/* * Copyright (c) 2022, STMicroelectronics - All Rights Reserved * * SPDX-License-Identifier: BSD-3-Clause */ #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #define CRYPTO_HASH_MAX_SIZE 32U #define CRYPTO_SIGN_MAX_SIZE 64U #define CRYPTO_PUBKEY_MAX_SIZE 64U #define CRYPTO_MAX_TAG_SIZE 16U /* brainpoolP256t1 OID is not defined in mbedTLS */ #define OID_EC_GRP_BP256T1 MBEDTLS_OID_EC_BRAINPOOL_V1 "\x08" #if STM32MP_CRYPTO_ROM_LIB struct stm32mp_auth_ops { uint32_t (*verify_signature)(uint8_t *hash_in, uint8_t *pubkey_in, uint8_t *signature, uint32_t ecc_algo); }; static struct stm32mp_auth_ops auth_ops; #endif static void crypto_lib_init(void) { boot_api_context_t *boot_context __maybe_unused; int ret; NOTICE("TRUSTED_BOARD_BOOT support enabled\n"); ret = stm32_hash_register(); if (ret != 0) { ERROR("HASH init (%d)\n", ret); panic(); } if (stm32mp_is_closed_device() || stm32mp_is_auth_supported()) { #if STM32MP_CRYPTO_ROM_LIB boot_context = (boot_api_context_t *)stm32mp_get_boot_ctx_address(); auth_ops.verify_signature = boot_context->bootrom_ecdsa_verify_signature; #else /* Use hardware peripherals */ if (stm32_rng_init() != 0) { panic(); } if (stm32_saes_driver_init() != 0) { panic(); } if (stm32_pka_init() != 0) { panic(); } #endif } } int get_plain_pk_from_asn1(void *pk_ptr, unsigned int pk_len, void **plain_pk, unsigned int *len, int *pk_alg) { int ret; mbedtls_pk_context mbedtls_pk = {0}; unsigned char *p, *end; mbedtls_asn1_buf alg_params = {0}; mbedtls_asn1_buf alg_oid = {0}; *plain_pk = NULL; *len = 0U; /* Parse the public key */ mbedtls_pk_init(&mbedtls_pk); p = (unsigned char *)pk_ptr; end = (unsigned char *)(p + pk_len); ret = mbedtls_asn1_get_tag(&p, end, len, MBEDTLS_ASN1_CONSTRUCTED | MBEDTLS_ASN1_SEQUENCE); if (ret != 0) { return -EINVAL; } end = p + *len; ret = mbedtls_asn1_get_alg(&p, end, &alg_oid, &alg_params); if (ret != 0) { VERBOSE("%s: mbedtls_asn1_get_alg (%d)\n", __func__, ret); return -EINVAL; } if (pk_alg != NULL) { if ((strlen(MBEDTLS_OID_EC_GRP_SECP256R1) == alg_params.len) && (memcmp(MBEDTLS_OID_EC_GRP_SECP256R1, alg_params.p, alg_params.len) == 0)) { *pk_alg = BOOT_API_ECDSA_ALGO_TYPE_P256NIST; } else if ((strlen(OID_EC_GRP_BP256T1) == alg_params.len) && (memcmp(OID_EC_GRP_BP256T1, alg_params.p, alg_params.len) == 0)) { *pk_alg = BOOT_API_ECDSA_ALGO_TYPE_BRAINPOOL256; } else { ERROR("%s: Algorithm is not supported\n", __func__); return -EINVAL; } } ret = mbedtls_asn1_get_bitstring_null(&p, end, len); if (ret != 0) { VERBOSE("%s: mbedtls_asn1_get_bitstring_null (%d)\n", __func__, ret); return -EINVAL; } /* We remove the ident (0x04) first byte. */ if ((*len < 1U) || (p[0] != MBEDTLS_ASN1_OCTET_STRING)) { VERBOSE("%s: not expected len or tag\n", __func__); return -EINVAL; } *len = *len - 1U; *plain_pk = p + 1U; return 0; } #if STM32MP_CRYPTO_ROM_LIB uint32_t verify_signature(uint8_t *hash_in, uint8_t *pubkey_in, uint8_t *signature, uint32_t ecc_algo) { int ret; ret = mmap_add_dynamic_region(STM32MP_ROM_BASE, STM32MP_ROM_BASE, STM32MP_ROM_SIZE_2MB_ALIGNED, MT_CODE | MT_SECURE); if (ret != 0) { VERBOSE("%s: mmap_add_dynamic_region (%d)\n", __func__, ret); return CRYPTO_ERR_SIGNATURE; } ret = auth_ops.verify_signature(hash_in, pubkey_in, signature, ecc_algo); if (ret != BOOT_API_RETURN_OK) { VERBOSE("%s: auth_ops.verify_sign (%d)\n", __func__, ret); ret = CRYPTO_ERR_SIGNATURE; } else { ret = 0; } mmap_remove_dynamic_region(STM32MP_ROM_BASE, STM32MP_ROM_SIZE_2MB_ALIGNED); return ret; } int plat_convert_pk(void *full_pk_ptr, unsigned int full_pk_len, void **hashed_pk_ptr, unsigned int *hashed_pk_len) { return get_plain_pk_from_asn1(full_pk_ptr, full_pk_len, hashed_pk_ptr, hashed_pk_len, NULL); } #else /* STM32MP_CRYPTO_ROM_LIB*/ static uint32_t verify_signature(uint8_t *hash_in, uint8_t *pubkey_in, uint8_t *signature, uint32_t ecc_algo) { int ret = -1; enum stm32_pka_ecdsa_curve_id cid; switch (ecc_algo) { case BOOT_API_ECDSA_ALGO_TYPE_P256NIST: #if PKA_USE_NIST_P256 cid = PKA_NIST_P256; ret = 0; #else WARN("%s nist_p256 requested but not included\n", __func__); #endif break; case BOOT_API_ECDSA_ALGO_TYPE_BRAINPOOL256: #if PKA_USE_BRAINPOOL_P256T1 cid = PKA_BRAINPOOL_P256T1; ret = 0; #else WARN("%s brainpool_p256t1 requested but not included\n", __func__); #endif break; default: WARN("%s unexpected ecc_algo(%u)\n", __func__, ecc_algo); break; } if (ret < 0) { return CRYPTO_ERR_SIGNATURE; } ret = stm32_pka_ecdsa_verif(hash_in, BOOT_API_SHA256_DIGEST_SIZE_IN_BYTES, signature, BOOT_API_ECDSA_SIGNATURE_LEN_IN_BYTES / 2U, signature + BOOT_API_ECDSA_SIGNATURE_LEN_IN_BYTES / 2U, BOOT_API_ECDSA_SIGNATURE_LEN_IN_BYTES / 2U, pubkey_in, BOOT_API_ECDSA_PUB_KEY_LEN_IN_BYTES / 2U, pubkey_in + BOOT_API_ECDSA_PUB_KEY_LEN_IN_BYTES / 2U, BOOT_API_ECDSA_PUB_KEY_LEN_IN_BYTES / 2U, cid); if (ret < 0) { return CRYPTO_ERR_SIGNATURE; } return 0; } int plat_convert_pk(void *full_pk_ptr, unsigned int full_pk_len, void **hashed_pk_ptr, unsigned int *hashed_pk_len) { static uint8_t st_pk[CRYPTO_PUBKEY_MAX_SIZE + sizeof(uint32_t)]; int ret; void *plain_pk; unsigned int len; int curve_id; uint32_t cid; ret = get_plain_pk_from_asn1(full_pk_ptr, full_pk_len, &plain_pk, &len, &curve_id); if ((ret != 0) || (len > CRYPTO_PUBKEY_MAX_SIZE)) { return -EINVAL; } cid = curve_id; /* we want value of curve_id (1 or 2) in a uint32_t */ memcpy(st_pk, &cid, sizeof(cid)); memcpy(st_pk + sizeof(cid), plain_pk, len); *hashed_pk_ptr = st_pk; *hashed_pk_len = len + sizeof(cid); return 0; } #endif /* STM32MP_CRYPTO_ROM_LIB */ static int get_plain_digest_from_asn1(void *digest_ptr, unsigned int digest_len, uint8_t **out, size_t *out_len, mbedtls_md_type_t *md_alg) { int ret; mbedtls_asn1_buf hash_oid, params; size_t len; unsigned char *p, *end; *out = NULL; *out_len = 0U; /* Digest info should be an MBEDTLS_ASN1_SEQUENCE */ p = (unsigned char *)digest_ptr; end = p + digest_len; ret = mbedtls_asn1_get_tag(&p, end, &len, MBEDTLS_ASN1_CONSTRUCTED | MBEDTLS_ASN1_SEQUENCE); if (ret != 0) { return ret; } /* Get the hash algorithm */ ret = mbedtls_asn1_get_alg(&p, end, &hash_oid, ¶ms); if (ret != 0) { return ret; } ret = mbedtls_oid_get_md_alg(&hash_oid, md_alg); if (ret != 0) { return ret; } ret = mbedtls_asn1_get_tag(&p, end, &len, MBEDTLS_ASN1_OCTET_STRING); if (ret != 0) { return ret; } /* Length of hash must match the algorithm's size */ if (len != BOOT_API_SHA256_DIGEST_SIZE_IN_BYTES) { return -1; } *out = p; *out_len = len; return 0; } static int crypto_verify_signature(void *data_ptr, unsigned int data_len, void *sig_ptr, unsigned int sig_len, void *sig_alg, unsigned int sig_alg_len, void *pk_ptr, unsigned int pk_len) { uint8_t image_hash[CRYPTO_HASH_MAX_SIZE] = {0}; uint8_t sig[CRYPTO_SIGN_MAX_SIZE]; uint8_t my_pk[CRYPTO_PUBKEY_MAX_SIZE]; int ret; size_t len; mbedtls_asn1_sequence seq; mbedtls_asn1_sequence *cur; unsigned char *p, *end; int curve_id; mbedtls_asn1_buf sig_oid, sig_params; mbedtls_md_type_t md_alg; mbedtls_pk_type_t pk_alg; size_t bignum_len = sizeof(sig) / 2U; unsigned int seq_num = 0U; if (!stm32mp_is_closed_device() && !stm32mp_is_auth_supported()) { return CRYPTO_SUCCESS; } /* Get pointers to signature OID and parameters */ p = (unsigned char *)sig_alg; end = (unsigned char *)(p + sig_alg_len); ret = mbedtls_asn1_get_alg(&p, end, &sig_oid, &sig_params); if (ret != 0) { VERBOSE("%s: mbedtls_asn1_get_alg (%d)\n", __func__, ret); return CRYPTO_ERR_SIGNATURE; } /* Get the actual signature algorithm (MD + PK) */ ret = mbedtls_oid_get_sig_alg(&sig_oid, &md_alg, &pk_alg); if (ret != 0) { VERBOSE("%s: mbedtls_oid_get_sig_alg (%d)\n", __func__, ret); return CRYPTO_ERR_SIGNATURE; } if ((md_alg != MBEDTLS_MD_SHA256) || (pk_alg != MBEDTLS_PK_ECDSA)) { VERBOSE("%s: md_alg=%u pk_alg=%u\n", __func__, md_alg, pk_alg); return CRYPTO_ERR_SIGNATURE; } ret = get_plain_pk_from_asn1(pk_ptr, pk_len, &pk_ptr, &pk_len, &curve_id); if (ret != 0) { VERBOSE("%s: get_plain_pk_from_asn1 (%d)\n", __func__, ret); return CRYPTO_ERR_SIGNATURE; } /* We expect a known pk_len */ if (pk_len != sizeof(my_pk)) { VERBOSE("%s: pk_len=%u sizeof(my_pk)=%zu)\n", __func__, pk_len, sizeof(my_pk)); return CRYPTO_ERR_SIGNATURE; } /* Need to copy as auth_ops.verify_signature * expects aligned public key. */ memcpy(my_pk, pk_ptr, sizeof(my_pk)); /* Get the signature (bitstring) */ p = (unsigned char *)sig_ptr; end = (unsigned char *)(p + sig_len); ret = mbedtls_asn1_get_bitstring_null(&p, end, &len); if (ret != 0) { VERBOSE("%s: mbedtls_asn1_get_bitstring_null (%d)\n", __func__, ret); return CRYPTO_ERR_SIGNATURE; } /* Get r and s from sequence */ ret = mbedtls_asn1_get_sequence_of(&p, end, &seq, MBEDTLS_ASN1_INTEGER); if (ret != 0) { VERBOSE("%s: mbedtls_asn1_get_sequence_of (%d)\n", __func__, ret); return CRYPTO_ERR_SIGNATURE; } /* We expect only 2 integers (r and s) from the sequence */ if (seq.next->next != NULL) { cur = seq.next; mbedtls_asn1_sequence *next; VERBOSE("%s: nb seq != 2\n", __func__); /* Free all the sequences */ while (cur != NULL) { next = cur->next; mbedtls_free(cur); cur = next; } return CRYPTO_ERR_SIGNATURE; } /* * ECDSA signatures are composed of a tuple (R,S) where R and S are between 0 and n. * This means that the R and S can have a maximum of 32 each, but can also be smaller. * Also seen the integer sequence may (sometime) start with 0x00 as MSB, but we can only * manage exactly 2*32 bytes, we remove this higher byte if there are not 00, * we will fail either. */ cur = &seq; memset(sig, 0U, sizeof(sig)); while (cur != NULL) { size_t skip = 0U; size_t seek = seq_num * bignum_len; if (cur->buf.len > bignum_len) { /* Remove extra 0x00 bytes */ skip = cur->buf.len - bignum_len; } else if (cur->buf.len < bignum_len) { /* Add padding to match HW required size */ seek += (bignum_len % cur->buf.len); } if (seek + cur->buf.len > sizeof(sig) + skip) { panic(); } memcpy(sig + seek, cur->buf.p + skip, cur->buf.len - skip); cur = cur->next; seq_num++; } /* Need to free allocated 'next' in mbedtls_asn1_get_sequence_of */ mbedtls_free(seq.next); /* Compute hash for the data covered by the signature */ stm32_hash_init(HASH_SHA256); ret = stm32_hash_final_update((uint8_t *)data_ptr, data_len, image_hash); if (ret != 0) { VERBOSE("%s: stm32_hash_final_update (%d)\n", __func__, ret); return CRYPTO_ERR_SIGNATURE; } return verify_signature(image_hash, my_pk, sig, curve_id); } static int crypto_verify_hash(void *data_ptr, unsigned int data_len, void *digest_info_ptr, unsigned int digest_info_len) { int ret; uint8_t calc_hash[BOOT_API_SHA256_DIGEST_SIZE_IN_BYTES]; unsigned char *p; mbedtls_md_type_t md_alg; size_t len; /* we receive an asn1 encapsulated digest, we flatten it */ ret = get_plain_digest_from_asn1(digest_info_ptr, digest_info_len, &p, &len, &md_alg); if ((ret != 0) || (md_alg != MBEDTLS_MD_SHA256) || (len != sizeof(calc_hash))) { return CRYPTO_ERR_HASH; } digest_info_ptr = p; digest_info_len = len; stm32_hash_init(HASH_SHA256); ret = stm32_hash_final_update(data_ptr, data_len, calc_hash); if (ret != 0) { VERBOSE("%s: hash failed\n", __func__); return CRYPTO_ERR_HASH; } ret = memcmp(calc_hash, digest_info_ptr, digest_info_len); if (ret != 0) { VERBOSE("%s: not expected digest\n", __func__); ret = CRYPTO_ERR_HASH; } return ret; } #if !defined(DECRYPTION_SUPPORT_none) static int derive_key(uint8_t *key, size_t *key_len, size_t len, unsigned int *flags, const uint8_t *img_id, size_t img_id_len) { size_t i, j; assert(*key_len >= 32U); /* * Not a real derivation yet * * But we expect a 32 bytes key, and OTP is only 16 bytes * => duplicate. */ for (i = 0U, j = len; j < 32U; i += sizeof(uint32_t), j += sizeof(uint32_t)) { memcpy(key + j, key + i, sizeof(uint32_t)); } *key_len = 32U; /* Variable 'key' store a real key */ *flags = 0U; return 0; } int plat_get_enc_key_info(enum fw_enc_status_t fw_enc_status, uint8_t *key, size_t *key_len, unsigned int *flags, const uint8_t *img_id, size_t img_id_len) { uint32_t otp_idx; uint32_t otp_len; size_t read_len; size_t i; if (fw_enc_status == FW_ENC_WITH_BSSK) { return -EINVAL; } if (stm32_get_otp_index(ENCKEY_OTP, &otp_idx, &otp_len) != 0) { VERBOSE("%s: get %s index error\n", __func__, ENCKEY_OTP); return -EINVAL; } if (otp_len > (*key_len * CHAR_BIT)) { VERBOSE("%s: length Error otp_len=%u key_len=%u\n", __func__, otp_len, *key_len * CHAR_BIT); return -EINVAL; } read_len = otp_len / CHAR_BIT; assert(read_len % sizeof(uint32_t) == 0); for (i = 0U; i < read_len / sizeof(uint32_t); i++) { uint32_t tmp; uint32_t otp_val; if (stm32_get_otp_value_from_idx(otp_idx + i, &otp_val) != 0) { zeromem(key, *key_len); VERBOSE("%s: unable to read from otp\n", __func__); return -EINVAL; } tmp = bswap32(otp_val); memcpy(key + i * sizeof(uint32_t), &tmp, sizeof(tmp)); } /* Now we have the OTP values in key till read_len */ if (derive_key(key, key_len, read_len, flags, img_id, img_id_len) != 0) { zeromem(key, *key_len); return -EINVAL; } return 0; } static enum stm32_saes_key_selection select_key(unsigned int key_flags) { if ((key_flags & ENC_KEY_IS_IDENTIFIER) != 0U) { panic(); } /* Use the provided key buffer */ return STM32_SAES_KEY_SOFT; } static int stm32_decrypt_aes_gcm(void *data, size_t data_len, const void *key, unsigned int key_len, unsigned int key_flags, const void *iv, unsigned int iv_len, const void *tag, unsigned int tag_len) { int ret; struct stm32_saes_context ctx; unsigned char tag_buf[CRYPTO_MAX_TAG_SIZE]; enum stm32_saes_key_selection key_mode; unsigned int diff = 0U; unsigned int i; key_mode = select_key(key_flags); ret = stm32_saes_init(&ctx, true, STM32_SAES_MODE_GCM, key_mode, key, key_len, iv, iv_len); if (ret != 0) { return CRYPTO_ERR_INIT; } ret = stm32_saes_update_assodata(&ctx, true, NULL, 0U); if (ret != 0) { return CRYPTO_ERR_DECRYPTION; } ret = stm32_saes_update_load(&ctx, true, data, data, data_len); if (ret != 0) { return CRYPTO_ERR_DECRYPTION; } ret = stm32_saes_final(&ctx, tag_buf, sizeof(tag_buf)); if (ret != 0) { return CRYPTO_ERR_DECRYPTION; } /* Check tag in "constant-time" */ for (i = 0U; i < tag_len; i++) { diff |= ((const unsigned char *)tag)[i] ^ tag_buf[i]; } if (diff != 0U) { return CRYPTO_ERR_DECRYPTION; } return CRYPTO_SUCCESS; } /* * Authenticated decryption of an image * */ static int crypto_auth_decrypt(enum crypto_dec_algo dec_algo, void *data_ptr, size_t len, const void *key, unsigned int key_len, unsigned int key_flags, const void *iv, unsigned int iv_len, const void *tag, unsigned int tag_len) { int rc = -1; uint32_t real_iv[4]; switch (dec_algo) { case CRYPTO_GCM_DECRYPT: /* * GCM expect a Nonce * The AES IV is the nonce (a uint32_t[3]) * then a counter (a uint32_t big endian) * The counter starts at 2. */ memcpy(real_iv, iv, iv_len); real_iv[3] = htobe32(0x2U); rc = stm32_decrypt_aes_gcm(data_ptr, len, key, key_len, key_flags, real_iv, sizeof(real_iv), tag, tag_len); break; default: rc = CRYPTO_ERR_DECRYPTION; break; } if (rc != 0) { return rc; } return CRYPTO_SUCCESS; } REGISTER_CRYPTO_LIB("stm32_crypto_lib", crypto_lib_init, crypto_verify_signature, crypto_verify_hash, crypto_auth_decrypt); #else /* No decryption support */ REGISTER_CRYPTO_LIB("stm32_crypto_lib", crypto_lib_init, crypto_verify_signature, crypto_verify_hash, NULL); #endif