/* swdp-sgpio.c * * Copyright 2015 Brian Swetland * * Licensed under the Apache License, Version 2.0 (the "License"); * you may not use this file except in compliance with the License. * You may obtain a copy of the License at * * http://www.apache.org/licenses/LICENSE-2.0 * * Unless required by applicable law or agreed to in writing, software * distributed under the License is distributed on an "AS IS" BASIS, * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. * See the License for the specific language governing permissions and * limitations under the License. */ #include #include #include #include #include #include #include #include #include #include #include #include #define PIN_LED PIN(1,1) #define PIN_RESET PIN(2,5) #define PIN_RESET_TXEN PIN(2,6) #define PIN_SWDIO_TXEN PIN(1,5) // SGPIO15=6 #define PIN_SWDIO PIN(1,6) // SGPIO14=6 #define PIN_SWO PIN(1,14) // U1_RXD=1 #define PIN_SWCLK PIN(1,17) // SGPIO11=6 #define GPIO_LED GPIO(0,8) #define GPIO_RESET GPIO(5,5) #define GPIO_RESET_TXEN GPIO(5,6) #define GPIO_SWDIO_TXEN GPIO(1,8) #define GPIO_SWDIO GPIO(1,9) #define GPIO_SWCLK GPIO(0,12) static unsigned sgpio_div = 31; // 6MHz static void gpio_init(void) { pin_config(PIN_LED, PIN_MODE(0) | PIN_PLAIN); pin_config(PIN_RESET, PIN_MODE(4) | PIN_PLAIN); pin_config(PIN_RESET_TXEN, PIN_MODE(4) | PIN_PLAIN); pin_config(PIN_SWDIO_TXEN, PIN_MODE(0) | PIN_PLAIN); pin_config(PIN_SWDIO, PIN_MODE(0) | PIN_PLAIN | PIN_INPUT | PIN_FAST); pin_config(PIN_SWCLK, PIN_MODE(0) | PIN_PLAIN | PIN_FAST); pin_config(PIN_SWO, PIN_MODE(1) | PIN_PLAIN | PIN_INPUT | PIN_FAST); gpio_set(GPIO_LED, 0); gpio_set(GPIO_RESET, 1); gpio_set(GPIO_RESET_TXEN, 0); gpio_set(GPIO_SWDIO, 0); gpio_set(GPIO_SWDIO_TXEN, 1); gpio_set(GPIO_SWCLK, 0); gpio_config(GPIO_LED, GPIO_OUTPUT); gpio_config(GPIO_RESET, GPIO_OUTPUT); gpio_config(GPIO_RESET_TXEN, GPIO_OUTPUT); gpio_config(GPIO_SWDIO, GPIO_OUTPUT); gpio_config(GPIO_SWDIO_TXEN, GPIO_OUTPUT); gpio_config(GPIO_SWCLK, GPIO_OUTPUT); } /* returns 1 if the number of bits set in n is odd */ static unsigned parity(unsigned n) { n = (n & 0x55555555) + ((n & 0xaaaaaaaa) >> 1); n = (n & 0x33333333) + ((n & 0xcccccccc) >> 2); n = (n & 0x0f0f0f0f) + ((n & 0xf0f0f0f0) >> 4); n = (n & 0x00ff00ff) + ((n & 0xff00ff00) >> 8); n = (n & 0x0000ffff) + ((n & 0xffff0000) >> 16); return n & 1; } static void sgpio_txn(unsigned slices) { // clear any previous status bits writel(0xFFFF, SLICE_XHG_STS_CLR); // kick the txn writel(slices, SLICE_CTRL_ENABLE); writel(slices, SLICE_CTRL_DISABLE); // wait for all slices to complete while ((readl(SLICE_XHG_STS) & slices) != slices) ; // shut down clocks writel(0, SLICE_CTRL_ENABLE); writel(0, SLICE_CTRL_DISABLE); } // SWDIO SLICE_H SLICE_P SLICE_D SLICE_O SWDIO // SGPIO14 -> [31....0] -> [31....0] [31....0] -> [31....0] -> SGPIO14 // // SLICE_M SWDIO_TXEN // [31....7] -> SGPIO15 // // SLICE_F SWDIO_OE // [31....0] -> SGPIO14_OE // configures all slices, muxes, etc // ensures that outputs are enabled and SWDIO and SWCLK are high static void sgpio_init(void) { writel(BASE_CLK_SEL(CLK_PLL1), BASE_PERIPH_CLK); // make sure everything's shut down writel(0, SLICE_CTRL_ENABLE); writel(0, SLICE_CTRL_DISABLE); writel(0xFFFF, SLICE_XHG_STS_CLR); // SWDIO_TXEN (SGPIO15) // M[31..7] -> OUT writel(CFG_OUT_M8B | CFG_OE_GPIO, SGPIO_OUT_CFG(15)); writel(CLK_USE_SLICE | QUAL_ENABLE | CONCAT_SLICE, SLICE_CFG1(SLC_M)); writel(CLK_GEN_INTERNAL | SHIFT_1BPC, SLICE_CFG2(SLC_M)); // SWDIO (SGPIO14) // IN -> H[31..0] -> P[31..0] // D[31..0] -> O[31..0] -> OUT // F[31..0] -> OE writel(CFG_OUT_M2C | CFG_OE_M1, SGPIO_OUT_CFG(14)); writel(CLK_USE_SLICE | QUAL_ENABLE | CONCAT_PIN, SLICE_CFG1(SLC_H)); writel(CLK_GEN_INTERNAL | SHIFT_1BPC, SLICE_CFG2(SLC_H)); writel(CLK_USE_SLICE | QUAL_ENABLE | CONCAT_SLICE | CONCAT_2_SLICE, SLICE_CFG1(SLC_P)); writel(CLK_GEN_INTERNAL | SHIFT_1BPC, SLICE_CFG2(SLC_P)); writel(CLK_USE_SLICE | QUAL_ENABLE | CONCAT_SLICE, SLICE_CFG1(SLC_D)); writel(CLK_GEN_INTERNAL | SHIFT_1BPC, SLICE_CFG2(SLC_D)); writel(CLK_USE_SLICE | QUAL_ENABLE | CONCAT_SLICE | CONCAT_2_SLICE, SLICE_CFG1(SLC_O)); writel(CLK_GEN_INTERNAL | SHIFT_1BPC, SLICE_CFG2(SLC_O)); writel(CLK_USE_SLICE | QUAL_ENABLE | CONCAT_SLICE, SLICE_CFG1(SLC_F)); writel(CLK_GEN_INTERNAL | SHIFT_1BPC, SLICE_CFG2(SLC_F)); // SWDCLK (SGPIO11) // SLICE_N CLK -> OUT writel(CFG_OUT_CLK | CFG_OE_GPIO, SGPIO_OUT_CFG(11)); writel(CLK_USE_SLICE | QUAL_ENABLE, SLICE_CFG1(SLC_N)); writel(CLK_GEN_INTERNAL | SHIFT_1BPC | INV_CLK_OUT, SLICE_CFG2(SLC_N)); // ensure output and enables idle high writel(1, SLICE_REG(SLC_F)); writel(1, SLICE_REG(SLC_O)); writel(1 << 7, SLICE_REG(SLC_M)); // enable all outputs writel((1 << 11) | (1 << 14) | (1 << 15), SGPIO_OEN); // select SGPIOs via pin mux pin_config(PIN_SWDIO_TXEN, PIN_MODE(6) | PIN_PLAIN | PIN_FAST); pin_config(PIN_SWDIO, PIN_MODE(6) | PIN_PLAIN | PIN_INPUT | PIN_FAST); pin_config(PIN_SWCLK, PIN_MODE(6) | PIN_PLAIN | PIN_FAST); } static void sgpio_swd_clock_setup(unsigned div) { writel(div, SLICE_PRESET(SLC_D)); writel(div, SLICE_PRESET(SLC_F)); writel(div, SLICE_PRESET(SLC_H)); writel(div, SLICE_PRESET(SLC_M)); writel(div, SLICE_PRESET(SLC_N)); writel(div, SLICE_PRESET(SLC_O)); writel(div, SLICE_PRESET(SLC_P)); } static void sgpio_swd_reset(unsigned div) { // shift out 64 clocks while DATA is 1 writel(0, SLICE_COUNT(SLC_N)); writel(POS_POS(63) | POS_RESET(63), SLICE_POS(SLC_N)); sgpio_txn(1 << SLC_N); // shift out 16bit jtag->swd escape pattern writel(0, SLICE_COUNT(SLC_N)); writel(POS_POS(15) | POS_RESET(15), SLICE_POS(SLC_N)); writel(0b1110011110011110, SLICE_REG(SLC_O)); writel(1, SLICE_SHADOW(SLC_O)); writel(div, SLICE_COUNT(SLC_O)); writel(POS_POS(15) | POS_RESET(15), SLICE_POS(SLC_O)); sgpio_txn((1 << SLC_N) | (1 << SLC_O)); // shift out 64 clocks while DATA is 1 writel(0, SLICE_COUNT(SLC_N)); writel(POS_POS(63) | POS_RESET(63), SLICE_POS(SLC_N)); sgpio_txn(1 << SLC_N); }; // shift out 8 0s then the 8bit header, then disable outputs // and shift in the turnaround bit (ignored) and 3 bit ack // leaves output enables low // // todo: make leader optional/adjustable static int sgpio_swd_header(unsigned div, uint32_t hdr) { unsigned timeout = 16; unsigned ack; for (;;) { // 16 bits tx_en, then stop, disabling tx_en writel(0xFFFF << 7, SLICE_REG(SLC_M)); writel(0, SLICE_SHADOW(SLC_M)); writel(div, SLICE_COUNT(SLC_M)); writel(POS_POS(15) | POS_RESET(15), SLICE_POS(SLC_M)); // 16 bits output, then stop, disabling OE writel(0xFFFF, SLICE_REG(SLC_F)); writel(0, SLICE_SHADOW(SLC_F)); writel(div, SLICE_COUNT(SLC_F)); writel(POS_POS(15) | POS_RESET(15), SLICE_POS(SLC_F)); // 16 bits data out writel(hdr << 8, SLICE_REG(SLC_O)); writel(1, SLICE_SHADOW(SLC_O)); writel(div, SLICE_COUNT(SLC_O)); writel(POS_POS(15) | POS_RESET(15), SLICE_POS(SLC_O)); // 20 bits data in writel(0, SLICE_COUNT(SLC_H)); writel(POS_POS(19) | POS_RESET(19), SLICE_POS(SLC_H)); writel(0, SLICE_REG(SLC_H)); // 20 bits clock writel(0, SLICE_COUNT(SLC_N)); writel(POS_POS(19) | POS_RESET(19), SLICE_POS(SLC_N)); sgpio_txn((1<> 29) == 1) { // OKAY if (timeout < 16) printf("[%d]\n",16-timeout); return 0; } // re-enable oe, tx_en, and make data high writel(1, SLICE_REG(SLC_O)); writel(1 << 7, SLICE_REG(SLC_M)); writel(1, SLICE_REG(SLC_F)); // technically we should do a Turn cycle here, // but we rely on the fact that we prefix all ops // with some leader 0s and can be lazy if (ack == 2) { // WAIT if (timeout == 0) { return -1; } timeout--; } else { printf("ERR %d\n", ack); // FAULT or invalid response return -1; } } } static int sgpio_swd_read(unsigned div, uint32_t hdr, uint32_t *_data) { uint32_t data, p; //printf("rd(%d,%02x)\n", div, hdr); if (sgpio_swd_header(div, hdr)) { return -1; } // 34 bits in -> H -> P writel(0, SLICE_COUNT(SLC_H)); writel(POS_POS(33) | POS_RESET(33), SLICE_POS(SLC_H)); writel(0, SLICE_REG(SLC_H)); writel(0, SLICE_COUNT(SLC_P)); writel(POS_POS(33) | POS_RESET(33), SLICE_POS(SLC_P)); writel(0, SLICE_REG(SLC_P)); writel(0, SLICE_COUNT(SLC_N)); writel(POS_POS(33) | POS_RESET(33), SLICE_POS(SLC_N)); sgpio_txn((1<> 30); p = (p >> 30) & 1; //printf("RD %08x %d\n", data, p); if (parity(data) != p) { printf("parity error\n"); return -1; } *_data = data; return 0; } static int sgpio_swd_write(unsigned div, uint32_t hdr, uint32_t data) { uint32_t p = parity(data); //printf("wr(%d,%02x,%08x) p=%d\n", div, hdr, data, p); if (sgpio_swd_header(div, hdr)) { return -1; } // 34 bits D -> O -> out writel(div, SLICE_COUNT(SLC_D)); writel(POS_POS(33) | POS_RESET(33), SLICE_POS(SLC_D)); writel((p << 1) | (data >> 31), SLICE_REG(SLC_D)); writel(div, SLICE_COUNT(SLC_O)); writel(POS_POS(33) | POS_RESET(33), SLICE_POS(SLC_O)); writel((data << 1) | 1, SLICE_REG(SLC_O)); writel(0, SLICE_COUNT(SLC_N)); writel(POS_POS(33) | POS_RESET(33), SLICE_POS(SLC_N)); // re-enable oe, tx_en writel(1 << 7, SLICE_REG(SLC_M)); writel(1, SLICE_REG(SLC_F)); sgpio_txn((1< 48000) khz = 48000; div = 192000 / khz; sgpio_div = div - 1; return 192000 / div; } void swd_hw_reset(int assert) { if (assert) { gpio_set(GPIO_RESET, 0); gpio_set(GPIO_RESET_TXEN, 1); } else { gpio_set(GPIO_RESET, 1); gpio_set(GPIO_RESET_TXEN, 0); } }