/* SPDX-License-Identifier: BSD-3-Clause */ /*============================================================================ This C header file is part of the SoftFloat IEEE Floating-Point Arithmetic Package, Release 3a, by John R. Hauser. Copyright 2011, 2012, 2013, 2014 The Regents of the University of California. All rights reserved. Redistribution and use in source and binary forms, with or without modification, are permitted provided that the following conditions are met: 1. Redistributions of source code must retain the above copyright notice, this list of conditions, and the following disclaimer. 2. Redistributions in binary form must reproduce the above copyright notice, this list of conditions, and the following disclaimer in the documentation and/or other materials provided with the distribution. 3. Neither the name of the University nor the names of its contributors may be used to endorse or promote products derived from this software without specific prior written permission. THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS "AS IS", AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE, ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. =============================================================================*/ /*============================================================================ | Note: If SoftFloat is made available as a general library for programs to | use, it is strongly recommended that a platform-specific version of this | header, "softfloat.h", be created that folds in "softfloat_types.h" and that | eliminates all dependencies on compile-time macros. *============================================================================*/ #ifndef softfloat_h #define softfloat_h 1 #include #include #include "softfloat_types.h" /*---------------------------------------------------------------------------- | Software floating-point underflow tininess-detection mode. *----------------------------------------------------------------------------*/ extern uint_fast8_t softfloat_detectTininess; enum { softfloat_tininess_beforeRounding = 0, softfloat_tininess_afterRounding = 1 }; /*---------------------------------------------------------------------------- | Software floating-point rounding mode. *----------------------------------------------------------------------------*/ extern uint_fast8_t softfloat_roundingMode; enum { softfloat_round_near_even = 0, softfloat_round_minMag = 1, softfloat_round_min = 2, softfloat_round_max = 3, softfloat_round_near_maxMag = 4 }; /*---------------------------------------------------------------------------- | Software floating-point exception flags. *----------------------------------------------------------------------------*/ extern uint_fast8_t softfloat_exceptionFlags; enum { softfloat_flag_inexact = 1, softfloat_flag_underflow = 2, softfloat_flag_overflow = 4, softfloat_flag_infinite = 8, softfloat_flag_invalid = 16 }; /*---------------------------------------------------------------------------- | Routine to raise any or all of the software floating-point exception flags. *----------------------------------------------------------------------------*/ void softfloat_raiseFlags( uint_fast8_t ); /*---------------------------------------------------------------------------- | Integer-to-floating-point conversion routines. *----------------------------------------------------------------------------*/ float32_t ui32_to_f32( uint32_t ); float64_t ui32_to_f64( uint32_t ); #ifdef SOFTFLOAT_FAST_INT64 extFloat80_t ui32_to_extF80( uint32_t ); float128_t ui32_to_f128( uint32_t ); #endif void ui32_to_extF80M( uint32_t, extFloat80_t * ); void ui32_to_f128M( uint32_t, float128_t * ); float32_t ui64_to_f32( uint64_t ); float64_t ui64_to_f64( uint64_t ); #ifdef SOFTFLOAT_FAST_INT64 extFloat80_t ui64_to_extF80( uint64_t ); float128_t ui64_to_f128( uint64_t ); #endif void ui64_to_extF80M( uint64_t, extFloat80_t * ); void ui64_to_f128M( uint64_t, float128_t * ); float32_t i32_to_f32( int32_t ); float64_t i32_to_f64( int32_t ); #ifdef SOFTFLOAT_FAST_INT64 extFloat80_t i32_to_extF80( int32_t ); float128_t i32_to_f128( int32_t ); #endif void i32_to_extF80M( int32_t, extFloat80_t * ); void i32_to_f128M( int32_t, float128_t * ); float32_t i64_to_f32( int64_t ); float64_t i64_to_f64( int64_t ); #ifdef SOFTFLOAT_FAST_INT64 extFloat80_t i64_to_extF80( int64_t ); float128_t i64_to_f128( int64_t ); #endif void i64_to_extF80M( int64_t, extFloat80_t * ); void i64_to_f128M( int64_t, float128_t * ); /*---------------------------------------------------------------------------- | 32-bit (single-precision) floating-point operations. *----------------------------------------------------------------------------*/ uint_fast32_t f32_to_ui32( float32_t, uint_fast8_t, bool ); uint_fast64_t f32_to_ui64( float32_t, uint_fast8_t, bool ); int_fast32_t f32_to_i32( float32_t, uint_fast8_t, bool ); int_fast64_t f32_to_i64( float32_t, uint_fast8_t, bool ); uint_fast32_t f32_to_ui32_r_minMag( float32_t, bool ); uint_fast64_t f32_to_ui64_r_minMag( float32_t, bool ); int_fast32_t f32_to_i32_r_minMag( float32_t, bool ); int_fast64_t f32_to_i64_r_minMag( float32_t, bool ); float64_t f32_to_f64( float32_t ); #ifdef SOFTFLOAT_FAST_INT64 extFloat80_t f32_to_extF80( float32_t ); float128_t f32_to_f128( float32_t ); #endif void f32_to_extF80M( float32_t, extFloat80_t * ); void f32_to_f128M( float32_t, float128_t * ); float32_t f32_roundToInt( float32_t, uint_fast8_t, bool ); float32_t f32_add( float32_t, float32_t ); float32_t f32_sub( float32_t, float32_t ); float32_t f32_mul( float32_t, float32_t ); float32_t f32_mulAdd( float32_t, float32_t, float32_t ); float32_t f32_div( float32_t, float32_t ); float32_t f32_rem( float32_t, float32_t ); float32_t f32_sqrt( float32_t ); bool f32_eq( float32_t, float32_t ); bool f32_le( float32_t, float32_t ); bool f32_lt( float32_t, float32_t ); bool f32_eq_signaling( float32_t, float32_t ); bool f32_le_quiet( float32_t, float32_t ); bool f32_lt_quiet( float32_t, float32_t ); bool f32_isSignalingNaN( float32_t ); /*---------------------------------------------------------------------------- | 64-bit (double-precision) floating-point operations. *----------------------------------------------------------------------------*/ uint_fast32_t f64_to_ui32( float64_t, uint_fast8_t, bool ); uint_fast64_t f64_to_ui64( float64_t, uint_fast8_t, bool ); int_fast32_t f64_to_i32( float64_t, uint_fast8_t, bool ); int_fast64_t f64_to_i64( float64_t, uint_fast8_t, bool ); uint_fast32_t f64_to_ui32_r_minMag( float64_t, bool ); uint_fast64_t f64_to_ui64_r_minMag( float64_t, bool ); int_fast32_t f64_to_i32_r_minMag( float64_t, bool ); int_fast64_t f64_to_i64_r_minMag( float64_t, bool ); float32_t f64_to_f32( float64_t ); #ifdef SOFTFLOAT_FAST_INT64 extFloat80_t f64_to_extF80( float64_t ); float128_t f64_to_f128( float64_t ); #endif void f64_to_extF80M( float64_t, extFloat80_t * ); void f64_to_f128M( float64_t, float128_t * ); float64_t f64_roundToInt( float64_t, uint_fast8_t, bool ); float64_t f64_add( float64_t, float64_t ); float64_t f64_sub( float64_t, float64_t ); float64_t f64_mul( float64_t, float64_t ); float64_t f64_mulAdd( float64_t, float64_t, float64_t ); float64_t f64_div( float64_t, float64_t ); float64_t f64_rem( float64_t, float64_t ); float64_t f64_sqrt( float64_t ); bool f64_eq( float64_t, float64_t ); bool f64_le( float64_t, float64_t ); bool f64_lt( float64_t, float64_t ); bool f64_eq_signaling( float64_t, float64_t ); bool f64_le_quiet( float64_t, float64_t ); bool f64_lt_quiet( float64_t, float64_t ); bool f64_isSignalingNaN( float64_t ); /*---------------------------------------------------------------------------- | Rounding precision for 80-bit extended double-precision floating-point. | Valid values are 32, 64, and 80. *----------------------------------------------------------------------------*/ extern uint_fast8_t extF80_roundingPrecision; /*---------------------------------------------------------------------------- | 80-bit extended double-precision floating-point operations. *----------------------------------------------------------------------------*/ #ifdef SOFTFLOAT_FAST_INT64 uint_fast32_t extF80_to_ui32( extFloat80_t, uint_fast8_t, bool ); uint_fast64_t extF80_to_ui64( extFloat80_t, uint_fast8_t, bool ); int_fast32_t extF80_to_i32( extFloat80_t, uint_fast8_t, bool ); int_fast64_t extF80_to_i64( extFloat80_t, uint_fast8_t, bool ); uint_fast32_t extF80_to_ui32_r_minMag( extFloat80_t, bool ); uint_fast64_t extF80_to_ui64_r_minMag( extFloat80_t, bool ); int_fast32_t extF80_to_i32_r_minMag( extFloat80_t, bool ); int_fast64_t extF80_to_i64_r_minMag( extFloat80_t, bool ); float32_t extF80_to_f32( extFloat80_t ); float64_t extF80_to_f64( extFloat80_t ); float128_t extF80_to_f128( extFloat80_t ); extFloat80_t extF80_roundToInt( extFloat80_t, uint_fast8_t, bool ); extFloat80_t extF80_add( extFloat80_t, extFloat80_t ); extFloat80_t extF80_sub( extFloat80_t, extFloat80_t ); extFloat80_t extF80_mul( extFloat80_t, extFloat80_t ); extFloat80_t extF80_div( extFloat80_t, extFloat80_t ); extFloat80_t extF80_rem( extFloat80_t, extFloat80_t ); extFloat80_t extF80_sqrt( extFloat80_t ); bool extF80_eq( extFloat80_t, extFloat80_t ); bool extF80_le( extFloat80_t, extFloat80_t ); bool extF80_lt( extFloat80_t, extFloat80_t ); bool extF80_eq_signaling( extFloat80_t, extFloat80_t ); bool extF80_le_quiet( extFloat80_t, extFloat80_t ); bool extF80_lt_quiet( extFloat80_t, extFloat80_t ); bool extF80_isSignalingNaN( extFloat80_t ); #endif uint_fast32_t extF80M_to_ui32( const extFloat80_t *, uint_fast8_t, bool ); uint_fast64_t extF80M_to_ui64( const extFloat80_t *, uint_fast8_t, bool ); int_fast32_t extF80M_to_i32( const extFloat80_t *, uint_fast8_t, bool ); int_fast64_t extF80M_to_i64( const extFloat80_t *, uint_fast8_t, bool ); uint_fast32_t extF80M_to_ui32_r_minMag( const extFloat80_t *, bool ); uint_fast64_t extF80M_to_ui64_r_minMag( const extFloat80_t *, bool ); int_fast32_t extF80M_to_i32_r_minMag( const extFloat80_t *, bool ); int_fast64_t extF80M_to_i64_r_minMag( const extFloat80_t *, bool ); float32_t extF80M_to_f32( const extFloat80_t * ); float64_t extF80M_to_f64( const extFloat80_t * ); void extF80M_to_f128M( const extFloat80_t *, float128_t * ); void extF80M_roundToInt( const extFloat80_t *, uint_fast8_t, bool, extFloat80_t * ); void extF80M_add( const extFloat80_t *, const extFloat80_t *, extFloat80_t * ); void extF80M_sub( const extFloat80_t *, const extFloat80_t *, extFloat80_t * ); void extF80M_mul( const extFloat80_t *, const extFloat80_t *, extFloat80_t * ); void extF80M_div( const extFloat80_t *, const extFloat80_t *, extFloat80_t * ); void extF80M_rem( const extFloat80_t *, const extFloat80_t *, extFloat80_t * ); void extF80M_sqrt( const extFloat80_t *, extFloat80_t * ); bool extF80M_eq( const extFloat80_t *, const extFloat80_t * ); bool extF80M_le( const extFloat80_t *, const extFloat80_t * ); bool extF80M_lt( const extFloat80_t *, const extFloat80_t * ); bool extF80M_eq_signaling( const extFloat80_t *, const extFloat80_t * ); bool extF80M_le_quiet( const extFloat80_t *, const extFloat80_t * ); bool extF80M_lt_quiet( const extFloat80_t *, const extFloat80_t * ); bool extF80M_isSignalingNaN( const extFloat80_t * ); /*---------------------------------------------------------------------------- | 128-bit (quadruple-precision) floating-point operations. *----------------------------------------------------------------------------*/ #ifdef SOFTFLOAT_FAST_INT64 uint_fast32_t f128_to_ui32( float128_t, uint_fast8_t, bool ); uint_fast64_t f128_to_ui64( float128_t, uint_fast8_t, bool ); int_fast32_t f128_to_i32( float128_t, uint_fast8_t, bool ); int_fast64_t f128_to_i64( float128_t, uint_fast8_t, bool ); uint_fast32_t f128_to_ui32_r_minMag( float128_t, bool ); uint_fast64_t f128_to_ui64_r_minMag( float128_t, bool ); int_fast32_t f128_to_i32_r_minMag( float128_t, bool ); int_fast64_t f128_to_i64_r_minMag( float128_t, bool ); float32_t f128_to_f32( float128_t ); float64_t f128_to_f64( float128_t ); extFloat80_t f128_to_extF80( float128_t ); float128_t f128_roundToInt( float128_t, uint_fast8_t, bool ); float128_t f128_add( float128_t, float128_t ); float128_t f128_sub( float128_t, float128_t ); float128_t f128_mul( float128_t, float128_t ); float128_t f128_mulAdd( float128_t, float128_t, float128_t ); float128_t f128_div( float128_t, float128_t ); float128_t f128_rem( float128_t, float128_t ); float128_t f128_sqrt( float128_t ); bool f128_eq( float128_t, float128_t ); bool f128_le( float128_t, float128_t ); bool f128_lt( float128_t, float128_t ); bool f128_eq_signaling( float128_t, float128_t ); bool f128_le_quiet( float128_t, float128_t ); bool f128_lt_quiet( float128_t, float128_t ); bool f128_isSignalingNaN( float128_t ); #endif uint_fast32_t f128M_to_ui32( const float128_t *, uint_fast8_t, bool ); uint_fast64_t f128M_to_ui64( const float128_t *, uint_fast8_t, bool ); int_fast32_t f128M_to_i32( const float128_t *, uint_fast8_t, bool ); int_fast64_t f128M_to_i64( const float128_t *, uint_fast8_t, bool ); uint_fast32_t f128M_to_ui32_r_minMag( const float128_t *, bool ); uint_fast64_t f128M_to_ui64_r_minMag( const float128_t *, bool ); int_fast32_t f128M_to_i32_r_minMag( const float128_t *, bool ); int_fast64_t f128M_to_i64_r_minMag( const float128_t *, bool ); float32_t f128M_to_f32( const float128_t * ); float64_t f128M_to_f64( const float128_t * ); void f128M_to_extF80M( const float128_t *, extFloat80_t * ); void f128M_roundToInt( const float128_t *, uint_fast8_t, bool, float128_t * ); void f128M_add( const float128_t *, const float128_t *, float128_t * ); void f128M_sub( const float128_t *, const float128_t *, float128_t * ); void f128M_mul( const float128_t *, const float128_t *, float128_t * ); void f128M_mulAdd( const float128_t *, const float128_t *, const float128_t *, float128_t * ); void f128M_div( const float128_t *, const float128_t *, float128_t * ); void f128M_rem( const float128_t *, const float128_t *, float128_t * ); void f128M_sqrt( const float128_t *, float128_t * ); bool f128M_eq( const float128_t *, const float128_t * ); bool f128M_le( const float128_t *, const float128_t * ); bool f128M_lt( const float128_t *, const float128_t * ); bool f128M_eq_signaling( const float128_t *, const float128_t * ); bool f128M_le_quiet( const float128_t *, const float128_t * ); bool f128M_lt_quiet( const float128_t *, const float128_t * ); bool f128M_isSignalingNaN( const float128_t * ); #endif