/** * @file * * IPv6 fragmentation and reassembly. */ /* * Copyright (c) 2010 Inico Technologies Ltd. * All rights reserved. * * Redistribution and use in source and binary forms, with or without modification, * are permitted provided that the following conditions are met: * * 1. Redistributions of source code must retain the above copyright notice, * this list of conditions and the following disclaimer. * 2. Redistributions in binary form must reproduce the above copyright notice, * this list of conditions and the following disclaimer in the documentation * and/or other materials provided with the distribution. * 3. The name of the author may not be used to endorse or promote products * derived from this software without specific prior written permission. * * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR IMPLIED * WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF * MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT * SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, * EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT * OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING * IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY * OF SUCH DAMAGE. * * This file is part of the lwIP TCP/IP stack. * * Author: Ivan Delamer * * * Please coordinate changes and requests with Ivan Delamer * */ #include "lwip/opt.h" #include "lwip/ip6_frag.h" #include "lwip/ip6.h" #include "lwip/icmp6.h" #include "lwip/nd6.h" #include "lwip/ip.h" #include "lwip/pbuf.h" #include "lwip/memp.h" #include "lwip/stats.h" #include #if LWIP_IPV6 && LWIP_IPV6_REASS /* don't build if not configured for use in lwipopts.h */ /** Setting this to 0, you can turn off checking the fragments for overlapping * regions. The code gets a little smaller. Only use this if you know that * overlapping won't occur on your network! */ #ifndef IP_REASS_CHECK_OVERLAP #define IP_REASS_CHECK_OVERLAP 1 #endif /* IP_REASS_CHECK_OVERLAP */ /** Set to 0 to prevent freeing the oldest datagram when the reassembly buffer is * full (IP_REASS_MAX_PBUFS pbufs are enqueued). The code gets a little smaller. * Datagrams will be freed by timeout only. Especially useful when MEMP_NUM_REASSDATA * is set to 1, so one datagram can be reassembled at a time, only. */ #ifndef IP_REASS_FREE_OLDEST #define IP_REASS_FREE_OLDEST 1 #endif /* IP_REASS_FREE_OLDEST */ #if IPV6_FRAG_COPYHEADER #define IPV6_FRAG_REQROOM ((s16_t)(sizeof(struct ip6_reass_helper) - IP6_FRAG_HLEN)) #endif #define IP_REASS_FLAG_LASTFRAG 0x01 /** This is a helper struct which holds the starting * offset and the ending offset of this fragment to * easily chain the fragments. * It has the same packing requirements as the IPv6 header, since it replaces * the Fragment Header in memory in incoming fragments to keep * track of the various fragments. */ #ifdef PACK_STRUCT_USE_INCLUDES # include "arch/bpstruct.h" #endif PACK_STRUCT_BEGIN struct ip6_reass_helper { PACK_STRUCT_FIELD(struct pbuf *next_pbuf); PACK_STRUCT_FIELD(u16_t start); PACK_STRUCT_FIELD(u16_t end); } PACK_STRUCT_STRUCT; PACK_STRUCT_END #ifdef PACK_STRUCT_USE_INCLUDES # include "arch/epstruct.h" #endif /* static variables */ static struct ip6_reassdata *reassdatagrams; static u16_t ip6_reass_pbufcount; /* Forward declarations. */ static void ip6_reass_free_complete_datagram(struct ip6_reassdata *ipr); #if IP_REASS_FREE_OLDEST static void ip6_reass_remove_oldest_datagram(struct ip6_reassdata *ipr, int pbufs_needed); #endif /* IP_REASS_FREE_OLDEST */ void ip6_reass_tmr(void) { struct ip6_reassdata *r, *tmp; #if !IPV6_FRAG_COPYHEADER LWIP_ASSERT("sizeof(struct ip6_reass_helper) <= IP6_FRAG_HLEN, set IPV6_FRAG_COPYHEADER to 1", sizeof(struct ip6_reass_helper) <= IP6_FRAG_HLEN); #endif /* !IPV6_FRAG_COPYHEADER */ r = reassdatagrams; while (r != NULL) { /* Decrement the timer. Once it reaches 0, * clean up the incomplete fragment assembly */ if (r->timer > 0) { r->timer--; r = r->next; } else { /* reassembly timed out */ tmp = r; /* get the next pointer before freeing */ r = r->next; /* free the helper struct and all enqueued pbufs */ ip6_reass_free_complete_datagram(tmp); } } } /** * Free a datagram (struct ip6_reassdata) and all its pbufs. * Updates the total count of enqueued pbufs (ip6_reass_pbufcount), * sends an ICMP time exceeded packet. * * @param ipr datagram to free */ static void ip6_reass_free_complete_datagram(struct ip6_reassdata *ipr) { struct ip6_reassdata *prev; u16_t pbufs_freed = 0; u16_t clen; struct pbuf *p; struct ip6_reass_helper *iprh; #if LWIP_ICMP6 iprh = (struct ip6_reass_helper *)ipr->p->payload; if (iprh->start == 0) { /* The first fragment was received, send ICMP time exceeded. */ /* First, de-queue the first pbuf from r->p. */ p = ipr->p; ipr->p = iprh->next_pbuf; /* Then, move back to the original ipv6 header (we are now pointing to Fragment header). This cannot fail since we already checked when receiving this fragment. */ if (pbuf_header_force(p, (s16_t)((u8_t*)p->payload - (u8_t*)IPV6_FRAG_HDRREF(ipr->iphdr)))) { LWIP_ASSERT("ip6_reass_free: moving p->payload to ip6 header failed\n", 0); } else { icmp6_time_exceeded(p, ICMP6_TE_FRAG); } clen = pbuf_clen(p); LWIP_ASSERT("pbufs_freed + clen <= 0xffff", pbufs_freed + clen <= 0xffff); pbufs_freed += clen; pbuf_free(p); } #endif /* LWIP_ICMP6 */ /* First, free all received pbufs. The individual pbufs need to be released separately as they have not yet been chained */ p = ipr->p; while (p != NULL) { struct pbuf *pcur; iprh = (struct ip6_reass_helper *)p->payload; pcur = p; /* get the next pointer before freeing */ p = iprh->next_pbuf; clen = pbuf_clen(pcur); LWIP_ASSERT("pbufs_freed + clen <= 0xffff", pbufs_freed + clen <= 0xffff); pbufs_freed += clen; pbuf_free(pcur); } /* Then, unchain the struct ip6_reassdata from the list and free it. */ if (ipr == reassdatagrams) { reassdatagrams = ipr->next; } else { prev = reassdatagrams; while (prev != NULL) { if (prev->next == ipr) { break; } prev = prev->next; } if (prev != NULL) { prev->next = ipr->next; } } memp_free(MEMP_IP6_REASSDATA, ipr); /* Finally, update number of pbufs in reassembly queue */ LWIP_ASSERT("ip_reass_pbufcount >= clen", ip6_reass_pbufcount >= pbufs_freed); ip6_reass_pbufcount -= pbufs_freed; } #if IP_REASS_FREE_OLDEST /** * Free the oldest datagram to make room for enqueueing new fragments. * The datagram ipr is not freed! * * @param ipr ip6_reassdata for the current fragment * @param pbufs_needed number of pbufs needed to enqueue * (used for freeing other datagrams if not enough space) */ static void ip6_reass_remove_oldest_datagram(struct ip6_reassdata *ipr, int pbufs_needed) { struct ip6_reassdata *r, *oldest; /* Free datagrams until being allowed to enqueue 'pbufs_needed' pbufs, * but don't free the current datagram! */ do { r = oldest = reassdatagrams; while (r != NULL) { if (r != ipr) { if (r->timer <= oldest->timer) { /* older than the previous oldest */ oldest = r; } } r = r->next; } if (oldest == ipr) { /* nothing to free, ipr is the only element on the list */ return; } if (oldest != NULL) { ip6_reass_free_complete_datagram(oldest); } } while (((ip6_reass_pbufcount + pbufs_needed) > IP_REASS_MAX_PBUFS) && (reassdatagrams != NULL)); } #endif /* IP_REASS_FREE_OLDEST */ /** * Reassembles incoming IPv6 fragments into an IPv6 datagram. * * @param p points to the IPv6 Fragment Header * @return NULL if reassembly is incomplete, pbuf pointing to * IPv6 Header if reassembly is complete */ struct pbuf * ip6_reass(struct pbuf *p) { struct ip6_reassdata *ipr, *ipr_prev; struct ip6_reass_helper *iprh, *iprh_tmp, *iprh_prev=NULL; struct ip6_frag_hdr *frag_hdr; u16_t offset, len; u16_t clen; u8_t valid = 1; struct pbuf *q; IP6_FRAG_STATS_INC(ip6_frag.recv); if ((const void*)ip6_current_header() != ((u8_t*)p->payload) - IP6_HLEN) { /* ip6_frag_hdr must be in the first pbuf, not chained */ IP6_FRAG_STATS_INC(ip6_frag.proterr); IP6_FRAG_STATS_INC(ip6_frag.drop); goto nullreturn; } frag_hdr = (struct ip6_frag_hdr *) p->payload; clen = pbuf_clen(p); offset = lwip_ntohs(frag_hdr->_fragment_offset); /* Calculate fragment length from IPv6 payload length. * Adjust for headers before Fragment Header. * And finally adjust by Fragment Header length. */ len = lwip_ntohs(ip6_current_header()->_plen); len -= (u16_t)(((u8_t*)p->payload - (const u8_t*)ip6_current_header()) - IP6_HLEN); len -= IP6_FRAG_HLEN; /* Look for the datagram the fragment belongs to in the current datagram queue, * remembering the previous in the queue for later dequeueing. */ for (ipr = reassdatagrams, ipr_prev = NULL; ipr != NULL; ipr = ipr->next) { /* Check if the incoming fragment matches the one currently present in the reassembly buffer. If so, we proceed with copying the fragment into the buffer. */ if ((frag_hdr->_identification == ipr->identification) && ip6_addr_cmp(ip6_current_src_addr(), &(IPV6_FRAG_HDRREF(ipr->iphdr)->src)) && ip6_addr_cmp(ip6_current_dest_addr(), &(IPV6_FRAG_HDRREF(ipr->iphdr)->dest))) { IP6_FRAG_STATS_INC(ip6_frag.cachehit); break; } ipr_prev = ipr; } if (ipr == NULL) { /* Enqueue a new datagram into the datagram queue */ ipr = (struct ip6_reassdata *)memp_malloc(MEMP_IP6_REASSDATA); if (ipr == NULL) { #if IP_REASS_FREE_OLDEST /* Make room and try again. */ ip6_reass_remove_oldest_datagram(ipr, clen); ipr = (struct ip6_reassdata *)memp_malloc(MEMP_IP6_REASSDATA); if (ipr != NULL) { /* re-search ipr_prev since it might have been removed */ for (ipr_prev = reassdatagrams; ipr_prev != NULL; ipr_prev = ipr_prev->next) { if (ipr_prev->next == ipr) { break; } } } else #endif /* IP_REASS_FREE_OLDEST */ { IP6_FRAG_STATS_INC(ip6_frag.memerr); IP6_FRAG_STATS_INC(ip6_frag.drop); goto nullreturn; } } memset(ipr, 0, sizeof(struct ip6_reassdata)); ipr->timer = IP_REASS_MAXAGE; /* enqueue the new structure to the front of the list */ ipr->next = reassdatagrams; reassdatagrams = ipr; /* Use the current IPv6 header for src/dest address reference. * Eventually, we will replace it when we get the first fragment * (it might be this one, in any case, it is done later). */ #if IPV6_FRAG_COPYHEADER MEMCPY(&ipr->iphdr, ip6_current_header(), IP6_HLEN); #else /* IPV6_FRAG_COPYHEADER */ /* need to use the none-const pointer here: */ ipr->iphdr = ip_data.current_ip6_header; #endif /* IPV6_FRAG_COPYHEADER */ /* copy the fragmented packet id. */ ipr->identification = frag_hdr->_identification; /* copy the nexth field */ ipr->nexth = frag_hdr->_nexth; } /* Check if we are allowed to enqueue more datagrams. */ if ((ip6_reass_pbufcount + clen) > IP_REASS_MAX_PBUFS) { #if IP_REASS_FREE_OLDEST ip6_reass_remove_oldest_datagram(ipr, clen); if ((ip6_reass_pbufcount + clen) <= IP_REASS_MAX_PBUFS) { /* re-search ipr_prev since it might have been removed */ for (ipr_prev = reassdatagrams; ipr_prev != NULL; ipr_prev = ipr_prev->next) { if (ipr_prev->next == ipr) { break; } } } else #endif /* IP_REASS_FREE_OLDEST */ { /* @todo: send ICMPv6 time exceeded here? */ /* drop this pbuf */ IP6_FRAG_STATS_INC(ip6_frag.memerr); IP6_FRAG_STATS_INC(ip6_frag.drop); goto nullreturn; } } /* Overwrite Fragment Header with our own helper struct. */ #if IPV6_FRAG_COPYHEADER if (IPV6_FRAG_REQROOM > 0) { /* Make room for struct ip6_reass_helper (only required if sizeof(void*) > 4). This cannot fail since we already checked when receiving this fragment. */ u8_t hdrerr = pbuf_header_force(p, IPV6_FRAG_REQROOM); LWIP_ASSERT("no room for struct ip6_reass_helper", hdrerr == 0); } #else /* IPV6_FRAG_COPYHEADER */ LWIP_ASSERT("sizeof(struct ip6_reass_helper) <= IP6_FRAG_HLEN, set IPV6_FRAG_COPYHEADER to 1", sizeof(struct ip6_reass_helper) <= IP6_FRAG_HLEN); #endif /* IPV6_FRAG_COPYHEADER */ iprh = (struct ip6_reass_helper *)p->payload; iprh->next_pbuf = NULL; iprh->start = (offset & IP6_FRAG_OFFSET_MASK); iprh->end = (offset & IP6_FRAG_OFFSET_MASK) + len; /* find the right place to insert this pbuf */ /* Iterate through until we either get to the end of the list (append), * or we find on with a larger offset (insert). */ for (q = ipr->p; q != NULL;) { iprh_tmp = (struct ip6_reass_helper*)q->payload; if (iprh->start < iprh_tmp->start) { #if IP_REASS_CHECK_OVERLAP if (iprh->end > iprh_tmp->start) { /* fragment overlaps with following, throw away */ IP6_FRAG_STATS_INC(ip6_frag.proterr); IP6_FRAG_STATS_INC(ip6_frag.drop); goto nullreturn; } if (iprh_prev != NULL) { if (iprh->start < iprh_prev->end) { /* fragment overlaps with previous, throw away */ IP6_FRAG_STATS_INC(ip6_frag.proterr); IP6_FRAG_STATS_INC(ip6_frag.drop); goto nullreturn; } } #endif /* IP_REASS_CHECK_OVERLAP */ /* the new pbuf should be inserted before this */ iprh->next_pbuf = q; if (iprh_prev != NULL) { /* not the fragment with the lowest offset */ iprh_prev->next_pbuf = p; } else { /* fragment with the lowest offset */ ipr->p = p; } break; } else if (iprh->start == iprh_tmp->start) { /* received the same datagram twice: no need to keep the datagram */ IP6_FRAG_STATS_INC(ip6_frag.drop); goto nullreturn; #if IP_REASS_CHECK_OVERLAP } else if (iprh->start < iprh_tmp->end) { /* overlap: no need to keep the new datagram */ IP6_FRAG_STATS_INC(ip6_frag.proterr); IP6_FRAG_STATS_INC(ip6_frag.drop); goto nullreturn; #endif /* IP_REASS_CHECK_OVERLAP */ } else { /* Check if the fragments received so far have no gaps. */ if (iprh_prev != NULL) { if (iprh_prev->end != iprh_tmp->start) { /* There is a fragment missing between the current * and the previous fragment */ valid = 0; } } } q = iprh_tmp->next_pbuf; iprh_prev = iprh_tmp; } /* If q is NULL, then we made it to the end of the list. Determine what to do now */ if (q == NULL) { if (iprh_prev != NULL) { /* this is (for now), the fragment with the highest offset: * chain it to the last fragment */ #if IP_REASS_CHECK_OVERLAP LWIP_ASSERT("check fragments don't overlap", iprh_prev->end <= iprh->start); #endif /* IP_REASS_CHECK_OVERLAP */ iprh_prev->next_pbuf = p; if (iprh_prev->end != iprh->start) { valid = 0; } } else { #if IP_REASS_CHECK_OVERLAP LWIP_ASSERT("no previous fragment, this must be the first fragment!", ipr->p == NULL); #endif /* IP_REASS_CHECK_OVERLAP */ /* this is the first fragment we ever received for this ip datagram */ ipr->p = p; } } /* Track the current number of pbufs current 'in-flight', in order to limit the number of fragments that may be enqueued at any one time */ ip6_reass_pbufcount += clen; /* Remember IPv6 header if this is the first fragment. */ if (iprh->start == 0) { #if IPV6_FRAG_COPYHEADER if (iprh->next_pbuf != NULL) { MEMCPY(&ipr->iphdr, ip6_current_header(), IP6_HLEN); } #else /* IPV6_FRAG_COPYHEADER */ /* need to use the none-const pointer here: */ ipr->iphdr = ip_data.current_ip6_header; #endif /* IPV6_FRAG_COPYHEADER */ } /* If this is the last fragment, calculate total packet length. */ if ((offset & IP6_FRAG_MORE_FLAG) == 0) { ipr->datagram_len = iprh->end; } /* Additional validity tests: we have received first and last fragment. */ iprh_tmp = (struct ip6_reass_helper*)ipr->p->payload; if (iprh_tmp->start != 0) { valid = 0; } if (ipr->datagram_len == 0) { valid = 0; } /* Final validity test: no gaps between current and last fragment. */ iprh_prev = iprh; q = iprh->next_pbuf; while ((q != NULL) && valid) { iprh = (struct ip6_reass_helper*)q->payload; if (iprh_prev->end != iprh->start) { valid = 0; break; } iprh_prev = iprh; q = iprh->next_pbuf; } if (valid) { /* All fragments have been received */ struct ip6_hdr* iphdr_ptr; /* chain together the pbufs contained within the ip6_reassdata list. */ iprh = (struct ip6_reass_helper*) ipr->p->payload; while (iprh != NULL) { struct pbuf* next_pbuf = iprh->next_pbuf; if (next_pbuf != NULL) { /* Save next helper struct (will be hidden in next step). */ iprh_tmp = (struct ip6_reass_helper*)next_pbuf->payload; /* hide the fragment header for every succeeding fragment */ pbuf_header(next_pbuf, -IP6_FRAG_HLEN); #if IPV6_FRAG_COPYHEADER if (IPV6_FRAG_REQROOM > 0) { /* hide the extra bytes borrowed from ip6_hdr for struct ip6_reass_helper */ u8_t hdrerr = pbuf_header(next_pbuf, -(s16_t)(IPV6_FRAG_REQROOM)); LWIP_ASSERT("no room for struct ip6_reass_helper", hdrerr == 0); } #endif pbuf_cat(ipr->p, next_pbuf); } else { iprh_tmp = NULL; } iprh = iprh_tmp; } #if IPV6_FRAG_COPYHEADER if (IPV6_FRAG_REQROOM > 0) { /* get back room for struct ip6_reass_helper (only required if sizeof(void*) > 4) */ u8_t hdrerr = pbuf_header(ipr->p, -(s16_t)(IPV6_FRAG_REQROOM)); LWIP_ASSERT("no room for struct ip6_reass_helper", hdrerr == 0); } iphdr_ptr = (struct ip6_hdr*)((u8_t*)ipr->p->payload - IP6_HLEN); MEMCPY(iphdr_ptr, &ipr->iphdr, IP6_HLEN); #else iphdr_ptr = ipr->iphdr; #endif /* Adjust datagram length by adding header lengths. */ ipr->datagram_len += (u16_t)(((u8_t*)ipr->p->payload - (u8_t*)iphdr_ptr) + IP6_FRAG_HLEN - IP6_HLEN); /* Set payload length in ip header. */ iphdr_ptr->_plen = lwip_htons(ipr->datagram_len); /* Get the first pbuf. */ p = ipr->p; /* Restore Fragment Header in first pbuf. Mark as "single fragment" * packet. Restore nexth. */ frag_hdr = (struct ip6_frag_hdr *) p->payload; frag_hdr->_nexth = ipr->nexth; frag_hdr->reserved = 0; frag_hdr->_fragment_offset = 0; frag_hdr->_identification = 0; /* release the sources allocate for the fragment queue entry */ if (reassdatagrams == ipr) { /* it was the first in the list */ reassdatagrams = ipr->next; } else { /* it wasn't the first, so it must have a valid 'prev' */ LWIP_ASSERT("sanity check linked list", ipr_prev != NULL); ipr_prev->next = ipr->next; } memp_free(MEMP_IP6_REASSDATA, ipr); /* adjust the number of pbufs currently queued for reassembly. */ ip6_reass_pbufcount -= pbuf_clen(p); /* Move pbuf back to IPv6 header. This cannot fail since we already checked when receiving this fragment. */ if (pbuf_header_force(p, (s16_t)((u8_t*)p->payload - (u8_t*)iphdr_ptr))) { LWIP_ASSERT("ip6_reass: moving p->payload to ip6 header failed\n", 0); pbuf_free(p); return NULL; } /* Return the pbuf chain */ return p; } /* the datagram is not (yet?) reassembled completely */ return NULL; nullreturn: pbuf_free(p); return NULL; } #endif /* LWIP_IPV6 && LWIP_IPV6_REASS */ #if LWIP_IPV6 && LWIP_IPV6_FRAG /** Allocate a new struct pbuf_custom_ref */ static struct pbuf_custom_ref* ip6_frag_alloc_pbuf_custom_ref(void) { return (struct pbuf_custom_ref*)memp_malloc(MEMP_FRAG_PBUF); } /** Free a struct pbuf_custom_ref */ static void ip6_frag_free_pbuf_custom_ref(struct pbuf_custom_ref* p) { LWIP_ASSERT("p != NULL", p != NULL); memp_free(MEMP_FRAG_PBUF, p); } /** Free-callback function to free a 'struct pbuf_custom_ref', called by * pbuf_free. */ static void ip6_frag_free_pbuf_custom(struct pbuf *p) { struct pbuf_custom_ref *pcr = (struct pbuf_custom_ref*)p; LWIP_ASSERT("pcr != NULL", pcr != NULL); LWIP_ASSERT("pcr == p", (void*)pcr == (void*)p); if (pcr->original != NULL) { pbuf_free(pcr->original); } ip6_frag_free_pbuf_custom_ref(pcr); } /** * Fragment an IPv6 datagram if too large for the netif or path MTU. * * Chop the datagram in MTU sized chunks and send them in order * by pointing PBUF_REFs into p * * @param p ipv6 packet to send * @param netif the netif on which to send * @param dest destination ipv6 address to which to send * * @return ERR_OK if sent successfully, err_t otherwise */ err_t ip6_frag(struct pbuf *p, struct netif *netif, const ip6_addr_t *dest) { struct ip6_hdr *original_ip6hdr; struct ip6_hdr *ip6hdr; struct ip6_frag_hdr *frag_hdr; struct pbuf *rambuf; struct pbuf *newpbuf; static u32_t identification; u16_t nfb; u16_t left, cop; u16_t mtu; u16_t fragment_offset = 0; u16_t last; u16_t poff = IP6_HLEN; u16_t newpbuflen = 0; u16_t left_to_copy; identification++; original_ip6hdr = (struct ip6_hdr *)p->payload; mtu = nd6_get_destination_mtu(dest, netif); /* @todo we assume there are no options in the unfragmentable part (IPv6 header). */ left = p->tot_len - IP6_HLEN; nfb = (mtu - (IP6_HLEN + IP6_FRAG_HLEN)) & IP6_FRAG_OFFSET_MASK; while (left) { last = (left <= nfb); /* Fill this fragment */ cop = last ? left : nfb; /* When not using a static buffer, create a chain of pbufs. * The first will be a PBUF_RAM holding the link, IPv6, and Fragment header. * The rest will be PBUF_REFs mirroring the pbuf chain to be fragged, * but limited to the size of an mtu. */ rambuf = pbuf_alloc(PBUF_LINK, IP6_HLEN + IP6_FRAG_HLEN, PBUF_RAM); if (rambuf == NULL) { IP6_FRAG_STATS_INC(ip6_frag.memerr); return ERR_MEM; } LWIP_ASSERT("this needs a pbuf in one piece!", (p->len >= (IP6_HLEN))); SMEMCPY(rambuf->payload, original_ip6hdr, IP6_HLEN); ip6hdr = (struct ip6_hdr *)rambuf->payload; frag_hdr = (struct ip6_frag_hdr *)((u8_t*)rambuf->payload + IP6_HLEN); /* Can just adjust p directly for needed offset. */ p->payload = (u8_t *)p->payload + poff; p->len -= poff; p->tot_len -= poff; left_to_copy = cop; while (left_to_copy) { struct pbuf_custom_ref *pcr; newpbuflen = (left_to_copy < p->len) ? left_to_copy : p->len; /* Is this pbuf already empty? */ if (!newpbuflen) { p = p->next; continue; } pcr = ip6_frag_alloc_pbuf_custom_ref(); if (pcr == NULL) { pbuf_free(rambuf); IP6_FRAG_STATS_INC(ip6_frag.memerr); return ERR_MEM; } /* Mirror this pbuf, although we might not need all of it. */ newpbuf = pbuf_alloced_custom(PBUF_RAW, newpbuflen, PBUF_REF, &pcr->pc, p->payload, newpbuflen); if (newpbuf == NULL) { ip6_frag_free_pbuf_custom_ref(pcr); pbuf_free(rambuf); IP6_FRAG_STATS_INC(ip6_frag.memerr); return ERR_MEM; } pbuf_ref(p); pcr->original = p; pcr->pc.custom_free_function = ip6_frag_free_pbuf_custom; /* Add it to end of rambuf's chain, but using pbuf_cat, not pbuf_chain * so that it is removed when pbuf_dechain is later called on rambuf. */ pbuf_cat(rambuf, newpbuf); left_to_copy -= newpbuflen; if (left_to_copy) { p = p->next; } } poff = newpbuflen; /* Set headers */ frag_hdr->_nexth = original_ip6hdr->_nexth; frag_hdr->reserved = 0; frag_hdr->_fragment_offset = lwip_htons((fragment_offset & IP6_FRAG_OFFSET_MASK) | (last ? 0 : IP6_FRAG_MORE_FLAG)); frag_hdr->_identification = lwip_htonl(identification); IP6H_NEXTH_SET(ip6hdr, IP6_NEXTH_FRAGMENT); IP6H_PLEN_SET(ip6hdr, cop + IP6_FRAG_HLEN); /* No need for separate header pbuf - we allowed room for it in rambuf * when allocated. */ IP6_FRAG_STATS_INC(ip6_frag.xmit); netif->output_ip6(netif, rambuf, dest); /* Unfortunately we can't reuse rambuf - the hardware may still be * using the buffer. Instead we free it (and the ensuing chain) and * recreate it next time round the loop. If we're lucky the hardware * will have already sent the packet, the free will really free, and * there will be zero memory penalty. */ pbuf_free(rambuf); left -= cop; fragment_offset += cop; } return ERR_OK; } #endif /* LWIP_IPV6 && LWIP_IPV6_FRAG */