// futex -*- C++ -*- // Copyright (C) 2015-2021 Free Software Foundation, Inc. // // This file is part of the GNU ISO C++ Library. This library is free // software; you can redistribute it and/or modify it under the // terms of the GNU General Public License as published by the // Free Software Foundation; either version 3, or (at your option) // any later version. // This library is distributed in the hope that it will be useful, // but WITHOUT ANY WARRANTY; without even the implied warranty of // MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the // GNU General Public License for more details. // Under Section 7 of GPL version 3, you are granted additional // permissions described in the GCC Runtime Library Exception, version // 3.1, as published by the Free Software Foundation. // You should have received a copy of the GNU General Public License and // a copy of the GCC Runtime Library Exception along with this program; // see the files COPYING3 and COPYING.RUNTIME respectively. If not, see // . #include #ifdef _GLIBCXX_HAS_GTHREADS #if defined(_GLIBCXX_HAVE_LINUX_FUTEX) && ATOMIC_INT_LOCK_FREE > 1 #include #include #include #include #include #include #include #include #ifdef _GLIBCXX_USE_CLOCK_GETTIME_SYSCALL #include #include #endif // Constants for the wait/wake futex syscall operations const unsigned futex_wait_op = 0; const unsigned futex_wait_bitset_op = 9; const unsigned futex_clock_monotonic_flag = 0; const unsigned futex_clock_realtime_flag = 256; const unsigned futex_bitset_match_any = ~0; const unsigned futex_wake_op = 1; namespace std _GLIBCXX_VISIBILITY(default) { _GLIBCXX_BEGIN_NAMESPACE_VERSION using __gnu_cxx::__int_traits; namespace { std::atomic futex_clock_realtime_unavailable; std::atomic futex_clock_monotonic_unavailable; #if defined(SYS_futex_time64) && SYS_futex_time64 != SYS_futex // Userspace knows about the new time64 syscalls, so it's possible that // userspace has also updated timespec to use a 64-bit tv_sec. // The SYS_futex syscall still uses the old definition of timespec // where tv_sec is 32 bits, so define a type that matches that. struct syscall_timespec { long tv_sec; long tv_nsec; }; using syscall_time_t = long; #else using syscall_timespec = ::timespec; using syscall_time_t = time_t; #endif // Return the relative duration from (now_s + now_ns) to (abs_s + abs_ns) // as a timespec suitable for syscalls. syscall_timespec relative_timespec(chrono::seconds abs_s, chrono::nanoseconds abs_ns, time_t now_s, long now_ns) { syscall_timespec rt; // Did we already time out? if (now_s > abs_s.count()) { rt.tv_sec = -1; return rt; } const auto rel_s = abs_s.count() - now_s; // Convert the absolute timeout to a relative timeout, without overflow. if (rel_s > __int_traits::__max) [[unlikely]] { rt.tv_sec = __int_traits::__max; rt.tv_nsec = 999999999; } else { rt.tv_sec = rel_s; rt.tv_nsec = abs_ns.count() - now_ns; if (rt.tv_nsec < 0) { rt.tv_nsec += 1000000000; --rt.tv_sec; } } return rt; } } // namespace bool __atomic_futex_unsigned_base:: _M_futex_wait_until(unsigned *__addr, unsigned __val, bool __has_timeout, chrono::seconds __s, chrono::nanoseconds __ns) { if (!__has_timeout) { // Ignore whether we actually succeeded to block because at worst, // we will fall back to spin-waiting. The only thing we could do // here on errors is abort. int ret __attribute__((unused)); ret = syscall (SYS_futex, __addr, futex_wait_op, __val, nullptr); __glibcxx_assert(ret == 0 || errno == EINTR || errno == EAGAIN); return true; } else { if (!futex_clock_realtime_unavailable.load(std::memory_order_relaxed)) { // futex sets errno=EINVAL for absolute timeouts before the epoch. if (__s.count() < 0) return false; syscall_timespec rt; if (__s.count() > __int_traits::__max) [[unlikely]] rt.tv_sec = __int_traits::__max; else rt.tv_sec = __s.count(); rt.tv_nsec = __ns.count(); if (syscall (SYS_futex, __addr, futex_wait_bitset_op | futex_clock_realtime_flag, __val, &rt, nullptr, futex_bitset_match_any) == -1) { __glibcxx_assert(errno == EINTR || errno == EAGAIN || errno == ETIMEDOUT || errno == ENOSYS); if (errno == ETIMEDOUT) return false; if (errno == ENOSYS) { futex_clock_realtime_unavailable.store(true, std::memory_order_relaxed); // Fall through to legacy implementation if the system // call is unavailable. } else return true; } else return true; } // We only get to here if futex_clock_realtime_unavailable was // true or has just been set to true. struct timeval tv; gettimeofday (&tv, NULL); // Convert the absolute timeout value to a relative timeout auto rt = relative_timespec(__s, __ns, tv.tv_sec, tv.tv_usec * 1000); // Did we already time out? if (rt.tv_sec < 0) return false; if (syscall (SYS_futex, __addr, futex_wait_op, __val, &rt) == -1) { __glibcxx_assert(errno == EINTR || errno == EAGAIN || errno == ETIMEDOUT); if (errno == ETIMEDOUT) return false; } return true; } } bool __atomic_futex_unsigned_base:: _M_futex_wait_until_steady(unsigned *__addr, unsigned __val, bool __has_timeout, chrono::seconds __s, chrono::nanoseconds __ns) { if (!__has_timeout) { // Ignore whether we actually succeeded to block because at worst, // we will fall back to spin-waiting. The only thing we could do // here on errors is abort. int ret __attribute__((unused)); ret = syscall (SYS_futex, __addr, futex_wait_op, __val, nullptr); __glibcxx_assert(ret == 0 || errno == EINTR || errno == EAGAIN); return true; } else { if (!futex_clock_monotonic_unavailable.load(std::memory_order_relaxed)) { // futex sets errno=EINVAL for absolute timeouts before the epoch. if (__s.count() < 0) [[unlikely]] return false; syscall_timespec rt; if (__s.count() > __int_traits::__max) [[unlikely]] rt.tv_sec = __int_traits::__max; else rt.tv_sec = __s.count(); rt.tv_nsec = __ns.count(); if (syscall (SYS_futex, __addr, futex_wait_bitset_op | futex_clock_monotonic_flag, __val, &rt, nullptr, futex_bitset_match_any) == -1) { __glibcxx_assert(errno == EINTR || errno == EAGAIN || errno == ETIMEDOUT || errno == ENOSYS); if (errno == ETIMEDOUT) return false; else if (errno == ENOSYS) { futex_clock_monotonic_unavailable.store(true, std::memory_order_relaxed); // Fall through to legacy implementation if the system // call is unavailable. } else return true; } } // We only get to here if futex_clock_monotonic_unavailable was // true or has just been set to true. struct timespec ts; #ifdef _GLIBCXX_USE_CLOCK_GETTIME_SYSCALL syscall(SYS_clock_gettime, CLOCK_MONOTONIC, &ts); #else clock_gettime(CLOCK_MONOTONIC, &ts); #endif // Convert the absolute timeout value to a relative timeout auto rt = relative_timespec(__s, __ns, ts.tv_sec, ts.tv_nsec); // Did we already time out? if (rt.tv_sec < 0) return false; if (syscall (SYS_futex, __addr, futex_wait_op, __val, &rt) == -1) { __glibcxx_assert(errno == EINTR || errno == EAGAIN || errno == ETIMEDOUT); if (errno == ETIMEDOUT) return false; } return true; } } void __atomic_futex_unsigned_base::_M_futex_notify_all(unsigned* __addr) { // This syscall can fail for various reasons, including in situations // in which there is no real error. Thus, we don't bother checking // the error codes. See the futex documentation and glibc for background. syscall (SYS_futex, __addr, futex_wake_op, INT_MAX); } _GLIBCXX_END_NAMESPACE_VERSION } #endif // defined(_GLIBCXX_HAVE_LINUX_FUTEX) && ATOMIC_INT_LOCK_FREE > 1 #endif // _GLIBCXX_HAS_GTHREADS