N, uint32_t M, cq31_t * C); void csky_dsp_lib_mat_cx_mul_q15( cq15_t * A, cq15_t * B, uint32_t N, uint32_t M, uint32_t L, cq15_t * C); void csky_dsp_lib_mat_cx_mul_q31( cq31_t * A, cq31_t * B, uint32_t N, uint32_t M, uint32_t L, cq31_t * C); void csky_dsp_lib_mat_cx_sub16( cq15_t * A, cq15_t * B, uint32_t N, uint32_t M, cq15_t * C); void csky_dsp_lib_mat_cx_sub32( cq31_t * A, cq31_t * B, uint32_t N, uint32_t M, cq31_t * C); void csky_dsp_lib_vec_mul_q15( q15_t * A, q15_t * B, uint32_t N, q15_t * C); void csky_dsp_lib_vec_mul_q31( q31_t * A, q31_t * B, uint32_t N, q31_t * C); q31_t csky_dsp_lib_pow_int32( q31_t arg_in_x, q15_t arg_exp_in_x, q31_t arg_in_y, q15_t arg_exp_in_y, q31_t *arg_exp_out); void csky_dsp_lib_vec_scale_q15( q15_t * A, q15_t scaleFract, int8_t shift, q15_t * B, uint32_t N); void csky_dsp_lib_vec_scale_q31( q31_t * A, q31_t scaleFract, int8_t shift, q31_t * B, uint32_t N); void csky_dsp_lib_vec_shf16( q15_t * A, int8_t shift_val, uint32_t N, q15_t * C); void csky_dsp_lib_vec_shf32( q31_t * A, q31_t shift_val, uint32_t N, q31_t * C); q15_t csky_dsp_lib_sqrt_int32( q31_t x, uint32_t rnd_flag); void csky_dsp_lib_vec_sub16( q15_t * A, q15_t * B, uint32_t N, q15_t * C); void csky_dsp_lib_vec_sub32( q31_t * A, q31_t * B, uint32_t N, q31_t * C); q63_t csky_dsp_lib_vec_sum16( q15_t * A, uint32_t N); q63_t csky_dsp_lib_vec_sum32( q31_t * A, uint32_t N); void csky_fft_lib_cx16_fft( q31_t log2_buf_len, q15_t * in_buf, q15_t * out_buf, const q15_t * twi_table, const uint16_t * bitrev_tbl, q15_t * temp_buf, q7_t * ScaleShift, q31_t br); void csky_fft_lib_cx32_fft( q31_t log2_buf_len, q31_t * in_buf, q31_t * out_buf, const q31_t * twi_table, const uint16_t * bitrev_tbl, q31_t * temp_buf, q31_t br); void csky_fft_lib_cx16_ifft( q31_t log2_buf_len, q15_t * in_buf, q15_t * out_buf, const q15_t * twi_table, const uint16_t * bitrev_tbl, q15_t * temp_buf, q7_t * ScaleShift, q31_t br); void csky_fft_lib_cx32_ifft( q31_t log2_buf_len, q31_t * in_buf, q31_t * out_buf, const q31_t * twi_table, const uint16_t * bitrev_tbl, q31_t * temp_buf, q31_t br); void csky_fft_lib_int16_fft( q31_t log2_buf_len, q15_t * in_buf, q15_t * out_buf, const q15_t * twi_table, const q15_t * last_stage_twi_table, const uint16_t * bitrev_tbl, q15_t * temp_buf, q7_t * ScaleShift, q31_t br); void csky_fft_lib_int32_fft( q31_t log2_buf_len, q31_t * in_buf, q31_t * out_buf, const q31_t * twi_table, const q31_t * last_stage_twi_table, const uint16_t * bitrev_tbl, q31_t * temp_buf, q31_t br); void csky_fft_lib_int16_ifft( q31_t log2_buf_len, q15_t * in_buf, q15_t * out_buf, const q15_t * twi_table, const q15_t * last_stage_twi_table, const uint16_t * bitrev_tbl, q15_t * temp_buf, q7_t * ScaleShift, q31_t br); void csky_fft_lib_int32_ifft( q31_t log2_buf_len, q31_t * in_buf, q31_t * out_buf, const q31_t * twi_table, const q31_t * last_stage_twi_table, const uint16_t * bitrev_tbl, q31_t * temp_buf, q31_t br); /** * @brief Instance structure for the Q15 FIR decimator. */ typedef struct { uint8_t M; /**< decimation factor. */ uint16_t numTaps; /**< number of coefficients in the filter. */ q15_t *pCoeffs; /**< points to the coefficient array. The array is of length numTaps.*/ q15_t *pState; /**< points to the state variable array. The array is of length numTaps+blockSize-1. */ } csky_fir_decimate_instance_q15; /** * @brief Instance structure for the Q31 FIR decimator. */ typedef struct { uint8_t M; /**< decimation factor. */ uint16_t numTaps; /**< number of coefficients in the filter. */ q31_t *pCoeffs; /**< points to the coefficient array. The array is of length numTaps.*/ q31_t *pState; /**< points to the state variable array. The array is of length numTaps+blockSize-1. */ } csky_fir_decimate_instance_q31; /** * @brief Instance structure for the floating-point FIR decimator. */ typedef struct { uint8_t M; /**< decimation factor. */ uint16_t numTaps; /**< number of coefficients in the filter. */ float32_t *pCoeffs; /**< points to the coefficient array. The array is of length numTaps.*/ float32_t *pState; /**< points to the state variable array. The array is of length numTaps+blockSize-1. */ } csky_fir_decimate_instance_f32; void csky_fir_decimate_f32( const csky_fir_decimate_instance_f32 * S, float32_t * pSrc, float32_t * pDst, uint32_t blockSize); csky_status csky_fir_decimate_init_f32( csky_fir_decimate_instance_f32 * S, uint16_t numTaps, uint8_t M, float32_t * pCoeffs, float32_t * pState, uint32_t blockSize); void csky_fir_decimate_q15( const csky_fir_decimate_instance_q15 * S, q15_t * pSrc, q15_t * pDst, uint32_t blockSize); void csky_fir_decimate_fast_q15( const csky_fir_decimate_instance_q15 * S, q15_t * pSrc, q15_t * pDst, uint32_t blockSize); csky_status csky_fir_decimate_init_q15( csky_fir_decimate_instance_q15 * S, uint16_t numTaps, uint8_t M, q15_t * pCoeffs, q15_t * pState, uint32_t blockSize); void csky_fir_decimate_q31( const csky_fir_decimate_instance_q31 * S, q31_t * pSrc, q31_t * pDst, uint32_t blockSize); void csky_fir_decimate_fast_q31( csky_fir_decimate_instance_q31 * S, q31_t * pSrc, q31_t * pDst, uint32_t blockSize); csky_status csky_fir_decimate_init_q31( csky_fir_decimate_instance_q31 * S, uint16_t numTaps, uint8_t M, q31_t * pCoeffs, q31_t * pState, uint32_t blockSize); /** * @brief Instance structure for the Q15 FIR interpolator. */ typedef struct { uint8_t L; /**< upsample factor. */ uint16_t phaseLength; /**< length of each polyphase filter component. */ q15_t *pCoeffs; /**< points to the coefficient array. The array is of length L*phaseLength. */ q15_t *pState; /**< points to the state variable array. The array is of length blockSize+phaseLength-1. */ } csky_fir_interpolate_instance_q15; /** * @brief Instance structure for the Q31 FIR interpolator. */ typedef struct { uint8_t L; /**< upsample factor. */ uint16_t phaseLength; /**< length of each polyphase filter component. */ q31_t *pCoeffs; /**< points to the coefficient array. The array is of length L*phaseLength. */ q31_t *pState; /**< points to the state variable array. The array is of length blockSize+phaseLength-1. */ } csky_fir_interpolate_instance_q31; /** * @brief Instance structure for the floating-point FIR interpolator. */ typedef struct { uint8_t L; /**< upsample factor. */ uint16_t phaseLength; /**< length of each polyphase filter component. */ float32_t *pCoeffs; /**< points to the coefficient array. The array is of length L*phaseLength. */ float32_t *pState; /**< points to the state variable array. The array is of length phaseLength+numTaps-1. */ } csky_fir_interpolate_instance_f32; void csky_fir_interpolate_q15( const csky_fir_interpolate_instance_q15 * S, q15_t * pSrc, q15_t * pDst, uint32_t blockSize); csky_status csky_fir_interpolate_init_q15( csky_fir_interpolate_instance_q15 * S, uint8_t L, uint16_t numTaps, q15_t * pCoeffs, q15_t * pState, uint32_t blockSize); void csky_fir_interpolate_q31( const csky_fir_interpolate_instance_q31 * S, q31_t * pSrc, q31_t * pDst, uint32_t blockSize); csky_status csky_fir_interpolate_init_q31( csky_fir_interpolate_instance_q31 * S, uint8_t L, uint16_t numTaps, q31_t * pCoeffs, q31_t * pState, uint32_t blockSize); void csky_fir_interpolate_f32( const csky_fir_interpolate_instance_f32 * S, float32_t * pSrc, float32_t * pDst, uint32_t blockSize); csky_status csky_fir_interpolate_init_f32( csky_fir_interpolate_instance_f32 * S, uint8_t L, uint16_t numTaps, float32_t * pCoeffs, float32_t * pState, uint32_t blockSize); /** * @brief Instance structure for the high precision Q31 Biquad cascade filter. */ typedef struct { uint8_t numStages; /**< number of 2nd order stages in the filter. Overall order is 2*numStages. */ q63_t *pState; /**< points to the array of state coefficients. The array is of length 4*numStages. */ q31_t *pCoeffs; /**< points to the array of coefficients. The array is of length 5*numStages. */ uint8_t postShift; /**< additional shift, in bits, applied to each output sample. */ } csky_biquad_cas_df1_32x64_ins_q31; void csky_biquad_cas_df1_32x64_q31( const csky_biquad_cas_df1_32x64_ins_q31 * S, q31_t * pSrc, q31_t * pDst, uint32_t blockSize); void csky_biquad_cas_df1_32x64_init_q31( csky_biquad_cas_df1_32x64_ins_q31 * S, uint8_t numStages, q31_t * pCoeffs, q63_t * pState, uint8_t postShift); /** * @brief Instance structure for the floating-point transposed direct form II Biquad cascade filter. */ typedef struct { uint8_t numStages; /**< number of 2nd order stages in the filter. Overall order is 2*numStages. */ float32_t *pState; /**< points to the array of state coefficients. The array is of length 2*numStages. */ float32_t *pCoeffs; /**< points to the array of coefficients. The array is of length 5*numStages. */ } csky_biquad_cascade_df2T_instance_f32; /** * @brief Instance structure for the floating-point transposed direct form II Biquad cascade filter. */ typedef struct { uint8_t numStages; /**< number of 2nd order stages in the filter. Overall order is 2*numStages. */ float32_t *pState; /**< points to the array of state coefficients. The array is of length 4*numStages. */ float32_t *pCoeffs; /**< points to the array of coefficients. The array is of length 5*numStages. */ } csky_biquad_cascade_stereo_df2T_instance_f32; /** * @brief Instance structure for the floating-point transposed direct form II Biquad cascade filter. */ typedef struct { uint8_t numStages; /**< number of 2nd order stages in the filter. Overall order is 2*numStages. */ float64_t *pState; /**< points to the array of state coefficients. The array is of length 2*numStages. */ float64_t *pCoeffs; /**< points to the array of coefficients. The array is of length 5*numStages. */ } csky_biquad_cascade_df2T_instance_f64; void csky_biquad_cascade_df2T_f32( const csky_biquad_cascade_df2T_instance_f32 * S, float32_t * pSrc, float32_t * pDst, uint32_t blockSize); void csky_biquad_cascade_stereo_df2T_f32( const csky_biquad_cascade_stereo_df2T_instance_f32 * S, float32_t * pSrc, float32_t * pDst, uint32_t blockSize); void csky_biquad_cascade_df2T_f64( const csky_biquad_cascade_df2T_instance_f64 * S, float64_t * pSrc, float64_t * pDst, uint32_t blockSize); void csky_biquad_cascade_df2T_init_f32( csky_biquad_cascade_df2T_instance_f32 * S, uint8_t numStages, float32_t * pCoeffs, float32_t * pState); void csky_biquad_cascade_stereo_df2T_init_f32( csky_biquad_cascade_stereo_df2T_instance_f32 * S, uint8_t numStages, float32_t * pCoeffs, float32_t * pState); void csky_biquad_cascade_df2T_init_f64( csky_biquad_cascade_df2T_instance_f64 * S, uint8_t numStages, float64_t * pCoeffs, float64_t * pState); /** * @brief Instance structure for the Q15 FIR lattice filter. */ typedef struct { uint16_t numStages; /**< number of filter stages. */ q15_t *pState; /**< points to the state variable array. The array is of length numStages. */ q15_t *pCoeffs; /**< points to the coefficient array. The array is of length numStages. */ } csky_fir_lattice_instance_q15; /** * @brief Instance structure for the Q31 FIR lattice filter. */ typedef struct { uint16_t numStages; /**< number of filter stages. */ q31_t *pState; /**< points to the state variable array. The array is of length numStages. */ q31_t *pCoeffs; /**< points to the coefficient array. The array is of length numStages. */ } csky_fir_lattice_instance_q31; /** * @brief Instance structure for the floating-point FIR lattice filter. */ typedef struct { uint16_t numStages; /**< number of filter stages. */ float32_t *pState; /**< points to the state variable array. The array is of length numStages. */ float32_t *pCoeffs; /**< points to the coefficient array. The array is of length numStages. */ } csky_fir_lattice_instance_f32; void csky_fir_lattice_init_q15( csky_fir_lattice_instance_q15 * S, uint16_t numStages, q15_t * pCoeffs, q15_t * pState); void csky_fir_lattice_q15( const csky_fir_lattice_instance_q15 * S, q15_t * pSrc, q15_t * pDst, uint32_t blockSize); void csky_fir_lattice_init_q31( csky_fir_lattice_instance_q31 * S, uint16_t numStages, q31_t * pCoeffs, q31_t * pState); void csky_fir_lattice_q31( const csky_fir_lattice_instance_q31 * S, q31_t * pSrc, q31_t * pDst, uint32_t blockSize); void csky_fir_lattice_init_f32( csky_fir_lattice_instance_f32 * S, uint16_t numStages, float32_t * pCoeffs, float32_t * pState); void csky_fir_lattice_f32( const csky_fir_lattice_instance_f32 * S, float32_t * pSrc, float32_t * pDst, uint32_t blockSize); /** * @brief Instance structure for the Q15 IIR lattice filter. */ typedef struct { uint16_t numStages; /**< number of stages in the filter. */ q15_t *pState; /**< points to the state variable array. The array is of length numStages+blockSize. */ q15_t *pkCoeffs; /**< points to the reflection coefficient array. The array is of length numStages. */ q15_t *pvCoeffs; /**< points to the ladder coefficient array. The array is of length numStages+1. */ } csky_iir_lattice_instance_q15; /** * @brief Instance structure for the Q31 IIR lattice filter. */ typedef struct { uint16_t numStages; /**< number of stages in the filter. */ q31_t *pState; /**< points to the state variable array. The array is of length numStages+blockSize. */ q31_t *pkCoeffs; /**< points to the reflection coefficient array. The array is of length numStages. */ q31_t *pvCoeffs; /**< points to the ladder coefficient array. The array is of length numStages+1. */ } csky_iir_lattice_instance_q31; /** * @brief Instance structure for the floating-point IIR lattice filter. */ typedef struct { uint16_t numStages; /**< number of stages in the filter. */ float32_t *pState; /**< points to the state variable array. The array is of length numStages+blockSize. */ float32_t *pkCoeffs; /**< points to the reflection coefficient array. The array is of length numStages. */ float32_t *pvCoeffs; /**< points to the ladder coefficient array. The array is of length numStages+1. */ } csky_iir_lattice_instance_f32; void csky_iir_lattice_f32( const csky_iir_lattice_instance_f32 * S, float32_t * pSrc, float32_t * pDst, uint32_t blockSize); void csky_iir_lattice_init_f32( csky_iir_lattice_instance_f32 * S, uint16_t numStages, float32_t * pkCoeffs, float32_t * pvCoeffs, float32_t * pState, uint32_t blockSize); void csky_iir_lattice_q31( const csky_iir_lattice_instance_q31 * S, q31_t * pSrc, q31_t * pDst, uint32_t blockSize); void csky_iir_lattice_init_q31( csky_iir_lattice_instance_q31 * S, uint16_t numStages, q31_t * pkCoeffs, q31_t * pvCoeffs, q31_t * pState, uint32_t blockSize); void csky_iir_lattice_q15( const csky_iir_lattice_instance_q15 * S, q15_t * pSrc, q15_t * pDst, uint32_t blockSize); void csky_iir_lattice_init_q15( csky_iir_lattice_instance_q15 * S, uint16_t numStages, q15_t * pkCoeffs, q15_t * pvCoeffs, q15_t * pState, uint32_t blockSize); /** * @brief Instance structure for the floating-point LMS filter. */ typedef struct { uint16_t numTaps; /**< number of coefficients in the filter. */ float32_t *pState; /**< points to the state variable array. The array is of length numTaps+blockSize-1. */ float32_t *pCoeffs; /**< points to the coefficient array. The array is of length numTaps. */ float32_t mu; /**< step size that controls filter coefficient updates. */ } csky_lms_instance_f32; void csky_lms_f32( const csky_lms_instance_f32 * S, float32_t * pSrc, float32_t * pRef, float32_t * pOut, float32_t * pErr, uint32_t blockSize); void csky_lms_init_f32( csky_lms_instance_f32 * S, uint16_t numTaps, float32_t * pCoeffs, float32_t * pState, float32_t mu, uint32_t blockSize); /** * @brief Instance structure for the Q15 LMS filter. */ typedef struct { uint16_t numTaps; /**< number of coefficients in the filter. */ q15_t *pState; /**< points to the state variable array. The array is of length numTaps+blockSize-1. */ q15_t *pCoeffs; /**< points to the coefficient array. The array is of length numTaps. */ q15_t mu; /**< step size that controls filter coefficient updates. */ uint32_t postShift; /**< bit shift applied to coefficients. */ } csky_lms_instance_q15; void csky_lms_init_q15( csky_lms_instance_q15 * S, uint16_t numTaps, q15_t * pCoeffs, q15_t * pState, q15_t mu, uint32_t blockSize, uint32_t postShift); void csky_lms_q15( const csky_lms_instance_q15 * S, q15_t * pSrc, q15_t * pRef, q15_t * pOut, q15_t * pErr, uint32_t blockSize); /** * @brief Instance structure for the Q31 LMS filter. */ typedef struct { uint16_t numTaps; /**< number of coefficients in the filter. */ q31_t *pState; /**< points to the state variable array. The array is of length numTaps+blockSize-1. */ q31_t *pCoeffs; /**< points to the coefficient array. The array is of length numTaps. */ q31_t mu; /**< step size that controls filter coefficient updates. */ uint32_t postShift; /**< bit shift applied to coefficients. */ } csky_lms_instance_q31; void csky_lms_q31( const csky_lms_instance_q31 * S, q31_t * pSrc, q31_t * pRef, q31_t * pOut, q31_t * pErr, uint32_t blockSize); void csky_lms_init_q31( csky_lms_instance_q31 * S, uint16_t numTaps, q31_t * pCoeffs, q31_t * pState, q31_t mu, uint32_t blockSize, uint32_t postShift); /** * @brief Instance structure for the floating-point normalized LMS filter. */ typedef struct { uint16_t numTaps; /**< number of coefficients in the filter. */ float32_t *pState; /**< points to the state variable array. The array is of length numTaps+blockSize-1. */ float32_t *pCoeffs; /**< points to the coefficient array. The array is of length numTaps. */ float32_t mu; /**< step size that control filter coefficient updates. */ float32_t energy; /**< saves previous frame energy. */ float32_t x0; /**< saves previous input sample. */ } csky_lms_norm_instance_f32; void csky_lms_norm_f32( csky_lms_norm_instance_f32 * S, float32_t * pSrc, float32_t * pRef, float32_t * pOut, float32_t * pErr, uint32_t blockSize); void csky_lms_norm_init_f32( csky_lms_norm_instance_f32 * S, uint16_t numTaps, float32_t * pCoeffs, float32_t * pState, float32_t mu, uint32_t blockSize); /** * @brief Instance structure for the Q31 normalized LMS filter. */ typedef struct { uint16_t numTaps; /**< number of coefficients in the filter. */ q31_t *pState; /**< points to the state variable array. The array is of length numTaps+blockSize-1. */ q31_t *pCoeffs; /**< points to the coefficient array. The array is of length numTaps. */ q31_t mu; /**< step size that controls filter coefficient updates. */ uint8_t postShift; /**< bit shift applied to coefficients. */ q31_t *recipTable; /**< points to the reciprocal initial value table. */ q31_t energy; /**< saves previous frame energy. */ q31_t x0; /**< saves previous input sample. */ } csky_lms_norm_instance_q31; void csky_lms_norm_q31( csky_lms_norm_instance_q31 * S, q31_t * pSrc, q31_t * pRef, q31_t * pOut, q31_t * pErr, uint32_t blockSize); void csky_lms_norm_init_q31( csky_lms_norm_instance_q31 * S, uint16_t numTaps, q31_t * pCoeffs, q31_t * pState, q31_t mu, uint32_t blockSize, uint8_t postShift); /** * @brief Instance structure for the Q15 normalized LMS filter. */ typedef struct { uint16_t numTaps; /**< Number of coefficients in the filter. */ q15_t *pState; /**< points to the state variable array. The array is of length numTaps+blockSize-1. */ q15_t *pCoeffs; /**< points to the coefficient array. The array is of length numTaps. */ q15_t mu; /**< step size that controls filter coefficient updates. */ uint8_t postShift; /**< bit shift applied to coefficients. */ q15_t *recipTable; /**< Points to the reciprocal initial value table. */ q15_t energy; /**< saves previous frame energy. */ q15_t x0; /**< saves previous input sample. */ } csky_lms_norm_instance_q15; void csky_lms_norm_q15( csky_lms_norm_instance_q15 * S, q15_t * pSrc, q15_t * pRef, q15_t * pOut, q15_t * pErr, uint32_t blockSize); void csky_lms_norm_init_q15( csky_lms_norm_instance_q15 * S, uint16_t numTaps, q15_t * pCoeffs, q15_t * pState, q15_t mu, uint32_t blockSize, uint8_t postShift); void csky_correlate_f32( float32_t * pSrcA, uint32_t srcALen, float32_t * pSrcB, uint32_t srcBLen, float32_t * pDst); void csky_correlate_opt_q15( q15_t * pSrcA, uint32_t srcALen, q15_t * pSrcB, uint32_t srcBLen, q15_t * pDst, q15_t * pScratch); void csky_correlate_q15( q15_t * pSrcA, uint32_t srcALen, q15_t * pSrcB, uint32_t srcBLen, q15_t * pDst); void csky_correlate_fast_q15( q15_t * pSrcA, uint32_t srcALen, q15_t * pSrcB, uint32_t srcBLen, q15_t * pDst); void csky_correlate_fast_opt_q15( q15_t * pSrcA, uint32_t srcALen, q15_t * pSrcB, uint32_t srcBLen, q15_t * pDst, q15_t * pScratch); void csky_correlate_q31( q31_t * pSrcA, uint32_t srcALen, q31_t * pSrcB, uint32_t srcBLen, q31_t * pDst); void csky_correlate_fast_q31( q31_t * pSrcA, uint32_t srcALen, q31_t * pSrcB, uint32_t srcBLen, q31_t * pDst); void csky_correlate_opt_q7( q7_t * pSrcA, uint32_t srcALen, q7_t * pSrcB, uint32_t srcBLen, q7_t * pDst, q15_t * pScratch1, q15_t * pScratch2); void csky_correlate_q7( q7_t * pSrcA, uint32_t srcALen, q7_t * pSrcB, uint32_t srcBLen, q7_t * pDst); /** * @brief Instance structure for the floating-point sparse FIR filter. */ typedef struct { uint16_t numTaps; /**< number of coefficients in the filter. */ uint16_t stateIndex; /**< state buffer index. Points to the oldest sample in the state buffer. */ float32_t *pState; /**< points to the state buffer array. The array is of length maxDelay+blockSize-1. */ float32_t *pCoeffs; /**< points to the coefficient array. The array is of length numTaps.*/ uint16_t maxDelay; /**< maximum offset specified by the pTapDelay array. */ int32_t *pTapDelay; /**< points to the array of delay values. The array is of length numTaps. */ } csky_fir_sparse_instance_f32; /** * @brief Instance structure for the Q31 sparse FIR filter. */ typedef struct { uint16_t numTaps; /**< number of coefficients in the filter. */ uint16_t stateIndex; /**< state buffer index. Points to the oldest sample in the state buffer. */ q31_t *pState; /**< points to the state buffer array. The array is of length maxDelay+blockSize-1. */ q31_t *pCoeffs; /**< points to the coefficient array. The array is of length numTaps.*/ uint16_t maxDelay; /**< maximum offset specified by the pTapDelay array. */ int32_t *pTapDelay; /**< points to the array of delay values. The array is of length numTaps. */ } csky_fir_sparse_instance_q31; /** * @brief Instance structure for the Q15 sparse FIR filter. */ typedef struct { uint16_t numTaps; /**< number of coefficients in the filter. */ uint16_t stateIndex; /**< state buffer index. Points to the oldest sample in the state buffer. */ q15_t *pState; /**< points to the state buffer array. The array is of length maxDelay+blockSize-1. */ q15_t *pCoeffs; /**< points to the coefficient array. The array is of length numTaps.*/ uint16_t maxDelay; /**< maximum offset specified by the pTapDelay array. */ int32_t *pTapDelay; /**< points to the array of delay values. The array is of length numTaps. */ } csky_fir_sparse_instance_q15; /** * @brief Instance structure for the Q7 sparse FIR filter. */ typedef struct { uint16_t numTaps; /**< number of coefficients in the filter. */ uint16_t stateIndex; /**< state buffer index. Points to the oldest sample in the state buffer. */ q7_t *pState; /**< points to the state buffer array. The array is of length maxDelay+blockSize-1. */ q7_t *pCoeffs; /**< points to the coefficient array. The array is of length numTaps.*/ uint16_t maxDelay; /**< maximum offset specified by the pTapDelay array. */ int32_t *pTapDelay; /**< points to the array of delay values. The array is of length numTaps. */ } csky_fir_sparse_instance_q7; void csky_fir_sparse_f32( csky_fir_sparse_instance_f32 * S, float32_t * pSrc, float32_t * pDst, float32_t * pScratchIn, uint32_t blockSize); void csky_fir_sparse_init_f32( csky_fir_sparse_instance_f32 * S, uint16_t numTaps, float32_t * pCoeffs, float32_t * pState, int32_t * pTapDelay, uint16_t maxDelay, uint32_t blockSize); void csky_fir_sparse_q31( csky_fir_sparse_instance_q31 * S, q31_t * pSrc, q31_t * pDst, q31_t * pScratchIn, uint32_t blockSize); void csky_fir_sparse_init_q31( csky_fir_sparse_instance_q31 * S, uint16_t numTaps, q31_t * pCoeffs, q31_t * pState, int32_t * pTapDelay, uint16_t maxDelay, uint32_t blockSize); void csky_fir_sparse_q15( csky_fir_sparse_instance_q15 * S, q15_t * pSrc, q15_t * pDst, q15_t * pScratchIn, q31_t * pScratchOut, uint32_t blockSize); void csky_fir_sparse_init_q15( csky_fir_sparse_instance_q15 * S, uint16_t numTaps, q15_t * pCoeffs, q15_t * pState, int32_t * pTapDelay, uint16_t maxDelay, uint32_t blockSize); void csky_fir_sparse_q7( csky_fir_sparse_instance_q7 * S, q7_t * pSrc, q7_t * pDst, q7_t * pScratchIn, q31_t * pScratchOut, uint32_t blockSize); void csky_fir_sparse_init_q7( csky_fir_sparse_instance_q7 * S, uint16_t numTaps, q7_t * pCoeffs, q7_t * pState, int32_t * pTapDelay, uint16_t maxDelay, uint32_t blockSize); void csky_sin_cos_f32( float32_t theta, float32_t * pSinVal, float32_t * pCosVal); void csky_sin_cos_q31( q31_t theta, q31_t * pSinVal, q31_t * pCosVal); void csky_cmplx_conj_f32( float32_t * pSrc, float32_t * pDst, uint32_t numSamples); void csky_cmplx_conj_q31( q31_t * pSrc, q31_t * pDst, uint32_t numSamples); void csky_cmplx_conj_q15( q15_t * pSrc, q15_t * pDst, uint32_t numSamples); void csky_cmplx_mag_squared_f32( float32_t * pSrc, float32_t * pDst, uint32_t numSamples); void csky_cmplx_mag_squared_q31( q31_t * pSrc, q31_t * pDst, uint32_t numSamples); void csky_cmplx_mag_squared_q15( q15_t * pSrc, q15_t * pDst, uint32_t numSamples); void csky_vsqrt_q31( q31_t * pSrc, q31_t * pDst, uint32_t numSamples); void csky_vsqrt_q15( q15_t * pSrc, q15_t * pDst, uint32_t numSamples); void csky_vsqrt_q7( q7_t * pSrc, q7_t * pDst, uint32_t numSamples); /** * @ingroup groupController */ /** * @defgroup PID PID Motor Control * * A Proportional Integral Derivative (PID) controller is a generic feedback control * loop mechanism widely used in industrial control systems. * A PID controller is the most commonly used type of feedback controller. * * This set of functions implements (PID) controllers * for Q15, Q31, and floating-point data types. The functions operate on a single sample * of data and each call to the function returns a single processed value. * S points to an instance of the PID control data structure. in * is the input sample value. The functions return the output value. * * \par Algorithm: *
 *    y[n] = y[n-1] + A0 * x[n] + A1 * x[n-1] + A2 * x[n-2]
 *    A0 = Kp + Ki + Kd
 *    A1 = (-Kp ) - (2 * Kd )
 *    A2 = Kd  
* * \par * where \c Kp is proportional constant, \c Ki is Integral constant and \c Kd is Derivative constant * * \par * \image html PID.gif "Proportional Integral Derivative Controller" * * \par * The PID controller calculates an "error" value as the difference between * the measured output and the reference input. * The controller attempts to minimize the error by adjusting the process control inputs. * The proportional value determines the reaction to the current error, * the integral value determines the reaction based on the sum of recent errors, * and the derivative value determines the reaction based on the rate at which the error has been changing. * * \par Instance Structure * The Gains A0, A1, A2 and state variables for a PID controller are stored together in an instance data structure. * A separate instance structure must be defined for each PID Controller. * There are separate instance structure declarations for each of the 3 supported data types. * * \par Reset Functions * There is also an associated reset function for each data type which clears the state array. * * \par Initialization Functions * There is also an associated initialization function for each data type. * The initialization function performs the following operations: * - Initializes the Gains A0, A1, A2 from Kp,Ki, Kd gains. * - Zeros out the values in the state buffer. * * \par * Instance structure cannot be placed into a const data section and it is recommended to use the initialization function. * * \par Fixed-Point Behavior * Care must be taken when using the fixed-point versions of the PID Controller functions. * In particular, the overflow and saturation behavior of the accumulator used in each function must be considered. * Refer to the function specific documentation below for usage guidelines. */ /** * @addtogroup PID * @{ */ /** * @brief Process function for the floating-point PID Control. * @param[in,out] S is an instance of the floating-point PID Control structure * @param[in] in input sample to process * @return out processed output sample. */ __ALWAYS_STATIC_INLINE float32_t csky_pid_f32( csky_pid_instance_f32 * S, float32_t in) { float32_t out; /* y[n] = y[n-1] + A0 * x[n] + A1 * x[n-1] + A2 * x[n-2] */ out = (S->A0 * in) + (S->A1 * S->state[0]) + (S->A2 * S->state[1]) + (S->state[2]); /* Update state */ S->state[1] = S->state[0]; S->state[0] = in; S->state[2] = out; /* return to application */ return (out); } /** * @} */ // end of PID group /** * @addtogroup PID * @{ */ /** * @brief Process function for the Q31 PID Control. * @param[in,out] S points to an instance of the Q31 PID Control structure * @param[in] in input sample to process * @return out processed output sample. * * Scaling and Overflow Behavior: * \par * The function is implemented using an internal 64-bit accumulator. * The accumulator has a 2.62 format and maintains full precision of the intermediate multiplication results but provides only a single guard bit. * Thus, if the accumulator result overflows it wraps around rather than clip. * In order to avoid overflows completely the input signal must be scaled down by 2 bits as there are four additions. * After all multiply-accumulates are performed, the 2.62 accumulator is truncated to 1.32 format and then saturated to 1.31 format. */ __ALWAYS_STATIC_INLINE q31_t csky_pid_q31( csky_pid_instance_q31 * S, q31_t in) { q63_t acc; q31_t out; #ifdef CSKY_SIMD /* acc = A0 * x[n] */ acc = mult_32x32_keep64(S->A0, in); /* acc += A1 * x[n-1] */ acc = multAcc_32x32_keep64(acc, S->A1, S->state[0]); /* acc += A2 * x[n-2] */ acc = multAcc_32x32_keep64(acc, S->A2, S->state[1]); /* convert output to 1.31 format to add y[n-1] */ out = dext_31(acc); #else /* acc = A0 * x[n] */ acc = (q63_t) S->A0 * in; /* acc += A1 * x[n-1] */ acc += (q63_t) S->A1 * S->state[0]; /* acc += A2 * x[n-2] */ acc += (q63_t) S->A2 * S->state[1]; /* convert output to 1.31 format to add y[n-1] */ out = (q31_t) (acc >> 31u); #endif /* out += y[n-1] */ out += S->state[2]; /* Update state */ S->state[1] = S->state[0]; S->state[0] = in; S->state[2] = out; /* return to application */ return (out); } /** * @} */ // end of PID group /** * @addtogroup PID * @{ */ /** * @brief Process function for the Q15 PID Control. * @param[in,out] S points to an instance of the Q15 PID Control structure * @param[in] in input sample to process * @return out processed output sample. * * Scaling and Overflow Behavior: * \par * The function is implemented using a 64-bit internal accumulator. * Both Gains and state variables are represented in 1.15 format and multiplications yield a 2.30 result. * The 2.30 intermediate results are accumulated in a 64-bit accumulator in 34.30 format. * There is no risk of internal overflow with this approach and the full precision of intermediate multiplications is preserved. * After all additions have been performed, the accumulator is truncated to 34.15 format by discarding low 15 bits. * Lastly, the accumulator is saturated to yield a result in 1.15 format. */ __ALWAYS_STATIC_INLINE q15_t csky_pid_q15( csky_pid_instance_q15 * S, q15_t in) { q63_t acc; q15_t out; /* acc = A0 * x[n] */ acc = ((q31_t) S->A0) * in; /* acc += A1 * x[n-1] + A2 * x[n-2] */ acc += (q31_t) S->A1 * S->state[0]; acc += (q31_t) S->A2 * S->state[1]; /* acc += y[n-1] */ acc += (q31_t) S->state[2] << 15; /* saturate the output */ out = (q15_t) (__SSAT_16((acc >> 15))); /* Update state */ S->state[1] = S->state[0]; S->state[0] = in; S->state[2] = out; /* return to application */ return (out); } /** * @} */ // end of PID group csky_status csky_mat_inverse_f32( const csky_matrix_instance_f32 * src, csky_matrix_instance_f32 * dst); csky_status csky_mat_inverse_f64( const csky_matrix_instance_f64 * src, csky_matrix_instance_f64 * dst); /** * @ingroup groupController */ /** * @defgroup clarke Vector Clarke Transform * Forward Clarke transform converts the instantaneous stator phases into a two-coordinate time invariant vector. * Generally the Clarke transform uses three-phase currents Ia, Ib and Ic to calculate currents * in the two-phase orthogonal stator axis Ialpha and Ibeta. * When Ialpha is superposed with Ia as shown in the figure below * \image html clarke.gif Stator current space vector and its components in (a,b). * and Ia + Ib + Ic = 0, in this condition Ialpha and Ibeta * can be calculated using only Ia and Ib. * * The function operates on a single sample of data and each call to the function returns the processed output. * The library provides separate functions for Q31 and floating-point data types. * \par Algorithm * \image html clarkeFormula.gif * where Ia and Ib are the instantaneous stator phases and * pIalpha and pIbeta are the two coordinates of time invariant vector. * \par Fixed-Point Behavior * Care must be taken when using the Q31 version of the Clarke transform. * In particular, the overflow and saturation behavior of the accumulator used must be considered. * Refer to the function specific documentation below for usage guidelines. */ /** * @addtogroup clarke * @{ */ /** * * @brief Floating-point Clarke transform * @param[in] Ia input three-phase coordinate a * @param[in] Ib input three-phase coordinate b * @param[out] pIalpha points to output two-phase orthogonal vector axis alpha * @param[out] pIbeta points to output two-phase orthogonal vector axis beta */ __ALWAYS_STATIC_INLINE void csky_clarke_f32( float32_t Ia, float32_t Ib, float32_t * pIalpha, float32_t * pIbeta) { /* Calculate pIalpha using the equation, pIalpha = Ia */ *pIalpha = Ia; /* Calculate pIbeta using the equation, pIbeta = (1/sqrt(3)) * Ia + (2/sqrt(3)) * Ib */ *pIbeta = ((float32_t) 0.57735026919 * Ia + (float32_t) 1.15470053838 * Ib); } /** * @} */ // end of clarke group /** * @addtogroup clarke * @{ */ /** * @brief Clarke transform for Q31 version * @param[in] Ia input three-phase coordinate a * @param[in] Ib input three-phase coordinate b * @param[out] pIalpha points to output two-phase orthogonal vector axis alpha * @param[out] pIbeta points to output two-phase orthogonal vector axis beta * * Scaling and Overflow Behavior: * \par * The function is implemented using an internal 32-bit accumulator. * The accumulator maintains 1.31 format by truncating lower 31 bits of the intermediate multiplication in 2.62 format. * There is saturation on the addition, hence there is no risk of overflow. */ __ALWAYS_STATIC_INLINE void csky_clarke_q31( q31_t Ia, q31_t Ib, q31_t * pIalpha, q31_t * pIbeta) { q31_t product1, product2; /* Temporary variables used to store intermediate results */ /* Calculating pIalpha from Ia by equation pIalpha = Ia */ *pIalpha = Ia; #ifdef CSKY_SIMD /* Intermediate product is calculated by (1/(sqrt(3)) * Ia) */ product1 = mult_32x32_dext_30(Ia, 0x24F34E8B); /* Intermediate product is calculated by (2/sqrt(3) * Ib) */ product2 = mult_32x32_dext_30(Ib, 0x49E69D16); #else /* Intermediate product is calculated by (1/(sqrt(3)) * Ia) */ product1 = (q31_t) (((q63_t) Ia * 0x24F34E8B) >> 30); /* Intermediate product is calculated by (2/sqrt(3) * Ib) */ product2 = (q31_t) (((q63_t) Ib * 0x49E69D16) >> 30); #endif /* pIbeta is calculated by adding the intermediate products */ *pIbeta = __QADD(product1, product2); } /** * @} */ // end of clarke group void csky_q7_to_q31( q7_t * pSrc, q31_t * pDst, uint32_t blockSize); /** * @ingroup groupController */ /** * @defgroup inv_clarke Vector Inverse Clarke Transform * Inverse Clarke transform converts the two-coordinate time invariant vector into instantaneous stator phases. * * The function operates on a single sample of data and each call to the function returns the processed output. * The library provides separate functions for Q31 and floating-point data types. * \par Algorithm * \image html clarkeInvFormula.gif * where pIa and pIb are the instantaneous stator phases and * Ialpha and Ibeta are the two coordinates of time invariant vector. * \par Fixed-Point Behavior * Care must be taken when using the Q31 version of the Clarke transform. * In particular, the overflow and saturation behavior of the accumulator used must be considered. * Refer to the function specific documentation below for usage guidelines. */ /** * @addtogroup inv_clarke * @{ */ /** * @brief Floating-point Inverse Clarke transform * @param[in] Ialpha input two-phase orthogonal vector axis alpha * @param[in] Ibeta input two-phase orthogonal vector axis beta * @param[out] pIa points to output three-phase coordinate a * @param[out] pIb points to output three-phase coordinate b */ __ALWAYS_STATIC_INLINE void csky_inv_clarke_f32( float32_t Ialpha, float32_t Ibeta, float32_t * pIa, float32_t * pIb) { /* Calculating pIa from Ialpha by equation pIa = Ialpha */ *pIa = Ialpha; /* Calculating pIb from Ialpha and Ibeta by equation pIb = -(1/2) * Ialpha + (sqrt(3)/2) * Ibeta */ *pIb = -0.5f * Ialpha + 0.8660254039f * Ibeta; } /** * @} */ // end of inv_clarke group /** * @addtogroup inv_clarke * @{ */ /** * @brief Inverse Clarke transform for Q31 version * @param[in] Ialpha input two-phase orthogonal vector axis alpha * @param[in] Ibeta input two-phase orthogonal vector axis beta * @param[out] pIa points to output three-phase coordinate a * @param[out] pIb points to output three-phase coordinate b * * Scaling and Overflow Behavior: * \par * The function is implemented using an internal 32-bit accumulator. * The accumulator maintains 1.31 format by truncating lower 31 bits of the intermediate multiplication in 2.62 format. * There is saturation on the subtraction, hence there is no risk of overflow. */ __ALWAYS_STATIC_INLINE void csky_inv_clarke_q31( q31_t Ialpha, q31_t Ibeta, q31_t * pIa, q31_t * pIb) { q31_t product1, product2; /* Temporary variables used to store intermediate results */ /* Calculating pIa from Ialpha by equation pIa = Ialpha */ *pIa = Ialpha; #ifdef CSKY_SIMD /* Intermediate product is calculated by (1/(2*sqrt(3)) * Ia) */ product1 = mult_32x32_dext_31(Ialpha, 0x40000000); /* Intermediate product is calculated by (1/sqrt(3) * pIb) */ product2 = mult_32x32_dext_31(Ibeta, 0x6ED9EBA1); #else /* Intermediate product is calculated by (1/(2*sqrt(3)) * Ia) */ product1 = (q31_t) (((q63_t) (Ialpha) * (0x40000000)) >> 31); /* Intermediate product is calculated by (1/sqrt(3) * pIb) */ product2 = (q31_t) (((q63_t) (Ibeta) * (0x6ED9EBA1)) >> 31); #endif /* pIb is calculated by subtracting the products */ *pIb = __QSUB(product2, product1); } /** * @} */ // end of inv_clarke group void csky_q7_to_q15( q7_t * pSrc, q15_t * pDst, uint32_t blockSize); /** * @ingroup groupController */ /** * @defgroup park Vector Park Transform * * Forward Park transform converts the input two-coordinate vector to flux and torque components. * The Park transform can be used to realize the transformation of the Ialpha and the Ibeta currents * from the stationary to the moving reference frame and control the spatial relationship between * the stator vector current and rotor flux vector. * If we consider the d axis aligned with the rotor flux, the diagram below shows the * current vector and the relationship from the two reference frames: * \image html park.gif "Stator current space vector and its component in (a,b) and in the d,q rotating reference frame" * * The function operates on a single sample of data and each call to the function returns the processed output. * The library provides separate functions for Q31 and floating-point data types. * \par Algorithm * \image html parkFormula.gif * where Ialpha and Ibeta are the stator vector components, * pId and pIq are rotor vector components and cosVal and sinVal are the * cosine and sine values of theta (rotor flux position). * \par Fixed-Point Behavior * Care must be taken when using the Q31 version of the Park transform. * In particular, the overflow and saturation behavior of the accumulator used must be considered. * Refer to the function specific documentation below for usage guidelines. */ /** * @addtogroup park * @{ */ /** * @brief Floating-point Park transform * @param[in] Ialpha input two-phase vector coordinate alpha * @param[in] Ibeta input two-phase vector coordinate beta * @param[out] pId points to output rotor reference frame d * @param[out] pIq points to output rotor reference frame q * @param[in] sinVal sine value of rotation angle theta * @param[in] cosVal cosine value of rotation angle theta * * The function implements the forward Park transform. * */ __ALWAYS_STATIC_INLINE void csky_park_f32( float32_t Ialpha, float32_t Ibeta, float32_t * pId, float32_t * pIq, float32_t sinVal, float32_t cosVal) { /* Calculate pId using the equation, pId = Ialpha * cosVal + Ibeta * sinVal */ *pId = Ialpha * cosVal + Ibeta * sinVal; /* Calculate pIq using the equation, pIq = - Ialpha * sinVal + Ibeta * cosVal */ *pIq = -Ialpha * sinVal + Ibeta * cosVal; } /** * @} */ // end of park group /** * @addtogroup park * @{ */ /** * @brief Park transform for Q31 version * @param[in] Ialpha input two-phase vector coordinate alpha * @param[in] Ibeta input two-phase vector coordinate beta * @param[out] pId points to output rotor reference frame d * @param[out] pIq points to output rotor reference frame q * @param[in] sinVal sine value of rotation angle theta * @param[in] cosVal cosine value of rotation angle theta * * Scaling and Overflow Behavior: * \par * The function is implemented using an internal 32-bit accumulator. * The accumulator maintains 1.31 format by truncating lower 31 bits of the intermediate multiplication in 2.62 format. * There is saturation on the addition and subtraction, hence there is no risk of overflow. */ __ALWAYS_STATIC_INLINE void csky_park_q31( q31_t Ialpha, q31_t Ibeta, q31_t * pId, q31_t * pIq, q31_t sinVal, q31_t cosVal) { #ifdef CSKY_SIMD __ASM volatile( "rmul.s32.h t0, %0, %3\n\t" "rmul.s32.h t1, %1, %2\n\t" "add.s32.s t0, t0, t1\n\t" "st.w t0, (%4, 0x0)\n\t" "rmul.s32.h t0, %0, %2\n\t" "rmul.s32.h t1, %1, %3\n\t" "sub.s32.s t1, t1, t0\n\t" "st.w t1, (%5, 0x0)\n\t" ::"r"(Ialpha),"r"(Ibeta),"r"(sinVal),"r"(cosVal),"r"(pId),"r"(pIq) :"t0","t1", "memory"); #else q31_t product1, product2; /* Temporary variables used to store intermediate results */ q31_t product3, product4; /* Temporary variables used to store intermediate results */ /* Intermediate product is calculated by (Ialpha * cosVal) */ product1 = clip_q63_to_q31 (((q63_t) (Ialpha) * (cosVal)) >> 31); /* Intermediate product is calculated by (Ibeta * sinVal) */ product2 = clip_q63_to_q31 (((q63_t) (Ibeta) * (sinVal)) >> 31); /* Intermediate product is calculated by (Ialpha * sinVal) */ product3 = clip_q63_to_q31 (((q63_t) (Ialpha) * (sinVal)) >> 31); /* Intermediate product is calculated by (Ibeta * cosVal) */ product4 = clip_q63_to_q31 (((q63_t) (Ibeta) * (cosVal)) >> 31); /* Calculate pId by adding the two intermediate products 1 and 2 */ *pId = __QADD(product1, product2); /* Calculate pIq by subtracting the two intermediate products 3 from 4 */ *pIq = __QSUB(product4, product3); #endif } /** * @} */ // end of park group void csky_q7_to_float( q7_t * pSrc, float32_t * pDst, uint32_t blockSize); /** * @ingroup groupController */ /** * @defgroup inv_park Vector Inverse Park transform * Inverse Park transform converts the input flux and torque components to two-coordinate vector. * * The function operates on a single sample of data and each call to the function returns the processed output. * The library provides separate functions for Q31 and floating-point data types. * \par Algorithm * \image html parkInvFormula.gif * where pIalpha and pIbeta are the stator vector components, * Id and Iq are rotor vector components and cosVal and sinVal are the * cosine and sine values of theta (rotor flux position). * \par Fixed-Point Behavior * Care must be taken when using the Q31 version of the Park transform. * In particular, the overflow and saturation behavior of the accumulator used must be considered. * Refer to the function specific documentation below for usage guidelines. */ /** * @addtogroup inv_park * @{ */ /** * @brief Floating-point Inverse Park transform * @param[in] Id input coordinate of rotor reference frame d * @param[in] Iq input coordinate of rotor reference frame q * @param[out] pIalpha points to output two-phase orthogonal vector axis alpha * @param[out] pIbeta points to output two-phase orthogonal vector axis beta * @param[in] sinVal sine value of rotation angle theta * @param[in] cosVal cosine value of rotation angle theta */ __ALWAYS_STATIC_INLINE void csky_inv_park_f32( float32_t Id, float32_t Iq, float32_t * pIalpha, float32_t * pIbeta, float32_t sinVal, float32_t cosVal) { /* Calculate pIalpha using the equation, pIalpha = Id * cosVal - Iq * sinVal */ *pIalpha = Id * cosVal - Iq * sinVal; /* Calculate pIbeta using the equation, pIbeta = Id * sinVal + Iq * cosVal */ *pIbeta = Id * sinVal + Iq * cosVal; } /** * @} */ // end of inv_park group /** * @addtogroup inv_park * @{ */ /** * @brief Inverse Park transform for Q31 version * @param[in] Id input coordinate of rotor reference frame d * @param[in] Iq input coordinate of rotor reference frame q * @param[out] pIalpha points to output two-phase orthogonal vector axis alpha * @param[out] pIbeta points to output two-phase orthogonal vector axis beta * @param[in] sinVal sine value of rotation angle theta * @param[in] cosVal cosine value of rotation angle theta * * Scaling and Overflow Behavior: * \par * The function is implemented using an internal 32-bit accumulator. * The accumulator maintains 1.31 format by truncating lower 31 bits of the intermediate multiplication in 2.62 format. * There is saturation on the addition, hence there is no risk of overflow. */ __ALWAYS_STATIC_INLINE void csky_inv_park_q31( q31_t Id, q31_t Iq, q31_t * pIalpha, q31_t * pIbeta, q31_t sinVal, q31_t cosVal) { #ifdef CSKY_SIMD __ASM volatile( "rmul.s32.h t0, %0, %3\n\t" "rmul.s32.h t1, %1, %2\n\t" "sub.s32.s t0, t0, t1\n\t" "st.w t0, (%4, 0x0)\n\t" "rmul.s32.h t0, %0, %2\n\t" "rmul.s32.h t1, %1, %3\n\t" "add.s32.s t0, t0, t1\n\t" "st.w t0, (%5, 0x0)\n\t" ::"r"(Id),"r"(Iq),"r"(sinVal),"r"(cosVal),"r"(pIalpha),"r"(pIbeta) :"t0","t1", "memory"); #else q31_t product1, product2; /* Temporary variables used to store intermediate results */ q31_t product3, product4; /* Temporary variables used to store intermediate results */ /* Intermediate product is calculated by (Id * cosVal) */ product1 = clip_q63_to_q31 (((q63_t) (Id) * (cosVal)) >> 31); /* Intermediate product is calculated by (Iq * sinVal) */ product2 = clip_q63_to_q31 (((q63_t) (Iq) * (sinVal)) >> 31); /* Intermediate product is calculated by (Id * sinVal) */ product3 = clip_q63_to_q31 (((q63_t) (Id) * (sinVal)) >> 31); /* Intermediate product is calculated by (Iq * cosVal) */ product4 = clip_q63_to_q31 (((q63_t) (Iq) * (cosVal)) >> 31); /* Calculate pIalpha by using the two intermediate products 1 and 2 */ *pIalpha = __QSUB(product1, product2); /* Calculate pIbeta by using the two intermediate products 3 and 4 */ *pIbeta = __QADD(product4, product3); #endif } /** * @} */ // end of inv_park group void csky_q31_to_float( q31_t * pSrc, float32_t * pDst, uint32_t blockSize); /** * @ingroup groupInterpolation */ /** * @defgroup LinearInterpolate Linear Interpolation * * Linear interpolation is a method of curve fitting using linear polynomials. * Linear interpolation works by effectively drawing a straight line between two neighboring samples and returning the appropriate point along that line * * \par * \image html LinearInterp.gif "Linear interpolation" * * \par * A Linear Interpolate function calculates an output value(y), for the input(x) * using linear interpolation of the input values x0, x1( nearest input values) and the output values y0 and y1(nearest output values) * * \par Algorithm: *
 *       y = y0 + (x - x0) * ((y1 - y0)/(x1-x0))
 *       where x0, x1 are nearest values of input x
 *             y0, y1 are nearest values to output y
 * 
* * \par * This set of functions implements Linear interpolation process * for Q7, Q15, Q31, and floating-point data types. The functions operate on a single * sample of data and each call to the function returns a single processed value. * S points to an instance of the Linear Interpolate function data structure. * x is the input sample value. The functions returns the output value. * * \par * if x is outside of the table boundary, Linear interpolation returns first value of the table * if x is below input range and returns last value of table if x is above range. */ /** * @addtogroup LinearInterpolate * @{ */ /** * @brief Process function for the floating-point Linear Interpolation Function. * @param[in,out] S is an instance of the floating-point Linear Interpolation structure * @param[in] x input sample to process * @return y processed output sample. * */ __ALWAYS_STATIC_INLINE float32_t csky_linear_interp_f32( csky_linear_interp_instance_f32 * S, float32_t x) { float32_t y; float32_t x0, x1; /* Nearest input values */ float32_t y0, y1; /* Nearest output values */ float32_t xSpacing = S->xSpacing; /* spacing between input values */ int32_t i; /* Index variable */ float32_t *pYData = S->pYData; /* pointer to output table */ /* Calculation of index */ i = (int32_t) ((x - S->x1) / xSpacing); if(i < 0) { /* Iniatilize output for below specified range as least output value of table */ y = pYData[0]; } else if((uint32_t)i >= S->nValues) { /* Iniatilize output for above specified range as last output value of table */ y = pYData[S->nValues - 1]; } else { /* Calculation of nearest input values */ x0 = S->x1 + i * xSpacing; x1 = S->x1 + (i + 1) * xSpacing; /* Read of nearest output values */ y0 = pYData[i]; y1 = pYData[i + 1]; /* Calculation of output */ y = y0 + (x - x0) * ((y1 - y0) / (x1 - x0)); } /* returns output value */ return (y); } /** * @} */ // end of LinearInterpolate group /** * @addtogroup LinearInterpolate * @{ */ /** * @brief Process function for the Q31 Linear Interpolation Function. * @param[in] pYData pointer to Q31 Linear Interpolation table * @param[in] x input sample to process * @param[in] nValues number of table values * @return y processed output sample. * * \par * Input sample x is in 12.20 format which contains 12 bits for table index and 20 bits for fractional part. * This function can support maximum of table size 2^12. * */ __ALWAYS_STATIC_INLINE q31_t csky_linear_interp_q31( q31_t * pYData, q31_t x, uint32_t nValues) { q31_t y; /* output */ q31_t y0, y1; /* Nearest output values */ q31_t fract; /* fractional part */ int32_t index; /* Index to read nearest output values */ /* Input is in 12.20 format */ /* 12 bits for the table index */ /* Index value calculation */ index = ((x & (q31_t)0xFFF00000) >> 20); if(index >= (int32_t)(nValues - 1)) { return (pYData[nValues - 1]); } else if(index < 0) { return (pYData[0]); } else { /* 20 bits for the fractional part */ /* shift left by 11 to keep fract in 1.31 format */ fract = (x & 0x000FFFFF) << 11; /* Read two nearest output values from the index in 1.31(q31) format */ y0 = pYData[index]; y1 = pYData[index + 1]; #ifdef CSKY_SIMD /* Calculation of y0 * (1-fract) and y is in 2.30 format */ y = mult_32x32_keep32(y0, (0x7FFFFFFF - fract)); /* Calculation of y0 * (1-fract) + y1 *fract and y is in 2.30 format */ y = multAcc_32x32_keep32(y, y1, fract); #else /* Calculation of y0 * (1-fract) and y is in 2.30 format */ y = ((q31_t) ((q63_t) y0 * (0x7FFFFFFF - fract) >> 32)); /* Calculation of y0 * (1-fract) + y1 *fract and y is in 2.30 format */ y += ((q31_t) (((q63_t) y1 * fract) >> 32)); #endif /* Convert y to 1.31 format */ return (y << 1u); } } /** * @} */ // end of LinearInterpolate group /** * @addtogroup LinearInterpolate * @{ */ /** * * @brief Process function for the Q15 Linear Interpolation Function. * @param[in] pYData pointer to Q15 Linear Interpolation table * @param[in] x input sample to process * @param[in] nValues number of table values * @return y processed output sample. * * \par * Input sample x is in 12.20 format which contains 12 bits for table index and 20 bits for fractional part. * This function can support maximum of table size 2^12. * */ __ALWAYS_STATIC_INLINE q15_t csky_linear_interp_q15( q15_t * pYData, q31_t x, uint32_t nValues) { q63_t y; /* output */ q15_t y0, y1; /* Nearest output values */ q31_t fract; /* fractional part */ int32_t index; /* Index to read nearest output values */ /* Input is in 12.20 format */ /* 12 bits for the table index */ /* Index value calculation */ index = ((x & (int32_t)0xFFF00000) >> 20); if(index >= (int32_t)(nValues - 1)) { return (pYData[nValues - 1]); } else if(index < 0) { return (pYData[0]); } else { /* 20 bits for the fractional part */ /* fract is in 12.20 format */ fract = (x & 0x000FFFFF); /* Read two nearest output values from the index */ y0 = pYData[index]; y1 = pYData[index + 1]; #ifdef CSKY_SIMD /* Calculation of y0 * (1-fract) and y is in 13.35 format */ y = mult_32x32_keep64(y0, (0xFFFFF - fract)); /* Calculation of (y0 * (1-fract) + y1 * fract) and y is in 13.35 format */ y = multAcc_32x32_keep64(y, y1, (fract)); #else /* Calculation of y0 * (1-fract) and y is in 13.35 format */ y = ((q63_t) y0 * (0xFFFFF - fract)); /* Calculation of (y0 * (1-fract) + y1 * fract) and y is in 13.35 format */ y += ((q63_t) y1 * (fract)); #endif /* convert y to 1.15 format */ return (q15_t) (y >> 20); } } /** * @} */ // end of LinearInterpolate group /** * @addtogroup LinearInterpolate * @{ */ /** * * @brief Process function for the Q7 Linear Interpolation Function. * @param[in] pYData pointer to Q7 Linear Interpolation table * @param[in] x input sample to process * @param[in] nValues number of table values * @return y processed output sample. * * \par * Input sample x is in 12.20 format which contains 12 bits for table index and 20 bits for fractional part. * This function can support maximum of table size 2^12. */ __ALWAYS_STATIC_INLINE q7_t csky_linear_interp_q7( q7_t * pYData, q31_t x, uint32_t nValues) { q31_t y; /* output */ q7_t y0, y1; /* Nearest output values */ q31_t fract; /* fractional part */ uint32_t index; /* Index to read nearest output values */ /* Input is in 12.20 format */ /* 12 bits for the table index */ /* Index value calculation */ if (x < 0) { return (pYData[0]); } index = (x >> 20) & 0xfff; if(index >= (nValues - 1)) { return (pYData[nValues - 1]); } else { /* 20 bits for the fractional part */ /* fract is in 12.20 format */ fract = (x & 0x000FFFFF); /* Read two nearest output values from the index and are in 1.7(q7) format */ y0 = pYData[index]; y1 = pYData[index + 1]; /* Calculation of y0 * (1-fract ) and y is in 13.27(q27) format */ y = ((y0 * (0xFFFFF - fract))); /* Calculation of y1 * fract + y0 * (1-fract) and y is in 13.27(q27) format */ y += (y1 * fract); /* convert y to 1.7(q7) format */ return (q7_t) (y >> 20); } } /** * @} */ // end of LinearInterpolate group float32_t csky_sin_f32( float32_t x); q31_t csky_sin_q31( q31_t x); q15_t csky_sin_q15( q15_t x); float32_t csky_cos_f32( float32_t x); q31_t csky_cos_q31( q31_t x); q15_t csky_cos_q15( q15_t x); csky_status csky_sqrt_f32( float32_t in, float32_t * pOut); csky_status csky_sqrt_q31( q31_t in, q31_t * pOut); csky_status csky_sqrt_q15( q15_t in, q15_t * pOut); void csky_power_q31( q31_t * pSrc, uint32_t blockSize, q63_t * pResult); void csky_power_int32( int32_t * pSrc, uint32_t blockSize, q63_t * pResult); void csky_power_int32( int32_t * pSrc, uint32_t blockSize, q63_t * pResult); void csky_power_f32( float32_t * pSrc, uint32_t blockSize, float32_t * pResult); void csky_power_q15( q15_t * pSrc, uint32_t blockSize, q63_t * pResult); void csky_power_q7( q7_t * pSrc, uint32_t blockSize, q31_t * pResult); void csky_mean_q7( q7_t * pSrc, uint32_t blockSize, q7_t * pResult); void csky_mean_q15( q15_t * pSrc, uint32_t blockSize, q15_t * pResult); void csky_mean_q31( q31_t * pSrc, uint32_t blockSize, q31_t * pResult); void csky_mean_f32( float32_t * pSrc, uint32_t blockSize, float32_t * pResult); void csky_var_f32( float32_t * pSrc, uint32_t blockSize, float32_t * pResult); void csky_var_q31( q31_t * pSrc, uint32_t blockSize, q31_t * pResult); void csky_var_q15( q15_t * pSrc, uint32_t blockSize, q15_t * pResult); void csky_rms_f32( float32_t * pSrc, uint32_t blockSize, float32_t * pResult); void csky_rms_q31( q31_t * pSrc, uint32_t blockSize, q31_t * pResult); void csky_rms_q15( q15_t * pSrc, uint32_t blockSize, q15_t * pResult); void csky_std_f32( float32_t * pSrc, uint32_t blockSize, float32_t * pResult); void csky_std_q31( q31_t * pSrc, uint32_t blockSize, q31_t * pResult); void csky_std_q15( q15_t * pSrc, uint32_t blockSize, q15_t * pResult); void csky_cmplx_mag_f32( float32_t * pSrc, float32_t * pDst, uint32_t numSamples); void csky_cmplx_mag_q31( q31_t * pSrc, q31_t * pDst, uint32_t numSamples); void csky_cmplx_mag_q15( q15_t * pSrc, q15_t * pDst, uint32_t numSamples); void csky_cmplx_dot_prod_q15( q15_t * pSrcA, q15_t * pSrcB, uint32_t numSamples, q31_t * realResult, q31_t * imagResult); void csky_cmplx_dot_prod_q31( q31_t * pSrcA, q31_t * pSrcB, uint32_t numSamples, q63_t * realResult, q63_t * imagResult); void csky_cmplx_dot_prod_f32( float32_t * pSrcA, float32_t * pSrcB, uint32_t numSamples, float32_t * realResult, float32_t * imagResult); void csky_cmplx_mult_real_q15( q15_t * pSrcCmplx, q15_t * pSrcReal, q15_t * pCmplxDst, uint32_t numSamples); void csky_cmplx_mult_real_q31( q31_t * pSrcCmplx, q31_t * pSrcReal, q31_t * pCmplxDst, uint32_t numSamples); void csky_cmplx_mult_real_f32( float32_t * pSrcCmplx, float32_t * pSrcReal, float32_t * pCmplxDst, uint32_t numSamples); void csky_min_q7( q7_t * pSrc, uint32_t blockSize, q7_t * result, uint32_t * index); void csky_min_q15( q15_t * pSrc, uint32_t blockSize, q15_t * pResult, uint32_t * pIndex); void csky_min_q31( q31_t * pSrc, uint32_t blockSize, q31_t * pResult, uint32_t * pIndex); void csky_min_f32( float32_t * pSrc, uint32_t blockSize, float32_t * pResult, uint32_t * pIndex); void csky_max_q7( q7_t * pSrc, uint32_t blockSize, q7_t * pResult, uint32_t * pIndex); void csky_max_q15( q15_t * pSrc, uint32_t blockSize, q15_t * pResult, uint32_t * pIndex); void csky_max_q31( q31_t * pSrc, uint32_t blockSize, q31_t * pResult, uint32_t * pIndex); void csky_max_f32( float32_t * pSrc, uint32_t blockSize, float32_t * pResult, uint32_t * pIndex); void csky_cmplx_mult_cmplx_q15( q15_t * pSrcA, q15_t * pSrcB, q15_t * pDst, uint32_t numSamples); void csky_cmplx_mult_cmplx_q31( q31_t * pSrcA, q31_t * pSrcB, q31_t * pDst, uint32_t numSamples); void csky_cmplx_mult_cmplx_f32( float32_t * pSrcA, float32_t * pSrcB, float32_t * pDst, uint32_t numSamples); void csky_cmplx_mult_cmplx_re_q15( q15_t * pSrcA, q15_t * pSrcB, q15_t * pDst, uint32_t numSamples); void csky_cmplx_mult_cmplx_re_q31( q31_t * pSrcA, q31_t * pSrcB, q31_t * pDst, uint32_t numSamples); void csky_cmplx_mult_cmplx_re_f32( float32_t * pSrcA, float32_t * pSrcB, float32_t * pDst, uint32_t numSamples); void csky_float_to_q31( float32_t * pSrc, q31_t * pDst, uint32_t blockSize); void csky_float_to_q15( float32_t * pSrc, q15_t * pDst, uint32_t blockSize); void csky_float_to_q7( float32_t * pSrc, q7_t * pDst, uint32_t blockSize); void csky_q31_to_q15( q31_t * pSrc, q15_t * pDst, uint32_t blockSize); void csky_q31_to_q7( q31_t * pSrc, q7_t * pDst, uint32_t blockSize); void csky_q15_to_float( q15_t * pSrc, float32_t * pDst, uint32_t blockSize); void csky_q15_to_q31( q15_t * pSrc, q31_t * pDst, uint32_t blockSize); void csky_q15_to_q7( q15_t * pSrc, q7_t * pDst, uint32_t blockSize); /** * @ingroup groupInterpolation */ /** * @defgroup BilinearInterpolate Bilinear Interpolation * * Bilinear interpolation is an extension of linear interpolation applied to a two dimensional grid. * The underlying function f(x, y) is sampled on a regular grid and the interpolation process * determines values between the grid points. * Bilinear interpolation is equivalent to two step linear interpolation, first in the x-dimension and then in the y-dimension. * Bilinear interpolation is often used in image processing to rescale images. * The CSI DSP library provides bilinear interpolation functions for Q7, Q15, Q31, and floating-point data types. * * Algorithm * \par * The instance structure used by the bilinear interpolation functions describes a two dimensional data table. * For floating-point, the instance structure is defined as: *
 *   typedef struct
 *   {
 *     uint16_t numRows;
 *     uint16_t numCols;
 *     float32_t *pData;
 * } csky_bilinear_interp_instance_f32;
 * 
* * \par * where numRows specifies the number of rows in the table; * numCols specifies the number of columns in the table; * and pData points to an array of size numRows*numCols values. * The data table pTable is organized in row order and the supplied data values fall on integer indexes. * That is, table element (x,y) is located at pTable[x + y*numCols] where x and y are integers. * * \par * Let (x, y) specify the desired interpolation point. Then define: *
 *     XF = floor(x)
 *     YF = floor(y)
 * 
* \par * The interpolated output point is computed as: *
 *  f(x, y) = f(XF, YF) * (1-(x-XF)) * (1-(y-YF))
 *           + f(XF+1, YF) * (x-XF)*(1-(y-YF))
 *           + f(XF, YF+1) * (1-(x-XF))*(y-YF)
 *           + f(XF+1, YF+1) * (x-XF)*(y-YF)
 * 
* Note that the coordinates (x, y) contain integer and fractional components. * The integer components specify which portion of the table to use while the * fractional components control the interpolation processor. * * \par * if (x,y) are outside of the table boundary, Bilinear interpolation returns zero output. */ /** * @addtogroup BilinearInterpolate * @{ */ /** * * @brief Floating-point bilinear interpolation. * @param[in,out] S points to an instance of the interpolation structure. * @param[in] X interpolation coordinate. * @param[in] Y interpolation coordinate. * @return out interpolated value. */ __ALWAYS_STATIC_INLINE float32_t csky_bilinear_interp_f32( const csky_bilinear_interp_instance_f32 * S, float32_t X, float32_t Y) { float32_t out; float32_t f00, f01, f10, f11; float32_t *pData = S->pData; int32_t xIndex, yIndex, index; float32_t xdiff, ydiff; float32_t b1, b2, b3, b4; xIndex = (int32_t) X; yIndex = (int32_t) Y; /* Care taken for table outside boundary */ /* Returns zero output when values are outside table boundary */ if(xIndex < 0 || xIndex > (S->numRows - 1) || yIndex < 0 || yIndex > (S->numCols - 1)) { return (0); } /* Calculation of index for two nearest points in X-direction */ index = (xIndex - 1) + (yIndex - 1) * S->numCols; /* Read two nearest points in X-direction */ f00 = pData[index]; f01 = pData[index + 1]; /* Calculation of index for two nearest points in Y-direction */ index = (xIndex - 1) + (yIndex) * S->numCols; /* Read two nearest points in Y-direction */ f10 = pData[index]; f11 = pData[index + 1]; /* Calculation of intermediate values */ b1 = f00; b2 = f01 - f00; b3 = f10 - f00; b4 = f00 - f01 - f10 + f11; /* Calculation of fractional part in X */ xdiff = X - xIndex; /* Calculation of fractional part in Y */ ydiff = Y - yIndex; /* Calculation of bi-linear interpolated output */ out = b1 + b2 * xdiff + b3 * ydiff + b4 * xdiff * ydiff; /* return to application */ return (out); } /** * @} */ // end of BilinearInterpolate group /** * @addtogroup BilinearInterpolate * @{ */ /** * * @brief Q31 bilinear interpolation. * @param[in,out] S points to an instance of the interpolation structure. * @param[in] X interpolation coordinate in 12.20 format. * @param[in] Y interpolation coordinate in 12.20 format. * @return out interpolated value. */ __ALWAYS_STATIC_INLINE q31_t csky_bilinear_interp_q31( csky_bilinear_interp_instance_q31 * S, q31_t X, q31_t Y) { q31_t out; /* Temporary output */ q31_t acc = 0; /* output */ q31_t xfract, yfract; /* X, Y fractional parts */ q31_t x1, x2, y1, y2; /* Nearest output values */ int32_t rI, cI; /* Row and column indices */ q31_t *pYData = S->pData; /* pointer to output table values */ uint32_t nCols = S->numCols; /* num of rows */ /* Input is in 12.20 format */ /* 12 bits for the table index */ /* Index value calculation */ rI = ((X & (q31_t)0xFFF00000) >> 20); /* Input is in 12.20 format */ /* 12 bits for the table index */ /* Index value calculation */ cI = ((Y & (q31_t)0xFFF00000) >> 20); /* Care taken for table outside boundary */ /* Returns zero output when values are outside table boundary */ if(rI < 0 || rI > (S->numRows - 1) || cI < 0 || cI > (S->numCols - 1)) { return (0); } /* 20 bits for the fractional part */ /* shift left xfract by 11 to keep 1.31 format */ xfract = (X & 0x000FFFFF) << 11u; /* Read two nearest output values from the index */ x1 = pYData[(rI) + (int32_t)nCols * (cI) ]; x2 = pYData[(rI) + (int32_t)nCols * (cI) + 1]; /* 20 bits for the fractional part */ /* shift left yfract by 11 to keep 1.31 format */ yfract = (Y & 0x000FFFFF) << 11u; /* Read two nearest output values from the index */ y1 = pYData[(rI) + (int32_t)nCols * (cI + 1) ]; y2 = pYData[(rI) + (int32_t)nCols * (cI + 1) + 1]; #ifdef CSKY_SIMD /* Calculation of x1 * (1-xfract ) * (1-yfract) and acc is in 3.29(q29) format */ out = mult_32x32_keep32(x1, (0x7FFFFFFF - xfract)); acc = mult_32x32_keep32(out, (0x7FFFFFFF - yfract)); /* x2 * (xfract) * (1-yfract) in 3.29(q29) and adding to acc */ out = mult_32x32_keep32(x2, (0x7FFFFFFF - yfract)); acc = multAcc_32x32_keep32(acc, out, xfract); /* y1 * (1 - xfract) * (yfract) in 3.29(q29) and adding to acc */ out = mult_32x32_keep32(y1, (0x7FFFFFFF - xfract)); acc = multAcc_32x32_keep32(acc, out, yfract); /* y2 * (xfract) * (yfract) in 3.29(q29) and adding to acc */ out = mult_32x32_keep32(y2, xfract); acc = multAcc_32x32_keep32(acc, out, yfract); #else /* Calculation of x1 * (1-xfract ) * (1-yfract) and acc is in 3.29(q29) format */ out = ((q31_t) (((q63_t) x1 * (0x7FFFFFFF - xfract)) >> 32)); acc = ((q31_t) (((q63_t) out * (0x7FFFFFFF - yfract)) >> 32)); /* x2 * (xfract) * (1-yfract) in 3.29(q29) and adding to acc */ out = ((q31_t) ((q63_t) x2 * (0x7FFFFFFF - yfract) >> 32)); acc += ((q31_t) ((q63_t) out * (xfract) >> 32)); /* y1 * (1 - xfract) * (yfract) in 3.29(q29) and adding to acc */ out = ((q31_t) ((q63_t) y1 * (0x7FFFFFFF - xfract) >> 32)); acc += ((q31_t) ((q63_t) out * (yfract) >> 32)); /* y2 * (xfract) * (yfract) in 3.29(q29) and adding to acc */ out = ((q31_t) ((q63_t) y2 * (xfract) >> 32)); acc += ((q31_t) ((q63_t) out * (yfract) >> 32)); #endif /* Convert acc to 1.31(q31) format */ return ((q31_t)(acc << 2)); } /** * @} */ // end of BilinearInterpolate group /** * @addtogroup BilinearInterpolate * @{ */ /** * @brief Q15 bilinear interpolation. * @param[in,out] S points to an instance of the interpolation structure. * @param[in] X interpolation coordinate in 12.20 format. * @param[in] Y interpolation coordinate in 12.20 format. * @return out interpolated value. */ __ALWAYS_STATIC_INLINE q15_t csky_bilinear_interp_q15( csky_bilinear_interp_instance_q15 * S, q31_t X, q31_t Y) { q63_t acc = 0; /* output */ q31_t out; /* Temporary output */ q15_t x1, x2, y1, y2; /* Nearest output values */ q31_t xfract, yfract; /* X, Y fractional parts */ int32_t rI, cI; /* Row and column indices */ q15_t *pYData = S->pData; /* pointer to output table values */ uint32_t nCols = S->numCols; /* num of rows */ /* Input is in 12.20 format */ /* 12 bits for the table index */ /* Index value calculation */ rI = ((X & (q31_t)0xFFF00000) >> 20); /* Input is in 12.20 format */ /* 12 bits for the table index */ /* Index value calculation */ cI = ((Y & (q31_t)0xFFF00000) >> 20); /* Care taken for table outside boundary */ /* Returns zero output when values are outside table boundary */ if(rI < 0 || rI > (S->numRows - 1) || cI < 0 || cI > (S->numCols - 1)) { return (0); } /* 20 bits for the fractional part */ /* xfract should be in 12.20 format */ xfract = (X & 0x000FFFFF); /* Read two nearest output values from the index */ x1 = pYData[((uint32_t)rI) + nCols * ((uint32_t)cI) ]; x2 = pYData[((uint32_t)rI) + nCols * ((uint32_t)cI) + 1]; /* 20 bits for the fractional part */ /* yfract should be in 12.20 format */ yfract = (Y & 0x000FFFFF); /* Read two nearest output values from the index */ y1 = pYData[((uint32_t)rI) + nCols * ((uint32_t)cI + 1) ]; y2 = pYData[((uint32_t)rI) + nCols * ((uint32_t)cI + 1) + 1]; /* Calculation of x1 * (1-xfract ) * (1-yfract) and acc is in 13.51 format */ /* x1 is in 1.15(q15), xfract in 12.20 format and out is in 13.35 format */ /* convert 13.35 to 13.31 by right shifting and out is in 1.31 */ #ifdef CSKY_SIMD out = mult_32x32_dext_4(x1, (0xFFFFF - xfract)); acc = mult_32x32_keep64(out, (0xFFFFF - yfract)); /* x2 * (xfract) * (1-yfract) in 1.51 and adding to acc */ out = mult_32x32_dext_4(x2, (0xFFFFF - yfract)); acc = multAcc_32x32_keep64(acc, out, (xfract)); /* y1 * (1 - xfract) * (yfract) in 1.51 and adding to acc */ out = mult_32x32_dext_4(y1, (0xFFFFF - xfract)); acc = multAcc_32x32_keep64(acc, out, (yfract)); /* y2 * (xfract) * (yfract) in 1.51 and adding to acc */ out = mult_32x32_dext_4(y2, (xfract)); acc = multAcc_32x32_keep64(acc, out, (yfract)); #else out = (q31_t) (((q63_t) x1 * (0xFFFFF - xfract)) >> 4u); acc = ((q63_t) out * (0xFFFFF - yfract)); /* x2 * (xfract) * (1-yfract) in 1.51 and adding to acc */ out = (q31_t) (((q63_t) x2 * (0xFFFFF - yfract)) >> 4u); acc += ((q63_t) out * (xfract)); /* y1 * (1 - xfract) * (yfract) in 1.51 and adding to acc */ out = (q31_t) (((q63_t) y1 * (0xFFFFF - xfract)) >> 4u); acc += ((q63_t) out * (yfract)); /* y2 * (xfract) * (yfract) in 1.51 and adding to acc */ out = (q31_t) (((q63_t) y2 * (xfract)) >> 4u); acc += ((q63_t) out * (yfract)); #endif /* acc is in 13.51 format and down shift acc by 36 times */ /* Convert out to 1.15 format */ return ((q15_t)(acc >> 36)); } /** * @} */ // end of BilinearInterpolate group /** * @addtogroup BilinearInterpolate * @{ */ /** * @brief Q7 bilinear interpolation. * @param[in,out] S points to an instance of the interpolation structure. * @param[in] X interpolation coordinate in 12.20 format. * @param[in] Y interpolation coordinate in 12.20 format. * @return out interpolated value. */ __ALWAYS_STATIC_INLINE q7_t csky_bilinear_interp_q7( csky_bilinear_interp_instance_q7 * S, q31_t X, q31_t Y) { q63_t acc = 0; /* output */ q31_t out; /* Temporary output */ q31_t xfract, yfract; /* X, Y fractional parts */ q7_t x1, x2, y1, y2; /* Nearest output values */ int32_t rI, cI; /* Row and column indices */ q7_t *pYData = S->pData; /* pointer to output table values */ uint32_t nCols = S->numCols; /* num of rows */ /* Input is in 12.20 format */ /* 12 bits for the table index */ /* Index value calculation */ rI = ((X & (q31_t)0xFFF00000) >> 20); /* Input is in 12.20 format */ /* 12 bits for the table index */ /* Index value calculation */ cI = ((Y & (q31_t)0xFFF00000) >> 20); /* Care taken for table outside boundary */ /* Returns zero output when values are outside table boundary */ if(rI < 0 || rI > (S->numRows - 1) || cI < 0 || cI > (S->numCols - 1)) { return (0); } /* 20 bits for the fractional part */ /* xfract should be in 12.20 format */ xfract = (X & (q31_t)0x000FFFFF); /* Read two nearest output values from the index */ x1 = pYData[((uint32_t)rI) + nCols * ((uint32_t)cI) ]; x2 = pYData[((uint32_t)rI) + nCols * ((uint32_t)cI) + 1]; /* 20 bits for the fractional part */ /* yfract should be in 12.20 format */ yfract = (Y & (q31_t)0x000FFFFF); /* Read two nearest output values from the index */ y1 = pYData[((uint32_t)rI) + nCols * ((uint32_t)cI + 1) ]; y2 = pYData[((uint32_t)rI) + nCols * ((uint32_t)cI + 1) + 1]; /* Calculation of x1 * (1-xfract ) * (1-yfract) and acc is in 16.47 format */ out = ((x1 * (0xFFFFF - xfract))); #ifdef CSKY_SIMD acc = multAcc_32x32_keep64(acc, out, (0xFFFFF - yfract)); /* x2 * (xfract) * (1-yfract) in 2.22 and adding to acc */ out = ((x2 * (0xFFFFF - yfract))); acc = multAcc_32x32_keep64(acc, out, xfract); /* y1 * (1 - xfract) * (yfract) in 2.22 and adding to acc */ out = ((y1 * (0xFFFFF - xfract))); acc = multAcc_32x32_keep64(acc, out, yfract); /* y2 * (xfract) * (yfract) in 2.22 and adding to acc */ out = ((y2 * (yfract))); acc = multAcc_32x32_keep64(acc, out, xfract); #else acc = (((q63_t) out * (0xFFFFF - yfract))); /* x2 * (xfract) * (1-yfract) in 2.22 and adding to acc */ out = ((x2 * (0xFFFFF - yfract))); acc += (((q63_t) out * (xfract))); /* y1 * (1 - xfract) * (yfract) in 2.22 and adding to acc */ out = ((y1 * (0xFFFFF - xfract))); acc += (((q63_t) out * (yfract))); /* y2 * (xfract) * (yfract) in 2.22 and adding to acc */ out = ((y2 * (yfract))); acc += (((q63_t) out * (xfract))); #endif /* acc in 16.47 format and down shift by 40 to convert to 1.7 format */ return ((q7_t)(acc >> 40)); } /** * @} */ // end of BilinearInterpolate group /** * @ingroup groupMath */ /** * @defgroup ShiftRight Right Shift * * Shift the input value to right with appointed bits, its basic format is: *
 *     a = (a) >> (shift),   1 =< shift <= bitof(a) - 1.
 * 
* The basic format is only designed for q31. * * and the extended format should be rounding to +inf: *
 *     a = (a + (1<<(shift - 1)) >> (shift),   1 =< shift <= bitof(a) - 1.
 * 
* * which are designed for q31, q31 positive and q63. */ /** * @addtogroup ShiftRight * @{ */ /** * @brief right shift Q31 version * @param[in] a input value to be shift. * @param[in] shift input positive value, the number of bits to be shift. * @param[out] result the shifted a. * * Scaling and Overflow Behavior: * \par * The function is only used for right shift. So, the value of shift is * between[1,31]. */ __ALWAYS_STATIC_INLINE q31_t csky_shr_q31( q31_t a, q31_t shift) { q31_t res; #ifdef CSKY_SIMD __ASM volatile( "asr %0, %1, %2\n\t" :"=r"(res), "=r"(a),"=r"(shift):"0"(res), "1"(a), "2"(shift)); #else res = ((a) >> (shift)); #endif return res; } #define SHR(a, shift) csky_shr_q31(a, shift) /** * @} */ // end of ShiftRight group /** * @addtogroup ShiftRight * @{ */ /** * @brief right shift Q31 version * @param[in] a input value to be shift. * @param[in] shift input positive value, the number of bits to be shift. * @param[out] result the shifted a. * * Scaling and Overflow Behavior: * \par * The function is only used for right shift. So, the value of shift is * between[1,31]. And the output value is rounding to +inf. */ __ALWAYS_STATIC_INLINE q31_t csky_pshr_q31( q31_t a, q31_t shift) { q31_t res; #ifdef CSKY_SIMD __ASM volatile( "asr.s32.r %0, %1, %2\n\t" :"=r"(res), "=r"(a),"=r"(shift):"0"(res), "1"(a), "2"(shift)); #else res = (a >= 0?(SHR((a) + (1<<(shift - 1)), shift))\ :(SHR((a) + ((1<>1) -1, shift))); #endif return res; } /** * @} */ // end of ShiftRight group /** * @addtogroup ShiftRight * @{ */ /** * @brief right shift Q31 version * @param[in] a input positive value to be shift. * @param[in] shift input positive value, the number of bits to be shift. * @param[out] result the shifted a. * * Scaling and Overflow Behavior: * \par * The function is only used for right shift. So, the value of shift is * between[1,31]. And the output value is rounding to +inf. */ __ALWAYS_STATIC_INLINE q31_t csky_pshr_pos_q31( q31_t a, q31_t shift) { q31_t res; #ifdef CSKY_SIMD __ASM volatile( "asr.s32.r %0, %1, %2\n\t" :"=r"(res), "=r"(a),"=r"(shift):"0"(res), "1"(a), "2"(shift)); #else res = SHR((a) + (1<<(shift - 1)), shift); #endif return res; } /** * @} */ // end of ShiftRight group /** * @addtogroup ShiftRight * @{ */ /** * @brief right shift Q63 version * @param[in] a input value to be shift. * @param[in] shift input positive value, the number of bits to be shift. * @param[out] result the shifted a. * * Scaling and Overflow Behavior: * \par * The function is only used for right shift. So, the value of shift is * between[1,63]. And the output value is rounding to +inf. */ __ALWAYS_STATIC_INLINE q63_t csky_pshr_q63( q63_t a, q31_t shift) { q63_t res; #ifdef CSKY_SIMD __ASM volatile( "subi t0, %2, 1\n\t" "cmphsi t0, 32\n\t" "bt 1f\n\t" "movi t1, 1\n\t" "lsl t0, t1, t0\n\t" "movi t1, 0\n\t" "add.s64.s %1, %1, t0\n\t" "dext %0, %1, %R1, %2\n\t" "asr %R0, %R1, %2\n\t" "br 2f\n\t" "1:\n\t" "subi %2, %2, 32\n\t" "subi t0, t0, 32\n\t" "movi t1, 1\n\t" "lsl t1, t1, t0\n\t" "add.s32.s %R1, %R1, t1\n\t" "asr %0, %R1, %2\n\t" "asri %R0, %R1, 31\n\t" "2:\n\t" :"=r"(res), "=r"(a),"=r"(shift):"0"(res), "1"(a), "2"(shift):"t0", "t1"); #else res = (a >= 0?(SHR((a) + ((q63_t)1<<(shift - 1)), shift))\ :(SHR((a) + (((q63_t)1<>1) -1, shift))); #endif return res; } /** * @} */ // end of ShiftRight group //#define SHR(a, shift) csky_shr_q31(a, shift) #define PSHR(a, shift) csky_pshr_q31(a, shift) #define PSHR_POSITIVE(a, shift) csky_pshr_pos_q31(a, shift) #define PSHR64(a, shift) csky_pshr_q63(a, shift) #ifdef CSKY_SIMD #else /* SMMLAR */ #define multAcc_32x32_keep32_R(a, x, y) \ a = (q31_t) (((((q63_t) a) << 32) + ((q63_t) x * y) + 0x80000000LL ) >> 32) /* SMMLSR */ #define multSub_32x32_keep32_R(a, x, y) \ a = (q31_t) (((((q63_t) a) << 32) - ((q63_t) x * y) + 0x80000000LL ) >> 32) /* SMMULR */ #define mult_32x32_keep32_R(a, x, y) \ a = (q31_t) (((q63_t) x * y + 0x80000000LL ) >> 32) /* SMMLA */ #define multAcc_32x32_keep32(a, x, y) \ a += (q31_t) (((q63_t) x * y) >> 32) /* SMMLS */ #define multSub_32x32_keep32(a, x, y) \ a -= (q31_t) (((q63_t) x * y) >> 32) /* SMMUL */ #define mult_32x32_keep32(a, x, y) \ a = (q31_t) (((q63_t) x * y ) >> 32) #endif #ifdef __cplusplus } #endif #endif /* _CSKY_MATH_H */ /** * * End of file. */