// <shared_mutex> -*- C++ -*- // Copyright (C) 2013-2014 Free Software Foundation, Inc. // // This file is part of the GNU ISO C++ Library. This library is free // software; you can redistribute it and/or modify it under the // terms of the GNU General Public License as published by the // Free Software Foundation; either version 3, or (at your option) // any later version. // This library is distributed in the hope that it will be useful, // but WITHOUT ANY WARRANTY; without even the implied warranty of // MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the // GNU General Public License for more details. // Under Section 7 of GPL version 3, you are granted additional // permissions described in the GCC Runtime Library Exception, version // 3.1, as published by the Free Software Foundation. // You should have received a copy of the GNU General Public License and // a copy of the GCC Runtime Library Exception along with this program; // see the files COPYING3 and COPYING.RUNTIME respectively. If not, see // <http://www.gnu.org/licenses/>. /** @file include/shared_mutex * This is a Standard C++ Library header. */ #ifndef _GLIBCXX_SHARED_MUTEX #define _GLIBCXX_SHARED_MUTEX 1 #pragma GCC system_header #if __cplusplus <= 201103L # include <bits/c++14_warning.h> #else #include <bits/c++config.h> #include <mutex> #include <condition_variable> #include <bits/functexcept.h> namespace std _GLIBCXX_VISIBILITY(default) { _GLIBCXX_BEGIN_NAMESPACE_VERSION /** * @ingroup mutexes * @{ */ #ifdef _GLIBCXX_USE_C99_STDINT_TR1 #ifdef _GLIBCXX_HAS_GTHREADS #define __cpp_lib_shared_timed_mutex 201402 /// shared_timed_mutex class shared_timed_mutex { // Must use the same clock as condition_variable typedef chrono::system_clock __clock_t; // Based on Howard Hinnant's reference implementation from N2406. // The high bit of _M_state is the write-entered flag which is set to // indicate a writer has taken the lock or is queuing to take the lock. // The remaining bits are the count of reader locks. // // To take a reader lock, block on gate1 while the write-entered flag is // set or the maximum number of reader locks is held, then increment the // reader lock count. // To release, decrement the count, then if the write-entered flag is set // and the count is zero then signal gate2 to wake a queued writer, // otherwise if the maximum number of reader locks was held signal gate1 // to wake a reader. // // To take a writer lock, block on gate1 while the write-entered flag is // set, then set the write-entered flag to start queueing, then block on // gate2 while the number of reader locks is non-zero. // To release, unset the write-entered flag and signal gate1 to wake all // blocked readers and writers. // // This means that when no reader locks are held readers and writers get // equal priority. When one or more reader locks is held a writer gets // priority and no more reader locks can be taken while the writer is // queued. // Only locked when accessing _M_state or waiting on condition variables. mutex _M_mut; // Used to block while write-entered is set or reader count at maximum. condition_variable _M_gate1; // Used to block queued writers while reader count is non-zero. condition_variable _M_gate2; // The write-entered flag and reader count. unsigned _M_state; static constexpr unsigned _S_write_entered = 1U << (sizeof(unsigned)*__CHAR_BIT__ - 1); static constexpr unsigned _S_max_readers = ~_S_write_entered; // Test whether the write-entered flag is set. _M_mut must be locked. bool _M_write_entered() const { return _M_state & _S_write_entered; } // The number of reader locks currently held. _M_mut must be locked. unsigned _M_readers() const { return _M_state & _S_max_readers; } public: shared_timed_mutex() : _M_state(0) {} ~shared_timed_mutex() { _GLIBCXX_DEBUG_ASSERT( _M_state == 0 ); } shared_timed_mutex(const shared_timed_mutex&) = delete; shared_timed_mutex& operator=(const shared_timed_mutex&) = delete; // Exclusive ownership void lock() { unique_lock<mutex> __lk(_M_mut); // Wait until we can set the write-entered flag. _M_gate1.wait(__lk, [=]{ return !_M_write_entered(); }); _M_state |= _S_write_entered; // Then wait until there are no more readers. _M_gate2.wait(__lk, [=]{ return _M_readers() == 0; }); } bool try_lock() { unique_lock<mutex> __lk(_M_mut, try_to_lock); if (__lk.owns_lock() && _M_state == 0) { _M_state = _S_write_entered; return true; } return false; } template<typename _Rep, typename _Period> bool try_lock_for(const chrono::duration<_Rep, _Period>& __rel_time) { return try_lock_until(__clock_t::now() + __rel_time); } template<typename _Clock, typename _Duration> bool try_lock_until(const chrono::time_point<_Clock, _Duration>& __abs_time) { unique_lock<mutex> __lk(_M_mut); if (!_M_gate1.wait_until(__lk, __abs_time, [=]{ return !_M_write_entered(); })) { return false; } _M_state |= _S_write_entered; if (!_M_gate2.wait_until(__lk, __abs_time, [=]{ return _M_readers() == 0; })) { _M_state ^= _S_write_entered; // Wake all threads blocked while the write-entered flag was set. _M_gate1.notify_all(); return false; } return true; } void unlock() { lock_guard<mutex> __lk(_M_mut); _GLIBCXX_DEBUG_ASSERT( _M_write_entered() ); _M_state = 0; // call notify_all() while mutex is held so that another thread can't // lock and unlock the mutex then destroy *this before we make the call. _M_gate1.notify_all(); } // Shared ownership void lock_shared() { unique_lock<mutex> __lk(_M_mut); _M_gate1.wait(__lk, [=]{ return _M_state < _S_max_readers; }); ++_M_state; } bool try_lock_shared() { unique_lock<mutex> __lk(_M_mut, try_to_lock); if (!__lk.owns_lock()) return false; if (_M_state < _S_max_readers) { ++_M_state; return true; } return false; } template<typename _Rep, typename _Period> bool try_lock_shared_for(const chrono::duration<_Rep, _Period>& __rel_time) { return try_lock_shared_until(__clock_t::now() + __rel_time); } template <typename _Clock, typename _Duration> bool try_lock_shared_until(const chrono::time_point<_Clock, _Duration>& __abs_time) { unique_lock<mutex> __lk(_M_mut); if (!_M_gate1.wait_until(__lk, __abs_time, [=]{ return _M_state < _S_max_readers; })) { return false; } ++_M_state; return true; } void unlock_shared() { lock_guard<mutex> __lk(_M_mut); _GLIBCXX_DEBUG_ASSERT( _M_readers() > 0 ); auto __prev = _M_state--; if (_M_write_entered()) { // Wake the queued writer if there are no more readers. if (_M_readers() == 0) _M_gate2.notify_one(); // No need to notify gate1 because we give priority to the queued // writer, and that writer will eventually notify gate1 after it // clears the write-entered flag. } else { // Wake any thread that was blocked on reader overflow. if (__prev == _S_max_readers) _M_gate1.notify_one(); } } }; #endif // _GLIBCXX_HAS_GTHREADS /// shared_lock template<typename _Mutex> class shared_lock { public: typedef _Mutex mutex_type; // Shared locking shared_lock() noexcept : _M_pm(nullptr), _M_owns(false) { } explicit shared_lock(mutex_type& __m) : _M_pm(&__m), _M_owns(true) { __m.lock_shared(); } shared_lock(mutex_type& __m, defer_lock_t) noexcept : _M_pm(&__m), _M_owns(false) { } shared_lock(mutex_type& __m, try_to_lock_t) : _M_pm(&__m), _M_owns(__m.try_lock_shared()) { } shared_lock(mutex_type& __m, adopt_lock_t) : _M_pm(&__m), _M_owns(true) { } template<typename _Clock, typename _Duration> shared_lock(mutex_type& __m, const chrono::time_point<_Clock, _Duration>& __abs_time) : _M_pm(&__m), _M_owns(__m.try_lock_shared_until(__abs_time)) { } template<typename _Rep, typename _Period> shared_lock(mutex_type& __m, const chrono::duration<_Rep, _Period>& __rel_time) : _M_pm(&__m), _M_owns(__m.try_lock_shared_for(__rel_time)) { } ~shared_lock() { if (_M_owns) _M_pm->unlock_shared(); } shared_lock(shared_lock const&) = delete; shared_lock& operator=(shared_lock const&) = delete; shared_lock(shared_lock&& __sl) noexcept : shared_lock() { swap(__sl); } shared_lock& operator=(shared_lock&& __sl) noexcept { shared_lock(std::move(__sl)).swap(*this); return *this; } void lock() { _M_lockable(); _M_pm->lock_shared(); _M_owns = true; } bool try_lock() { _M_lockable(); return _M_owns = _M_pm->try_lock_shared(); } template<typename _Rep, typename _Period> bool try_lock_for(const chrono::duration<_Rep, _Period>& __rel_time) { _M_lockable(); return _M_owns = _M_pm->try_lock_shared_for(__rel_time); } template<typename _Clock, typename _Duration> bool try_lock_until(const chrono::time_point<_Clock, _Duration>& __abs_time) { _M_lockable(); return _M_owns = _M_pm->try_lock_shared_until(__abs_time); } void unlock() { if (!_M_owns) __throw_system_error(int(errc::resource_deadlock_would_occur)); _M_pm->unlock_shared(); _M_owns = false; } // Setters void swap(shared_lock& __u) noexcept { std::swap(_M_pm, __u._M_pm); std::swap(_M_owns, __u._M_owns); } mutex_type* release() noexcept { _M_owns = false; return std::exchange(_M_pm, nullptr); } // Getters bool owns_lock() const noexcept { return _M_owns; } explicit operator bool() const noexcept { return _M_owns; } mutex_type* mutex() const noexcept { return _M_pm; } private: void _M_lockable() const { if (_M_pm == nullptr) __throw_system_error(int(errc::operation_not_permitted)); if (_M_owns) __throw_system_error(int(errc::resource_deadlock_would_occur)); } mutex_type* _M_pm; bool _M_owns; }; /// Swap specialization for shared_lock template<typename _Mutex> void swap(shared_lock<_Mutex>& __x, shared_lock<_Mutex>& __y) noexcept { __x.swap(__y); } #endif // _GLIBCXX_USE_C99_STDINT_TR1 // @} group mutexes _GLIBCXX_END_NAMESPACE_VERSION } // namespace #endif // C++14 #endif // _GLIBCXX_SHARED_MUTEX