/* * Copyright (c) 2008-2015 Travis Geiselbrecht * * Use of this source code is governed by a MIT-style * license that can be found in the LICENSE file or at * https://opensource.org/licenses/MIT */ #include #include #include #include #include #include #include #include #include #include #include #include #include static int sleep_thread(void *arg) { for (;;) { printf("sleeper %p\n", get_current_thread()); thread_sleep(rand() % 500); } return 0; } static int sleep_test(void) { int i; for (i=0; i < 16; i++) thread_detach_and_resume(thread_create("sleeper", &sleep_thread, NULL, DEFAULT_PRIORITY, DEFAULT_STACK_SIZE)); return 0; } static semaphore_t sem; static const int sem_total_its = 10000; static const int sem_thread_max_its = 1000; static const int sem_start_value = 10; static int sem_remaining_its = 0; static int sem_threads = 0; static mutex_t sem_test_mutex; static int semaphore_producer(void *unused) { printf("semaphore producer %p starting up, running for %d iterations\n", get_current_thread(), sem_total_its); for (int x = 0; x < sem_total_its; x++) { sem_post(&sem, true); } return 0; } static int semaphore_consumer(void *unused) { unsigned int iterations = 0; mutex_acquire(&sem_test_mutex); if (sem_remaining_its >= sem_thread_max_its) { iterations = rand(); iterations %= sem_thread_max_its; } else { iterations = sem_remaining_its; } sem_remaining_its -= iterations; mutex_release(&sem_test_mutex); printf("semaphore consumer %p starting up, running for %u iterations\n", get_current_thread(), iterations); for (unsigned int x = 0; x < iterations; x++) sem_wait(&sem); printf("semaphore consumer %p done\n", get_current_thread()); atomic_add(&sem_threads, -1); return 0; } static int semaphore_test(void) { static semaphore_t isem = SEMAPHORE_INITIAL_VALUE(isem, 99); printf("preinitialized semaphore:\n"); hexdump(&isem, sizeof(isem)); sem_init(&sem, sem_start_value); mutex_init(&sem_test_mutex); sem_remaining_its = sem_total_its; while (1) { mutex_acquire(&sem_test_mutex); if (sem_remaining_its) { thread_detach_and_resume(thread_create("semaphore consumer", &semaphore_consumer, NULL, DEFAULT_PRIORITY, DEFAULT_STACK_SIZE)); atomic_add(&sem_threads, 1); } else { mutex_release(&sem_test_mutex); break; } mutex_release(&sem_test_mutex); } thread_detach_and_resume(thread_create("semaphore producer", &semaphore_producer, NULL, DEFAULT_PRIORITY, DEFAULT_STACK_SIZE)); while (sem_threads) thread_yield(); if (sem.count == sem_start_value) printf("semaphore tests successfully complete\n"); else printf("semaphore tests failed: %d != %d\n", sem.count, sem_start_value); sem_destroy(&sem); mutex_destroy(&sem_test_mutex); return 0; } static int mutex_thread(void *arg) { int i; const int iterations = 1000000; static volatile int shared = 0; mutex_t *m = (mutex_t *)arg; printf("mutex tester thread %p starting up, will go for %d iterations\n", get_current_thread(), iterations); for (i = 0; i < iterations; i++) { mutex_acquire(m); if (shared != 0) panic("someone else has messed with the shared data\n"); shared = (intptr_t)get_current_thread(); thread_yield(); shared = 0; mutex_release(m); thread_yield(); } return 0; } static int mutex_timeout_thread(void *arg) { mutex_t *timeout_mutex = (mutex_t *)arg; status_t err; printf("mutex_timeout_thread acquiring mutex %p with 1 second timeout\n", timeout_mutex); err = mutex_acquire_timeout(timeout_mutex, 1000); if (err == ERR_TIMED_OUT) printf("mutex_acquire_timeout returns with TIMEOUT\n"); else printf("mutex_acquire_timeout returns %d\n", err); return err; } static int mutex_zerotimeout_thread(void *arg) { mutex_t *timeout_mutex = (mutex_t *)arg; status_t err; printf("mutex_zerotimeout_thread acquiring mutex %p with zero second timeout\n", timeout_mutex); err = mutex_acquire_timeout(timeout_mutex, 0); if (err == ERR_TIMED_OUT) printf("mutex_acquire_timeout returns with TIMEOUT\n"); else printf("mutex_acquire_timeout returns %d\n", err); return err; } static int mutex_test(void) { static mutex_t imutex = MUTEX_INITIAL_VALUE(imutex); printf("preinitialized mutex:\n"); hexdump(&imutex, sizeof(imutex)); mutex_t m; mutex_init(&m); thread_t *threads[5]; for (uint i=0; i < countof(threads); i++) { threads[i] = thread_create("mutex tester", &mutex_thread, &m, DEFAULT_PRIORITY, DEFAULT_STACK_SIZE); thread_resume(threads[i]); } for (uint i=0; i < countof(threads); i++) { thread_join(threads[i], NULL, INFINITE_TIME); } printf("done with simple mutex tests\n"); printf("testing mutex timeout\n"); mutex_t timeout_mutex; mutex_init(&timeout_mutex); mutex_acquire(&timeout_mutex); for (uint i=0; i < 2; i++) { threads[i] = thread_create("mutex timeout tester", &mutex_timeout_thread, (void *)&timeout_mutex, DEFAULT_PRIORITY, DEFAULT_STACK_SIZE); thread_resume(threads[i]); } for (uint i=2; i < 4; i++) { threads[i] = thread_create("mutex timeout tester", &mutex_zerotimeout_thread, (void *)&timeout_mutex, DEFAULT_PRIORITY, DEFAULT_STACK_SIZE); thread_resume(threads[i]); } thread_sleep(5000); mutex_release(&timeout_mutex); for (uint i=0; i < 4; i++) { thread_join(threads[i], NULL, INFINITE_TIME); } printf("done with mutex tests\n"); mutex_destroy(&timeout_mutex); return 0; } static event_t e; static int event_signaler(void *arg) { printf("event signaler pausing\n"); thread_sleep(1000); // for (;;) { printf("signaling event\n"); event_signal(&e, true); printf("done signaling event\n"); thread_yield(); // } return 0; } static int event_waiter(void *arg) { int count = (intptr_t)arg; printf("event waiter starting\n"); while (count > 0) { printf("%p: waiting on event...\n", get_current_thread()); if (event_wait(&e) < 0) { printf("%p: event_wait() returned error\n", get_current_thread()); return -1; } printf("%p: done waiting on event...\n", get_current_thread()); thread_yield(); count--; } return 0; } static void event_test(void) { thread_t *threads[5]; static event_t ievent = EVENT_INITIAL_VALUE(ievent, true, 0x1234); printf("preinitialized event:\n"); hexdump(&ievent, sizeof(ievent)); printf("event tests starting\n"); /* make sure signaling the event wakes up all the threads */ event_init(&e, false, 0); threads[0] = thread_create("event signaler", &event_signaler, NULL, DEFAULT_PRIORITY, DEFAULT_STACK_SIZE); threads[1] = thread_create("event waiter 0", &event_waiter, (void *)2, DEFAULT_PRIORITY, DEFAULT_STACK_SIZE); threads[2] = thread_create("event waiter 1", &event_waiter, (void *)2, DEFAULT_PRIORITY, DEFAULT_STACK_SIZE); threads[3] = thread_create("event waiter 2", &event_waiter, (void *)2, DEFAULT_PRIORITY, DEFAULT_STACK_SIZE); threads[4] = thread_create("event waiter 3", &event_waiter, (void *)2, DEFAULT_PRIORITY, DEFAULT_STACK_SIZE); for (uint i = 0; i < countof(threads); i++) thread_resume(threads[i]); thread_sleep(2000); printf("destroying event\n"); event_destroy(&e); for (uint i = 0; i < countof(threads); i++) thread_join(threads[i], NULL, INFINITE_TIME); /* make sure signaling the event wakes up precisely one thread */ event_init(&e, false, EVENT_FLAG_AUTOUNSIGNAL); threads[0] = thread_create("event signaler", &event_signaler, NULL, DEFAULT_PRIORITY, DEFAULT_STACK_SIZE); threads[1] = thread_create("event waiter 0", &event_waiter, (void *)99, DEFAULT_PRIORITY, DEFAULT_STACK_SIZE); threads[2] = thread_create("event waiter 1", &event_waiter, (void *)99, DEFAULT_PRIORITY, DEFAULT_STACK_SIZE); threads[3] = thread_create("event waiter 2", &event_waiter, (void *)99, DEFAULT_PRIORITY, DEFAULT_STACK_SIZE); threads[4] = thread_create("event waiter 3", &event_waiter, (void *)99, DEFAULT_PRIORITY, DEFAULT_STACK_SIZE); for (uint i = 0; i < countof(threads); i++) thread_resume(threads[i]); thread_sleep(2000); event_destroy(&e); for (uint i = 0; i < countof(threads); i++) thread_join(threads[i], NULL, INFINITE_TIME); printf("event tests done\n"); } static int quantum_tester(void *arg) { for (;;) { printf("%p: in this thread. rq %d\n", get_current_thread(), get_current_thread()->remaining_quantum); } return 0; } static void quantum_test(void) { thread_detach_and_resume(thread_create("quantum tester 0", &quantum_tester, NULL, DEFAULT_PRIORITY, DEFAULT_STACK_SIZE)); thread_detach_and_resume(thread_create("quantum tester 1", &quantum_tester, NULL, DEFAULT_PRIORITY, DEFAULT_STACK_SIZE)); thread_detach_and_resume(thread_create("quantum tester 2", &quantum_tester, NULL, DEFAULT_PRIORITY, DEFAULT_STACK_SIZE)); thread_detach_and_resume(thread_create("quantum tester 3", &quantum_tester, NULL, DEFAULT_PRIORITY, DEFAULT_STACK_SIZE)); } static event_t context_switch_event; static event_t context_switch_done_event; static int context_switch_tester(void *arg) { int i; uint total_count = 0; const int iter = 100000; int thread_count = (intptr_t)arg; event_wait(&context_switch_event); uint count = arch_cycle_count(); for (i = 0; i < iter; i++) { thread_yield(); } total_count += arch_cycle_count() - count; thread_sleep(1000); printf("took %u cycles to yield %d times, %u per yield, %u per yield per thread\n", total_count, iter, total_count / iter, total_count / iter / thread_count); event_signal(&context_switch_done_event, true); return 0; } static void context_switch_test(void) { event_init(&context_switch_event, false, 0); event_init(&context_switch_done_event, false, 0); thread_detach_and_resume(thread_create("context switch idle", &context_switch_tester, (void *)1, DEFAULT_PRIORITY, DEFAULT_STACK_SIZE)); thread_sleep(100); event_signal(&context_switch_event, true); event_wait(&context_switch_done_event); thread_sleep(100); event_unsignal(&context_switch_event); event_unsignal(&context_switch_done_event); thread_detach_and_resume(thread_create("context switch 2a", &context_switch_tester, (void *)2, DEFAULT_PRIORITY, DEFAULT_STACK_SIZE)); thread_detach_and_resume(thread_create("context switch 2b", &context_switch_tester, (void *)2, DEFAULT_PRIORITY, DEFAULT_STACK_SIZE)); thread_sleep(100); event_signal(&context_switch_event, true); event_wait(&context_switch_done_event); thread_sleep(100); event_unsignal(&context_switch_event); event_unsignal(&context_switch_done_event); thread_detach_and_resume(thread_create("context switch 4a", &context_switch_tester, (void *)4, DEFAULT_PRIORITY, DEFAULT_STACK_SIZE)); thread_detach_and_resume(thread_create("context switch 4b", &context_switch_tester, (void *)4, DEFAULT_PRIORITY, DEFAULT_STACK_SIZE)); thread_detach_and_resume(thread_create("context switch 4c", &context_switch_tester, (void *)4, DEFAULT_PRIORITY, DEFAULT_STACK_SIZE)); thread_detach_and_resume(thread_create("context switch 4d", &context_switch_tester, (void *)4, DEFAULT_PRIORITY, DEFAULT_STACK_SIZE)); thread_sleep(100); event_signal(&context_switch_event, true); event_wait(&context_switch_done_event); thread_sleep(100); } static volatile int atomic; static volatile int atomic_count; static int atomic_tester(void *arg) { int add = (intptr_t)arg; int i; const int iter = 10000000; TRACEF("add %d, %d iterations\n", add, iter); for (i=0; i < iter; i++) { atomic_add(&atomic, add); } int old = atomic_add(&atomic_count, -1); TRACEF("exiting, old count %d\n", old); return 0; } static void atomic_test(void) { atomic = 0; atomic_count = 8; printf("testing atomic routines\n"); thread_t *threads[8]; threads[0] = thread_create("atomic tester 1", &atomic_tester, (void *)1, LOW_PRIORITY, DEFAULT_STACK_SIZE); threads[1] = thread_create("atomic tester 1", &atomic_tester, (void *)1, LOW_PRIORITY, DEFAULT_STACK_SIZE); threads[2] = thread_create("atomic tester 1", &atomic_tester, (void *)1, LOW_PRIORITY, DEFAULT_STACK_SIZE); threads[3] = thread_create("atomic tester 1", &atomic_tester, (void *)1, LOW_PRIORITY, DEFAULT_STACK_SIZE); threads[4] = thread_create("atomic tester 2", &atomic_tester, (void *)-1, LOW_PRIORITY, DEFAULT_STACK_SIZE); threads[5] = thread_create("atomic tester 2", &atomic_tester, (void *)-1, LOW_PRIORITY, DEFAULT_STACK_SIZE); threads[6] = thread_create("atomic tester 2", &atomic_tester, (void *)-1, LOW_PRIORITY, DEFAULT_STACK_SIZE); threads[7] = thread_create("atomic tester 2", &atomic_tester, (void *)-1, LOW_PRIORITY, DEFAULT_STACK_SIZE); /* start all the threads */ for (uint i = 0; i < countof(threads); i++) thread_resume(threads[i]); /* wait for them to all stop */ for (uint i = 0; i < countof(threads); i++) { thread_join(threads[i], NULL, INFINITE_TIME); } printf("atomic count == %d (should be zero)\n", atomic); } static volatile int preempt_count; static int preempt_tester(void *arg) { spin(1000000); printf("exiting ts %lld\n", current_time_hires()); atomic_add(&preempt_count, -1); #undef COUNT return 0; } static void preempt_test(void) { /* create 5 threads, let them run. If the system is properly timer preempting, * the threads should interleave each other at a fine enough granularity so * that they complete at roughly the same time. */ printf("testing preemption\n"); preempt_count = 5; for (int i = 0; i < preempt_count; i++) thread_detach_and_resume(thread_create("preempt tester", &preempt_tester, NULL, LOW_PRIORITY, DEFAULT_STACK_SIZE)); while (preempt_count > 0) { thread_sleep(1000); } printf("done with preempt test, above time stamps should be very close\n"); /* do the same as above, but mark the threads as real time, which should * effectively disable timer based preemption for them. They should * complete in order, about a second apart. */ printf("testing real time preemption\n"); preempt_count = 5; for (int i = 0; i < preempt_count; i++) { thread_t *t = thread_create("preempt tester", &preempt_tester, NULL, LOW_PRIORITY, DEFAULT_STACK_SIZE); thread_set_real_time(t); thread_detach_and_resume(t); } while (preempt_count > 0) { thread_sleep(1000); } printf("done with real-time preempt test, above time stamps should be 1 second apart\n"); } static int join_tester(void *arg) { long val = (long)arg; printf("\t\tjoin tester starting\n"); thread_sleep(500); printf("\t\tjoin tester exiting with result %ld\n", val); return val; } static int join_tester_server(void *arg) { int ret; status_t err; thread_t *t; printf("\ttesting thread_join/thread_detach\n"); printf("\tcreating and waiting on thread to exit with thread_join\n"); t = thread_create("join tester", &join_tester, (void *)1, DEFAULT_PRIORITY, DEFAULT_STACK_SIZE); thread_resume(t); ret = 99; printf("\tthread magic is 0x%x (should be 0x%x)\n", t->magic, THREAD_MAGIC); err = thread_join(t, &ret, INFINITE_TIME); printf("\tthread_join returns err %d, retval %d\n", err, ret); printf("\tthread magic is 0x%x (should be 0)\n", t->magic); printf("\tcreating and waiting on thread to exit with thread_join, after thread has exited\n"); t = thread_create("join tester", &join_tester, (void *)2, DEFAULT_PRIORITY, DEFAULT_STACK_SIZE); thread_resume(t); thread_sleep(1000); // wait until thread is already dead ret = 99; printf("\tthread magic is 0x%x (should be 0x%x)\n", t->magic, THREAD_MAGIC); err = thread_join(t, &ret, INFINITE_TIME); printf("\tthread_join returns err %d, retval %d\n", err, ret); printf("\tthread magic is 0x%x (should be 0)\n", t->magic); printf("\tcreating a thread, detaching it, let it exit on its own\n"); t = thread_create("join tester", &join_tester, (void *)3, DEFAULT_PRIORITY, DEFAULT_STACK_SIZE); thread_detach(t); thread_resume(t); thread_sleep(1000); // wait until the thread should be dead printf("\tthread magic is 0x%x (should be 0)\n", t->magic); printf("\tcreating a thread, detaching it after it should be dead\n"); t = thread_create("join tester", &join_tester, (void *)4, DEFAULT_PRIORITY, DEFAULT_STACK_SIZE); thread_resume(t); thread_sleep(1000); // wait until thread is already dead printf("\tthread magic is 0x%x (should be 0x%x)\n", t->magic, THREAD_MAGIC); thread_detach(t); printf("\tthread magic is 0x%x\n", t->magic); printf("\texiting join tester server\n"); return 55; } static void join_test(void) { int ret; status_t err; thread_t *t; printf("testing thread_join/thread_detach\n"); printf("creating thread join server thread\n"); t = thread_create("join tester server", &join_tester_server, (void *)1, DEFAULT_PRIORITY, DEFAULT_STACK_SIZE); thread_resume(t); ret = 99; err = thread_join(t, &ret, INFINITE_TIME); printf("thread_join returns err %d, retval %d (should be 0 and 55)\n", err, ret); } static void spinlock_test(void) { spin_lock_saved_state_t state; spin_lock_t lock; spin_lock_init(&lock); // verify basic functionality (single core) printf("testing spinlock:\n"); ASSERT(!spin_lock_held(&lock)); ASSERT(!arch_ints_disabled()); spin_lock_irqsave(&lock, state); ASSERT(arch_ints_disabled()); ASSERT(spin_lock_held(&lock)); spin_unlock_irqrestore(&lock, state); ASSERT(!spin_lock_held(&lock)); ASSERT(!arch_ints_disabled()); printf("seems to work\n"); #define COUNT (1024*1024) arch_interrupt_save(&state, SPIN_LOCK_FLAG_INTERRUPTS); uint32_t c = arch_cycle_count(); for (uint i = 0; i < COUNT; i++) { spin_lock(&lock); spin_unlock(&lock); } c = arch_cycle_count() - c; arch_interrupt_restore(state, SPIN_LOCK_FLAG_INTERRUPTS); printf("%u cycles to acquire/release lock %u times (%u cycles per)\n", c, COUNT, c / COUNT); c = arch_cycle_count(); for (uint i = 0; i < COUNT; i++) { spin_lock_irqsave(&lock, state); spin_unlock_irqrestore(&lock, state); } c = arch_cycle_count() - c; printf("%u cycles to acquire/release lock w/irqsave %u times (%u cycles per)\n", c, COUNT, c / COUNT); #undef COUNT } int thread_tests(int argc, const console_cmd_args *argv) { mutex_test(); semaphore_test(); event_test(); spinlock_test(); atomic_test(); thread_sleep(200); context_switch_test(); preempt_test(); join_test(); return 0; } static int spinner_thread(void *arg) { for (;;) ; return 0; } int spinner(int argc, const console_cmd_args *argv) { if (argc < 2) { printf("not enough args\n"); printf("usage: %s \n", argv[0].str); return -1; } thread_t *t = thread_create("spinner", spinner_thread, NULL, argv[1].u, DEFAULT_STACK_SIZE); if (!t) return ERR_NO_MEMORY; if (argc >= 3 && !strcmp(argv[2].str, "rt")) { thread_set_real_time(t); } thread_resume(t); return 0; }