//***************************************************************************** // // ssi.c - Driver for Synchronous Serial Interface. // // Copyright (c) 2005-2012 Texas Instruments Incorporated. All rights reserved. // Software License Agreement // // Redistribution and use in source and binary forms, with or without // modification, are permitted provided that the following conditions // are met: // // Redistributions of source code must retain the above copyright // notice, this list of conditions and the following disclaimer. // // Redistributions in binary form must reproduce the above copyright // notice, this list of conditions and the following disclaimer in the // documentation and/or other materials provided with the // distribution. // // Neither the name of Texas Instruments Incorporated nor the names of // its contributors may be used to endorse or promote products derived // from this software without specific prior written permission. // // THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS // "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT // LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR // A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT // OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, // SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT // LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, // DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY // THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT // (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE // OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. // // This is part of revision 9453 of the Stellaris Peripheral Driver Library. // //***************************************************************************** //***************************************************************************** // //! \addtogroup ssi_api //! @{ // //***************************************************************************** #include "inc/hw_ints.h" #include "inc/hw_memmap.h" #include "inc/hw_ssi.h" #include "inc/hw_types.h" #include "driverlib/debug.h" #include "driverlib/interrupt.h" #include "driverlib/ssi.h" //***************************************************************************** // // A mapping of timer base address to interupt number. // //***************************************************************************** static const unsigned long g_ppulSSIIntMap[][2] = { { SSI0_BASE, INT_SSI0 }, { SSI1_BASE, INT_SSI1 }, { SSI2_BASE, INT_SSI2 }, { SSI3_BASE, INT_SSI3 }, }; //***************************************************************************** // //! \internal //! Checks an SSI base address. //! //! \param ulBase specifies the SSI module base address. //! //! This function determines if a SSI module base address is valid. //! //! \return Returns \b true if the base address is valid and \b false //! otherwise. // //***************************************************************************** #ifdef DEBUG static tBoolean SSIBaseValid(unsigned long ulBase) { return((ulBase == SSI0_BASE) || (ulBase == SSI1_BASE) || (ulBase == SSI2_BASE) || (ulBase == SSI3_BASE)); } #endif //***************************************************************************** // //! \internal //! Gets the SSI interrupt number. //! //! \param ulBase specifies the SSI module base address. //! //! Given a SSI base address, returns the corresponding interrupt number. //! //! \return Returns an SSI interrupt number, or -1 if \e ulBase is invalid. // //***************************************************************************** static long SSIIntNumberGet(unsigned long ulBase) { unsigned long ulIdx; // // Loop through the table that maps SSI base addresses to interrupt // numbers. // for(ulIdx = 0; ulIdx < (sizeof(g_ppulSSIIntMap) / sizeof(g_ppulSSIIntMap[0])); ulIdx++) { // // See if this base address matches. // if(g_ppulSSIIntMap[ulIdx][0] == ulBase) { // // Return the corresponding interrupt number. // return(g_ppulSSIIntMap[ulIdx][1]); } } // // The base address could not be found, so return an error. // return(-1); } //***************************************************************************** // //! Configures the synchronous serial interface. //! //! \param ulBase specifies the SSI module base address. //! \param ulSSIClk is the rate of the clock supplied to the SSI module. //! \param ulProtocol specifies the data transfer protocol. //! \param ulMode specifies the mode of operation. //! \param ulBitRate specifies the clock rate. //! \param ulDataWidth specifies number of bits transferred per frame. //! //! This function configures the synchronous serial interface. It sets //! the SSI protocol, mode of operation, bit rate, and data width. //! //! The \e ulProtocol parameter defines the data frame format. The //! \e ulProtocol parameter can be one of the following values: //! \b SSI_FRF_MOTO_MODE_0, \b SSI_FRF_MOTO_MODE_1, \b SSI_FRF_MOTO_MODE_2, //! \b SSI_FRF_MOTO_MODE_3, \b SSI_FRF_TI, or \b SSI_FRF_NMW. The Motorola //! frame formats encode the following polarity and phase configurations: //! //!
//! Polarity Phase       Mode
//!   0       0   SSI_FRF_MOTO_MODE_0
//!   0       1   SSI_FRF_MOTO_MODE_1
//!   1       0   SSI_FRF_MOTO_MODE_2
//!   1       1   SSI_FRF_MOTO_MODE_3
//! 
//! //! The \e ulMode parameter defines the operating mode of the SSI module. The //! SSI module can operate as a master or slave; if it is a slave, the SSI can //! be configured to disable output on its serial output line. The \e ulMode //! parameter can be one of the following values: \b SSI_MODE_MASTER, //! \b SSI_MODE_SLAVE, or \b SSI_MODE_SLAVE_OD. //! //! The \e ulBitRate parameter defines the bit rate for the SSI. This bit rate //! must satisfy the following clock ratio criteria: //! //! - FSSI >= 2 * bit rate (master mode); this speed cannot exceed 25 MHz. //! - FSSI >= 12 * bit rate or 6 * bit rate (slave modes), depending on the //! capability of the specific microcontroller //! //! where FSSI is the frequency of the clock supplied to the SSI module. //! //! The \e ulDataWidth parameter defines the width of the data transfers and //! can be a value between 4 and 16, inclusive. //! //! The peripheral clock is the same as the processor clock. This value is //! returned by SysCtlClockGet(), or it can be explicitly hard coded if it is //! constant and known (to save the code/execution overhead of a call to //! SysCtlClockGet()). //! //! This function replaces the original SSIConfig() API and performs the same //! actions. A macro is provided in ssi.h to map the original API to //! this API. //! //! \return None. // //***************************************************************************** void SSIConfigSetExpClk(unsigned long ulBase, unsigned long ulSSIClk, unsigned long ulProtocol, unsigned long ulMode, unsigned long ulBitRate, unsigned long ulDataWidth) { unsigned long ulMaxBitRate; unsigned long ulRegVal; unsigned long ulPreDiv; unsigned long ulSCR; unsigned long ulSPH_SPO; // // Check the arguments. // ASSERT(SSIBaseValid(ulBase)); ASSERT((ulProtocol == SSI_FRF_MOTO_MODE_0) || (ulProtocol == SSI_FRF_MOTO_MODE_1) || (ulProtocol == SSI_FRF_MOTO_MODE_2) || (ulProtocol == SSI_FRF_MOTO_MODE_3) || (ulProtocol == SSI_FRF_TI) || (ulProtocol == SSI_FRF_NMW)); ASSERT((ulMode == SSI_MODE_MASTER) || (ulMode == SSI_MODE_SLAVE) || (ulMode == SSI_MODE_SLAVE_OD)); ASSERT(((ulMode == SSI_MODE_MASTER) && (ulBitRate <= (ulSSIClk / 2))) || ((ulMode != SSI_MODE_MASTER) && (ulBitRate <= (ulSSIClk / 12)))); ASSERT((ulSSIClk / ulBitRate) <= (254 * 256)); ASSERT((ulDataWidth >= 4) && (ulDataWidth <= 16)); // // Set the mode. // ulRegVal = (ulMode == SSI_MODE_SLAVE_OD) ? SSI_CR1_SOD : 0; ulRegVal |= (ulMode == SSI_MODE_MASTER) ? 0 : SSI_CR1_MS; HWREG(ulBase + SSI_O_CR1) = ulRegVal; // // Set the clock predivider. // ulMaxBitRate = ulSSIClk / ulBitRate; ulPreDiv = 0; do { ulPreDiv += 2; ulSCR = (ulMaxBitRate / ulPreDiv) - 1; } while(ulSCR > 255); HWREG(ulBase + SSI_O_CPSR) = ulPreDiv; // // Set protocol and clock rate. // ulSPH_SPO = (ulProtocol & 3) << 6; ulProtocol &= SSI_CR0_FRF_M; ulRegVal = (ulSCR << 8) | ulSPH_SPO | ulProtocol | (ulDataWidth - 1); HWREG(ulBase + SSI_O_CR0) = ulRegVal; } //***************************************************************************** // //! Enables the synchronous serial interface. //! //! \param ulBase specifies the SSI module base address. //! //! This function enables operation of the synchronous serial interface. The //! synchronous serial interface must be configured before it is enabled. //! //! \return None. // //***************************************************************************** void SSIEnable(unsigned long ulBase) { // // Check the arguments. // ASSERT(SSIBaseValid(ulBase)); // // Read-modify-write the enable bit. // HWREG(ulBase + SSI_O_CR1) |= SSI_CR1_SSE; } //***************************************************************************** // //! Disables the synchronous serial interface. //! //! \param ulBase specifies the SSI module base address. //! //! This function disables operation of the synchronous serial interface. //! //! \return None. // //***************************************************************************** void SSIDisable(unsigned long ulBase) { // // Check the arguments. // ASSERT(SSIBaseValid(ulBase)); // // Read-modify-write the enable bit. // HWREG(ulBase + SSI_O_CR1) &= ~(SSI_CR1_SSE); } //***************************************************************************** // //! Registers an interrupt handler for the synchronous serial interface. //! //! \param ulBase specifies the SSI module base address. //! \param pfnHandler is a pointer to the function to be called when the //! synchronous serial interface interrupt occurs. //! //! This function registers the handler to be called when an SSI interrupt //! occurs. This function enables the global interrupt in the interrupt //! controller; specific SSI interrupts must be enabled via SSIIntEnable(). If //! necessary, it is the interrupt handler's responsibility to clear the //! interrupt source via SSIIntClear(). //! //! \sa IntRegister() for important information about registering interrupt //! handlers. //! //! \return None. // //***************************************************************************** void SSIIntRegister(unsigned long ulBase, void (*pfnHandler)(void)) { unsigned long ulInt; // // Check the arguments. // ASSERT(SSIBaseValid(ulBase)); // // Determine the interrupt number based on the SSI port. // ulInt = SSIIntNumberGet(ulBase); // // Register the interrupt handler, returning an error if an error occurs. // IntRegister(ulInt, pfnHandler); // // Enable the synchronous serial interface interrupt. // IntEnable(ulInt); } //***************************************************************************** // //! Unregisters an interrupt handler for the synchronous serial interface. //! //! \param ulBase specifies the SSI module base address. //! //! This function clears the handler to be called when an SSI interrupt //! occurs. This function also masks off the interrupt in the interrupt //! controller so that the interrupt handler no longer is called. //! //! \sa IntRegister() for important information about registering interrupt //! handlers. //! //! \return None. // //***************************************************************************** void SSIIntUnregister(unsigned long ulBase) { unsigned long ulInt; // // Check the arguments. // ASSERT(SSIBaseValid(ulBase)); // // Determine the interrupt number based on the SSI port. // ulInt = SSIIntNumberGet(ulBase); // // Disable the interrupt. // IntDisable(ulInt); // // Unregister the interrupt handler. // IntUnregister(ulInt); } //***************************************************************************** // //! Enables individual SSI interrupt sources. //! //! \param ulBase specifies the SSI module base address. //! \param ulIntFlags is a bit mask of the interrupt sources to be enabled. //! //! This function enables the indicated SSI interrupt sources. Only the //! sources that are enabled can be reflected to the processor interrupt; //! disabled sources have no effect on the processor. The \e ulIntFlags //! parameter can be any of the \b SSI_TXFF, \b SSI_RXFF, \b SSI_RXTO, or //! \b SSI_RXOR values. //! //! \return None. // //***************************************************************************** void SSIIntEnable(unsigned long ulBase, unsigned long ulIntFlags) { // // Check the arguments. // ASSERT(SSIBaseValid(ulBase)); // // Enable the specified interrupts. // HWREG(ulBase + SSI_O_IM) |= ulIntFlags; } //***************************************************************************** // //! Disables individual SSI interrupt sources. //! //! \param ulBase specifies the SSI module base address. //! \param ulIntFlags is a bit mask of the interrupt sources to be disabled. //! //! This function disables the indicated SSI interrupt sources. The //! \e ulIntFlags parameter can be any of the \b SSI_TXFF, \b SSI_RXFF, //! \b SSI_RXTO, or \b SSI_RXOR values. //! //! \return None. // //***************************************************************************** void SSIIntDisable(unsigned long ulBase, unsigned long ulIntFlags) { // // Check the arguments. // ASSERT(SSIBaseValid(ulBase)); // // Disable the specified interrupts. // HWREG(ulBase + SSI_O_IM) &= ~(ulIntFlags); } //***************************************************************************** // //! Gets the current interrupt status. //! //! \param ulBase specifies the SSI module base address. //! \param bMasked is \b false if the raw interrupt status is required or //! \b true if the masked interrupt status is required. //! //! This function returns the interrupt status for the SSI module. Either the //! raw interrupt status or the status of interrupts that are allowed to //! reflect to the processor can be returned. //! //! \return The current interrupt status, enumerated as a bit field of //! \b SSI_TXFF, \b SSI_RXFF, \b SSI_RXTO, and \b SSI_RXOR. // //***************************************************************************** unsigned long SSIIntStatus(unsigned long ulBase, tBoolean bMasked) { // // Check the arguments. // ASSERT(SSIBaseValid(ulBase)); // // Return either the interrupt status or the raw interrupt status as // requested. // if(bMasked) { return(HWREG(ulBase + SSI_O_MIS)); } else { return(HWREG(ulBase + SSI_O_RIS)); } } //***************************************************************************** // //! Clears SSI interrupt sources. //! //! \param ulBase specifies the SSI module base address. //! \param ulIntFlags is a bit mask of the interrupt sources to be cleared. //! //! This function clears the specified SSI interrupt sources so that they no //! longer assert. This function must be called in the interrupt handler to //! keep the interrupts from being triggered again immediately upon exit. The //! \e ulIntFlags parameter can consist of either or both the \b SSI_RXTO and //! \b SSI_RXOR values. //! //! \note Because there is a write buffer in the Cortex-M processor, it may //! take several clock cycles before the interrupt source is actually cleared. //! Therefore, it is recommended that the interrupt source be cleared early in //! the interrupt handler (as opposed to the very last action) to avoid //! returning from the interrupt handler before the interrupt source is //! actually cleared. Failure to do so may result in the interrupt handler //! being immediately reentered (because the interrupt controller still sees //! the interrupt source asserted). //! //! \return None. // //***************************************************************************** void SSIIntClear(unsigned long ulBase, unsigned long ulIntFlags) { // // Check the arguments. // ASSERT(SSIBaseValid(ulBase)); // // Clear the requested interrupt sources. // HWREG(ulBase + SSI_O_ICR) = ulIntFlags; } //***************************************************************************** // //! Puts a data element into the SSI transmit FIFO. //! //! \param ulBase specifies the SSI module base address. //! \param ulData is the data to be transmitted over the SSI interface. //! //! This function places the supplied data into the transmit FIFO of the //! specified SSI module. If there is no space available in the transmit FIFO, //! this function waits until there is space available before returning. //! //! \note The upper 32 - N bits of \e ulData are discarded by the hardware, //! where N is the data width as configured by SSIConfigSetExpClk(). For //! example, if the interface is configured for 8-bit data width, the upper 24 //! bits of \e ulData are discarded. //! //! \return None. // //***************************************************************************** void SSIDataPut(unsigned long ulBase, unsigned long ulData) { // // Check the arguments. // ASSERT(SSIBaseValid(ulBase)); ASSERT((ulData & (0xfffffffe << (HWREG(ulBase + SSI_O_CR0) & SSI_CR0_DSS_M))) == 0); // // Wait until there is space. // while(!(HWREG(ulBase + SSI_O_SR) & SSI_SR_TNF)) { } // // Write the data to the SSI. // HWREG(ulBase + SSI_O_DR) = ulData; } //***************************************************************************** // //! Puts a data element into the SSI transmit FIFO. //! //! \param ulBase specifies the SSI module base address. //! \param ulData is the data to be transmitted over the SSI interface. //! //! This function places the supplied data into the transmit FIFO of the //! specified SSI module. If there is no space in the FIFO, then this function //! returns a zero. //! //! This function replaces the original SSIDataNonBlockingPut() API and //! performs the same actions. A macro is provided in ssi.h to map //! the original API to this API. //! //! \note The upper 32 - N bits of \e ulData are discarded by the hardware, //! where N is the data width as configured by SSIConfigSetExpClk(). For //! example, if the interface is configured for 8-bit data width, the upper 24 //! bits of \e ulData are discarded. //! //! \return Returns the number of elements written to the SSI transmit FIFO. // //***************************************************************************** long SSIDataPutNonBlocking(unsigned long ulBase, unsigned long ulData) { // // Check the arguments. // ASSERT(SSIBaseValid(ulBase)); ASSERT((ulData & (0xfffffffe << (HWREG(ulBase + SSI_O_CR0) & SSI_CR0_DSS_M))) == 0); // // Check for space to write. // if(HWREG(ulBase + SSI_O_SR) & SSI_SR_TNF) { HWREG(ulBase + SSI_O_DR) = ulData; return(1); } else { return(0); } } //***************************************************************************** // //! Gets a data element from the SSI receive FIFO. //! //! \param ulBase specifies the SSI module base address. //! \param pulData is a pointer to a storage location for data that was //! received over the SSI interface. //! //! This function gets received data from the receive FIFO of the specified //! SSI module and places that data into the location specified by the //! \e pulData parameter. If there is no data available, this function waits //! until data is received before returning. //! //! \note Only the lower N bits of the value written to \e pulData contain //! valid data, where N is the data width as configured by //! SSIConfigSetExpClk(). For example, if the interface is configured for //! 8-bit data width, only the lower 8 bits of the value written to \e pulData //! contain valid data. //! //! \return None. // //***************************************************************************** void SSIDataGet(unsigned long ulBase, unsigned long *pulData) { // // Check the arguments. // ASSERT(SSIBaseValid(ulBase)); // // Wait until there is data to be read. // while(!(HWREG(ulBase + SSI_O_SR) & SSI_SR_RNE)) { } // // Read data from SSI. // *pulData = HWREG(ulBase + SSI_O_DR); } //***************************************************************************** // //! Gets a data element from the SSI receive FIFO. //! //! \param ulBase specifies the SSI module base address. //! \param pulData is a pointer to a storage location for data that was //! received over the SSI interface. //! //! This function gets received data from the receive FIFO of the specified SSI //! module and places that data into the location specified by the \e ulData //! parameter. If there is no data in the FIFO, then this function returns a //! zero. //! //! This function replaces the original SSIDataNonBlockingGet() API and //! performs the same actions. A macro is provided in ssi.h to map //! the original API to this API. //! //! \note Only the lower N bits of the value written to \e pulData contain //! valid data, where N is the data width as configured by //! SSIConfigSetExpClk(). For example, if the interface is configured for //! 8-bit data width, only the lower 8 bits of the value written to \e pulData //! contain valid data. //! //! \return Returns the number of elements read from the SSI receive FIFO. // //***************************************************************************** long SSIDataGetNonBlocking(unsigned long ulBase, unsigned long *pulData) { // // Check the arguments. // ASSERT(SSIBaseValid(ulBase)); // // Check for data to read. // if(HWREG(ulBase + SSI_O_SR) & SSI_SR_RNE) { *pulData = HWREG(ulBase + SSI_O_DR); return(1); } else { return(0); } } //***************************************************************************** // //! Enables SSI DMA operation. //! //! \param ulBase is the base address of the SSI port. //! \param ulDMAFlags is a bit mask of the DMA features to enable. //! //! This function enables the specified SSI DMA features. The SSI can be //! configured to use DMA for transmit and/or receive data transfers. //! The \e ulDMAFlags parameter is the logical OR of any of the following //! values: //! //! - SSI_DMA_RX - enable DMA for receive //! - SSI_DMA_TX - enable DMA for transmit //! //! \note The uDMA controller must also be set up before DMA can be used //! with the SSI. //! //! \return None. // //***************************************************************************** void SSIDMAEnable(unsigned long ulBase, unsigned long ulDMAFlags) { // // Check the arguments. // ASSERT(SSIBaseValid(ulBase)); // // Set the requested bits in the SSI DMA control register. // HWREG(ulBase + SSI_O_DMACTL) |= ulDMAFlags; } //***************************************************************************** // //! Disables SSI DMA operation. //! //! \param ulBase is the base address of the SSI port. //! \param ulDMAFlags is a bit mask of the DMA features to disable. //! //! This function is used to disable SSI DMA features that were enabled //! by SSIDMAEnable(). The specified SSI DMA features are disabled. The //! \e ulDMAFlags parameter is the logical OR of any of the following values: //! //! - SSI_DMA_RX - disable DMA for receive //! - SSI_DMA_TX - disable DMA for transmit //! //! \return None. // //***************************************************************************** void SSIDMADisable(unsigned long ulBase, unsigned long ulDMAFlags) { // // Check the arguments. // ASSERT(SSIBaseValid(ulBase)); // // Clear the requested bits in the SSI DMA control register. // HWREG(ulBase + SSI_O_DMACTL) &= ~ulDMAFlags; } //***************************************************************************** // //! Determines whether the SSI transmitter is busy or not. //! //! \param ulBase is the base address of the SSI port. //! //! This function allows the caller to determine whether all transmitted bytes //! have cleared the transmitter hardware. If \b false is returned, then the //! transmit FIFO is empty and all bits of the last transmitted word have left //! the hardware shift register. //! //! \return Returns \b true if the SSI is transmitting or \b false if all //! transmissions are complete. // //***************************************************************************** tBoolean SSIBusy(unsigned long ulBase) { // // Check the arguments. // ASSERT(SSIBaseValid(ulBase)); // // Determine if the SSI is busy. // return((HWREG(ulBase + SSI_O_SR) & SSI_SR_BSY) ? true : false); } //***************************************************************************** // //! Sets the data clock source for the specified SSI peripheral. //! //! \param ulBase is the base address of the SSI port. //! \param ulSource is the baud clock source for the SSI. //! //! This function allows the baud clock source for the SSI to be selected. //! The possible clock source are the system clock (\b SSI_CLOCK_SYSTEM) or //! the precision internal oscillator (\b SSI_CLOCK_PIOSC). //! //! Changing the baud clock source changes the data rate generated by the //! SSI. Therefore, the data rate should be reconfigured after any change to //! the SSI clock source. //! //! \note The ability to specify the SSI baud clock source varies with the //! Stellaris part and SSI in use. Please consult the data sheet for the part //! in use to determine whether this support is available. //! //! \return None. // //***************************************************************************** void SSIClockSourceSet(unsigned long ulBase, unsigned long ulSource) { // // Check the arguments. // ASSERT(SSIBaseValid(ulBase)); ASSERT((ulSource == SSI_CLOCK_SYSTEM) || (ulSource == SSI_CLOCK_PIOSC)); // // Set the SSI clock source. // HWREG(ulBase + SSI_O_CC) = ulSource; } //***************************************************************************** // //! Gets the data clock source for the specified SSI peripheral. //! //! \param ulBase is the base address of the SSI port. //! //! This function returns the data clock source for the specified SSI. The //! possible data clock source are the system clock (\b SSI_CLOCK_SYSTEM) or //! the precision internal oscillator (\b SSI_CLOCK_PIOSC). //! //! \note The ability to specify the SSI data clock source varies with the //! Stellaris part and SSI in use. Please consult the data sheet for the part //! in use to determine whether this support is available. //! //! \return None. // //***************************************************************************** unsigned long SSIClockSourceGet(unsigned long ulBase) { // // Check the arguments. // ASSERT(SSIBaseValid(ulBase)); // // Return the SSI clock source. // return(HWREG(ulBase + SSI_O_CC)); } //***************************************************************************** // // Close the Doxygen group. //! @} // //*****************************************************************************