// <shared_mutex> -*- C++ -*-

// Copyright (C) 2013-2014 Free Software Foundation, Inc.
//
// This file is part of the GNU ISO C++ Library.  This library is free
// software; you can redistribute it and/or modify it under the
// terms of the GNU General Public License as published by the
// Free Software Foundation; either version 3, or (at your option)
// any later version.

// This library is distributed in the hope that it will be useful,
// but WITHOUT ANY WARRANTY; without even the implied warranty of
// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
// GNU General Public License for more details.

// Under Section 7 of GPL version 3, you are granted additional
// permissions described in the GCC Runtime Library Exception, version
// 3.1, as published by the Free Software Foundation.

// You should have received a copy of the GNU General Public License and
// a copy of the GCC Runtime Library Exception along with this program;
// see the files COPYING3 and COPYING.RUNTIME respectively.  If not, see
// <http://www.gnu.org/licenses/>.

/** @file include/shared_mutex
 *  This is a Standard C++ Library header.
 */

#ifndef _GLIBCXX_SHARED_MUTEX
#define _GLIBCXX_SHARED_MUTEX 1

#pragma GCC system_header

#if __cplusplus <= 201103L
# include <bits/c++14_warning.h>
#else

#include <bits/c++config.h>
#include <mutex>
#include <condition_variable>
#include <bits/functexcept.h>

namespace std _GLIBCXX_VISIBILITY(default)
{
_GLIBCXX_BEGIN_NAMESPACE_VERSION

  /**
   * @ingroup mutexes
   * @{
   */

#ifdef _GLIBCXX_USE_C99_STDINT_TR1
#ifdef _GLIBCXX_HAS_GTHREADS

#define __cpp_lib_shared_timed_mutex 201402

  /// shared_timed_mutex
  class shared_timed_mutex
  {
    // Must use the same clock as condition_variable
    typedef chrono::system_clock	__clock_t;

    // Based on Howard Hinnant's reference implementation from N2406.

    // The high bit of _M_state is the write-entered flag which is set to
    // indicate a writer has taken the lock or is queuing to take the lock.
    // The remaining bits are the count of reader locks.
    //
    // To take a reader lock, block on gate1 while the write-entered flag is
    // set or the maximum number of reader locks is held, then increment the
    // reader lock count.
    // To release, decrement the count, then if the write-entered flag is set
    // and the count is zero then signal gate2 to wake a queued writer,
    // otherwise if the maximum number of reader locks was held signal gate1
    // to wake a reader.
    //
    // To take a writer lock, block on gate1 while the write-entered flag is
    // set, then set the write-entered flag to start queueing, then block on
    // gate2 while the number of reader locks is non-zero.
    // To release, unset the write-entered flag and signal gate1 to wake all
    // blocked readers and writers.
    //
    // This means that when no reader locks are held readers and writers get
    // equal priority. When one or more reader locks is held a writer gets
    // priority and no more reader locks can be taken while the writer is
    // queued.

    // Only locked when accessing _M_state or waiting on condition variables.
    mutex		_M_mut;
    // Used to block while write-entered is set or reader count at maximum.
    condition_variable	_M_gate1;
    // Used to block queued writers while reader count is non-zero.
    condition_variable	_M_gate2;
    // The write-entered flag and reader count.
    unsigned		_M_state;

    static constexpr unsigned _S_write_entered
      = 1U << (sizeof(unsigned)*__CHAR_BIT__ - 1);
    static constexpr unsigned _S_max_readers = ~_S_write_entered;

    // Test whether the write-entered flag is set. _M_mut must be locked.
    bool _M_write_entered() const { return _M_state & _S_write_entered; }

    // The number of reader locks currently held. _M_mut must be locked.
    unsigned _M_readers() const { return _M_state & _S_max_readers; }

  public:
    shared_timed_mutex() : _M_state(0) {}

    ~shared_timed_mutex()
    {
      _GLIBCXX_DEBUG_ASSERT( _M_state == 0 );
    }

    shared_timed_mutex(const shared_timed_mutex&) = delete;
    shared_timed_mutex& operator=(const shared_timed_mutex&) = delete;

    // Exclusive ownership

    void
    lock()
    {
      unique_lock<mutex> __lk(_M_mut);
      // Wait until we can set the write-entered flag.
      _M_gate1.wait(__lk, [=]{ return !_M_write_entered(); });
      _M_state |= _S_write_entered;
      // Then wait until there are no more readers.
      _M_gate2.wait(__lk, [=]{ return _M_readers() == 0; });
    }

    bool
    try_lock()
    {
      unique_lock<mutex> __lk(_M_mut, try_to_lock);
      if (__lk.owns_lock() && _M_state == 0)
	{
	  _M_state = _S_write_entered;
	  return true;
	}
      return false;
    }

    template<typename _Rep, typename _Period>
      bool
      try_lock_for(const chrono::duration<_Rep, _Period>& __rel_time)
      {
	return try_lock_until(__clock_t::now() + __rel_time);
      }

    template<typename _Clock, typename _Duration>
      bool
      try_lock_until(const chrono::time_point<_Clock, _Duration>& __abs_time)
      {
	unique_lock<mutex> __lk(_M_mut);
	if (!_M_gate1.wait_until(__lk, __abs_time,
				 [=]{ return !_M_write_entered(); }))
	  {
	    return false;
	  }
	_M_state |= _S_write_entered;
	if (!_M_gate2.wait_until(__lk, __abs_time,
				 [=]{ return _M_readers() == 0; }))
	  {
	    _M_state ^= _S_write_entered;
	    // Wake all threads blocked while the write-entered flag was set.
	    _M_gate1.notify_all();
	    return false;
	  }
	return true;
      }

    void
    unlock()
    {
      lock_guard<mutex> __lk(_M_mut);
      _GLIBCXX_DEBUG_ASSERT( _M_write_entered() );
      _M_state = 0;
      // call notify_all() while mutex is held so that another thread can't
      // lock and unlock the mutex then destroy *this before we make the call.
      _M_gate1.notify_all();
    }

    // Shared ownership

    void
    lock_shared()
    {
      unique_lock<mutex> __lk(_M_mut);
      _M_gate1.wait(__lk, [=]{ return _M_state < _S_max_readers; });
      ++_M_state;
    }

    bool
    try_lock_shared()
    {
      unique_lock<mutex> __lk(_M_mut, try_to_lock);
      if (!__lk.owns_lock())
	return false;
      if (_M_state < _S_max_readers)
	{
	  ++_M_state;
	  return true;
	}
      return false;
    }

    template<typename _Rep, typename _Period>
      bool
      try_lock_shared_for(const chrono::duration<_Rep, _Period>& __rel_time)
      {
	return try_lock_shared_until(__clock_t::now() + __rel_time);
      }

    template <typename _Clock, typename _Duration>
      bool
      try_lock_shared_until(const chrono::time_point<_Clock,
						     _Duration>& __abs_time)
      {
	unique_lock<mutex> __lk(_M_mut);
	if (!_M_gate1.wait_until(__lk, __abs_time,
				 [=]{ return _M_state < _S_max_readers; }))
	  {
	    return false;
	  }
	++_M_state;
	return true;
      }

    void
    unlock_shared()
    {
      lock_guard<mutex> __lk(_M_mut);
      _GLIBCXX_DEBUG_ASSERT( _M_readers() > 0 );
      auto __prev = _M_state--;
      if (_M_write_entered())
	{
	  // Wake the queued writer if there are no more readers.
	  if (_M_readers() == 0)
	    _M_gate2.notify_one();
	  // No need to notify gate1 because we give priority to the queued
	  // writer, and that writer will eventually notify gate1 after it
	  // clears the write-entered flag.
	}
      else
	{
	  // Wake any thread that was blocked on reader overflow.
	  if (__prev == _S_max_readers)
	    _M_gate1.notify_one();
	}
    }
  };
#endif // _GLIBCXX_HAS_GTHREADS

  /// shared_lock
  template<typename _Mutex>
    class shared_lock
    {
    public:
      typedef _Mutex mutex_type;

      // Shared locking

      shared_lock() noexcept : _M_pm(nullptr), _M_owns(false) { }

      explicit
      shared_lock(mutex_type& __m) : _M_pm(&__m), _M_owns(true)
      { __m.lock_shared(); }

      shared_lock(mutex_type& __m, defer_lock_t) noexcept
      : _M_pm(&__m), _M_owns(false) { }

      shared_lock(mutex_type& __m, try_to_lock_t)
      : _M_pm(&__m), _M_owns(__m.try_lock_shared()) { }

      shared_lock(mutex_type& __m, adopt_lock_t)
      : _M_pm(&__m), _M_owns(true) { }

      template<typename _Clock, typename _Duration>
	shared_lock(mutex_type& __m,
		    const chrono::time_point<_Clock, _Duration>& __abs_time)
      : _M_pm(&__m), _M_owns(__m.try_lock_shared_until(__abs_time)) { }

      template<typename _Rep, typename _Period>
	shared_lock(mutex_type& __m,
		    const chrono::duration<_Rep, _Period>& __rel_time)
      : _M_pm(&__m), _M_owns(__m.try_lock_shared_for(__rel_time)) { }

      ~shared_lock()
      {
	if (_M_owns)
	  _M_pm->unlock_shared();
      }

      shared_lock(shared_lock const&) = delete;
      shared_lock& operator=(shared_lock const&) = delete;

      shared_lock(shared_lock&& __sl) noexcept : shared_lock()
      { swap(__sl); }

      shared_lock&
      operator=(shared_lock&& __sl) noexcept
      {
	shared_lock(std::move(__sl)).swap(*this);
	return *this;
      }

      void
      lock()
      {
	_M_lockable();
	_M_pm->lock_shared();
	_M_owns = true;
      }

      bool
      try_lock()
      {
	_M_lockable();
	return _M_owns = _M_pm->try_lock_shared();
      }

      template<typename _Rep, typename _Period>
	bool
	try_lock_for(const chrono::duration<_Rep, _Period>& __rel_time)
	{
	  _M_lockable();
	  return _M_owns = _M_pm->try_lock_shared_for(__rel_time);
	}

      template<typename _Clock, typename _Duration>
	bool
	try_lock_until(const chrono::time_point<_Clock, _Duration>& __abs_time)
	{
	  _M_lockable();
	  return _M_owns = _M_pm->try_lock_shared_until(__abs_time);
	}

      void
      unlock()
      {
	if (!_M_owns)
	  __throw_system_error(int(errc::resource_deadlock_would_occur));
	_M_pm->unlock_shared();
	_M_owns = false;
      }

      // Setters

      void
      swap(shared_lock& __u) noexcept
      {
	std::swap(_M_pm, __u._M_pm);
	std::swap(_M_owns, __u._M_owns);
      }

      mutex_type*
      release() noexcept
      {
	_M_owns = false;
	return std::exchange(_M_pm, nullptr);
      }

      // Getters

      bool owns_lock() const noexcept { return _M_owns; }

      explicit operator bool() const noexcept { return _M_owns; }

      mutex_type* mutex() const noexcept { return _M_pm; }

    private:
      void
      _M_lockable() const
      {
	if (_M_pm == nullptr)
	  __throw_system_error(int(errc::operation_not_permitted));
	if (_M_owns)
	  __throw_system_error(int(errc::resource_deadlock_would_occur));
      }

      mutex_type*	_M_pm;
      bool		_M_owns;
    };

  /// Swap specialization for shared_lock
  template<typename _Mutex>
    void
    swap(shared_lock<_Mutex>& __x, shared_lock<_Mutex>& __y) noexcept
    { __x.swap(__y); }

#endif // _GLIBCXX_USE_C99_STDINT_TR1

  // @} group mutexes
_GLIBCXX_END_NAMESPACE_VERSION
} // namespace

#endif // C++14

#endif // _GLIBCXX_SHARED_MUTEX