/* SPDX-License-Identifier: BSD-2-Clause */ /* * Copyright (c) 2014-2019, Linaro Limited */ #ifndef IO_H #define IO_H #include #include #include #include /* * Make sure that compiler reads/writes given variable only once. This is needed * in cases when we have normal shared memory, and this memory can be changed * at any moment. Compiler does not knows about this, so it can optimize memory * access in any way, including repeated accesses from the same address. * These macro enforce compiler to access memory only once. */ #define READ_ONCE(p) __compiler_atomic_load(&(p)) #define WRITE_ONCE(p, v) __compiler_atomic_store(&(p), (v)) static inline void io_write8(vaddr_t addr, uint8_t val) { *(volatile uint8_t *)addr = val; } static inline void io_write16(vaddr_t addr, uint16_t val) { *(volatile uint16_t *)addr = val; } static inline void io_write32(vaddr_t addr, uint32_t val) { *(volatile uint32_t *)addr = val; } static inline void io_write64(vaddr_t addr, uint64_t val) { *(volatile uint64_t *)addr = val; } static inline uint8_t io_read8(vaddr_t addr) { return *(volatile uint8_t *)addr; } static inline uint16_t io_read16(vaddr_t addr) { return *(volatile uint16_t *)addr; } static inline uint32_t io_read32(vaddr_t addr) { return *(volatile uint32_t *)addr; } static inline uint64_t io_read64(vaddr_t addr) { return *(volatile uint64_t *)addr; } static inline void io_mask8(vaddr_t addr, uint8_t val, uint8_t mask) { io_write8(addr, (io_read8(addr) & ~mask) | (val & mask)); } static inline void io_mask16(vaddr_t addr, uint16_t val, uint16_t mask) { io_write16(addr, (io_read16(addr) & ~mask) | (val & mask)); } static inline void io_mask32(vaddr_t addr, uint32_t val, uint32_t mask) { io_write32(addr, (io_read32(addr) & ~mask) | (val & mask)); } static inline uint64_t get_be64(const void *p) { return TEE_U64_FROM_BIG_ENDIAN(*(const uint64_t *)p); } static inline void put_be64(void *p, uint64_t val) { *(uint64_t *)p = TEE_U64_TO_BIG_ENDIAN(val); } static inline uint32_t get_be32(const void *p) { return TEE_U32_FROM_BIG_ENDIAN(*(const uint32_t *)p); } static inline void put_be32(void *p, uint32_t val) { *(uint32_t *)p = TEE_U32_TO_BIG_ENDIAN(val); } static inline uint16_t get_be16(const void *p) { return TEE_U16_FROM_BIG_ENDIAN(*(const uint16_t *)p); } static inline void put_be16(void *p, uint16_t val) { *(uint16_t *)p = TEE_U16_TO_BIG_ENDIAN(val); } static inline void put_le32(const void *p, uint32_t val) { *(uint32_t *)p = val; } static inline uint32_t get_le32(const void *p) { return *(const uint32_t *)p; } static inline void put_le64(const void *p, uint64_t val) { *(uint64_t *)p = val; } static inline uint64_t get_le64(const void *p) { return *(const uint64_t *)p; } /* Unaligned accesses */ struct __unaligned_u16_t { uint16_t x; } __packed; struct __unaligned_u32_t { uint32_t x; } __packed; struct __unaligned_u64_t { uint64_t x; } __packed; static inline uint64_t get_unaligned_be64(const void *p) { const struct __unaligned_u64_t *tmp = p; return TEE_U64_FROM_BIG_ENDIAN(tmp->x); } static inline void put_unaligned_be64(void *p, uint64_t val) { struct __unaligned_u64_t *tmp = p; tmp->x = TEE_U64_TO_BIG_ENDIAN(val); } static inline uint32_t get_unaligned_be32(const void *p) { const struct __unaligned_u32_t *tmp = p; return TEE_U32_FROM_BIG_ENDIAN(tmp->x); } static inline void put_unaligned_be32(void *p, uint32_t val) { struct __unaligned_u32_t *tmp = p; tmp->x = TEE_U32_TO_BIG_ENDIAN(val); } static inline uint16_t get_unaligned_be16(const void *p) { const struct __unaligned_u16_t *tmp = p; return TEE_U16_FROM_BIG_ENDIAN(tmp->x); } static inline void put_unaligned_be16(void *p, uint16_t val) { struct __unaligned_u16_t *tmp = p; tmp->x = TEE_U16_TO_BIG_ENDIAN(val); } static inline void put_unaligned_le64(void *p, uint64_t val) { struct __unaligned_u64_t *tmp = p; tmp->x = val; } static inline uint64_t get_unaligned_le64(const void *p) { const struct __unaligned_u64_t *tmp = p; return tmp->x; } static inline void put_unaligned_le32(void *p, uint32_t val) { struct __unaligned_u32_t *tmp = p; tmp->x = val; } static inline uint32_t get_unaligned_le32(const void *p) { const struct __unaligned_u32_t *tmp = p; return tmp->x; } static inline void put_unaligned_le16(void *p, uint16_t val) { struct __unaligned_u16_t *tmp = p; tmp->x = val; } static inline uint16_t get_unaligned_le16(const void *p) { const struct __unaligned_u16_t *tmp = p; return tmp->x; } /* * Set and clear bits helpers. * * @addr is the address of the memory cell accessed * @set_mask represents the bit mask of the bit(s) to set, aka set to 1 * @clear_mask represents the bit mask of the bit(s) to clear, aka reset to 0 * * io_clrsetbits32() clears then sets the target bits in this order. If a bit * position is defined by both @set_mask and @clear_mask, the bit will be set. */ static inline void io_setbits32(vaddr_t addr, uint32_t set_mask) { io_write32(addr, io_read32(addr) | set_mask); } static inline void io_clrbits32(vaddr_t addr, uint32_t clear_mask) { io_write32(addr, io_read32(addr) & ~clear_mask); } static inline void io_clrsetbits32(vaddr_t addr, uint32_t clear_mask, uint32_t set_mask) { io_write32(addr, (io_read32(addr) & ~clear_mask) | set_mask); } static inline void io_setbits16(vaddr_t addr, uint16_t set_mask) { io_write16(addr, io_read16(addr) | set_mask); } static inline void io_clrbits16(vaddr_t addr, uint16_t clear_mask) { io_write16(addr, io_read16(addr) & ~clear_mask); } static inline void io_clrsetbits16(vaddr_t addr, uint16_t clear_mask, uint16_t set_mask) { io_write16(addr, (io_read16(addr) & ~clear_mask) | set_mask); } static inline void io_setbits8(vaddr_t addr, uint8_t set_mask) { io_write8(addr, io_read8(addr) | set_mask); } static inline void io_clrbits8(vaddr_t addr, uint8_t clear_mask) { io_write8(addr, io_read8(addr) & ~clear_mask); } static inline void io_clrsetbits8(vaddr_t addr, uint8_t clear_mask, uint8_t set_mask) { io_write8(addr, (io_read8(addr) & ~clear_mask) | set_mask); } #endif /*IO_H*/