/* Generic MTRR (Memory Type Range Register) driver. Copyright (C) 1997-2000 Richard Gooch Copyright (c) 2002 Patrick Mochel This library is free software; you can redistribute it and/or modify it under the terms of the GNU Library General Public License as published by the Free Software Foundation; either version 2 of the License, or (at your option) any later version. This library is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU Library General Public License for more details. You should have received a copy of the GNU Library General Public License along with this library; If not, see . Richard Gooch may be reached by email at rgooch@atnf.csiro.au The postal address is: Richard Gooch, c/o ATNF, P. O. Box 76, Epping, N.S.W., 2121, Australia. Source: "Pentium Pro Family Developer's Manual, Volume 3: Operating System Writer's Guide" (Intel document number 242692), section 11.11.7 This was cleaned and made readable by Patrick Mochel on 6-7 March 2002. Source: Intel Architecture Software Developers Manual, Volume 3: System Programming Guide; Section 9.11. (1997 edition - PPro). */ #include #include #include #include #include #include #include #include #include #include "mtrr.h" /* No blocking mutexes in Xen. Spin instead. */ #define DEFINE_MUTEX(_m) DEFINE_SPINLOCK(_m) #define mutex_lock(_m) spin_lock(_m) #define mutex_unlock(_m) spin_unlock(_m) #define dump_stack() ((void)0) #define get_cpu() smp_processor_id() #define put_cpu() do {} while(0) u32 __read_mostly num_var_ranges = 0; unsigned int *__read_mostly usage_table; static DEFINE_MUTEX(mtrr_mutex); u64 __read_mostly size_or_mask; u64 __read_mostly size_and_mask; const struct mtrr_ops *__read_mostly mtrr_if = NULL; static void set_mtrr(unsigned int reg, unsigned long base, unsigned long size, mtrr_type type); static const char *const mtrr_strings[MTRR_NUM_TYPES] = { "uncachable", /* 0 */ "write-combining", /* 1 */ "?", /* 2 */ "?", /* 3 */ "write-through", /* 4 */ "write-protect", /* 5 */ "write-back", /* 6 */ }; static const char *mtrr_attrib_to_str(int x) { return (x <= 6) ? mtrr_strings[x] : "?"; } /* Returns non-zero if we have the write-combining memory type */ static int have_wrcomb(void) { return (mtrr_if->have_wrcomb ? mtrr_if->have_wrcomb() : 0); } /* This function returns the number of variable MTRRs */ static void __init set_num_var_ranges(void) { unsigned long config = 0; if (use_intel()) { rdmsrl(MSR_MTRRcap, config); } else if (is_cpu(AMD)) config = 2; else if (is_cpu(CENTAUR)) config = 8; num_var_ranges = config & 0xff; } static void __init init_table(void) { int i, max; max = num_var_ranges; if ((usage_table = xmalloc_array(unsigned int, max)) == NULL) { printk(KERN_ERR "mtrr: could not allocate\n"); return; } for (i = 0; i < max; i++) usage_table[i] = 1; } struct set_mtrr_data { atomic_t count; atomic_t gate; unsigned long smp_base; unsigned long smp_size; unsigned int smp_reg; mtrr_type smp_type; }; /* As per the IA32 SDM vol-3: 10.11.8 MTRR Considerations in MP Systems section * MTRRs updates must to be synchronized across all the processors. * This flags avoids multiple cpu synchronization while booting each cpu. * At the boot & resume time, this flag is turned on in mtrr_aps_sync_begin(). * Using this flag the mtrr initialization (and the all cpus sync up) in the * mtrr_ap_init() is avoided while booting each cpu. * After all the cpus have came up, then mtrr_aps_sync_end() synchronizes all * the cpus and updates mtrrs on all of them. Then this flag is turned off. */ int hold_mtrr_updates_on_aps; static void ipi_handler(void *info) /* [SUMMARY] Synchronisation handler. Executed by "other" CPUs. [RETURNS] Nothing. */ { struct set_mtrr_data *data = info; unsigned long flags; local_irq_save(flags); atomic_dec(&data->count); while(!atomic_read(&data->gate)) cpu_relax(); /* The master has cleared me to execute */ if (data->smp_reg == ~0U) /* update all mtrr registers */ /* At the cpu hot-add time this will reinitialize mtrr * registres on the existing cpus. It is ok. */ mtrr_if->set_all(); else /* single mtrr register update */ mtrr_if->set(data->smp_reg, data->smp_base, data->smp_size, data->smp_type); atomic_dec(&data->count); while(atomic_read(&data->gate)) cpu_relax(); atomic_dec(&data->count); local_irq_restore(flags); } static inline int types_compatible(mtrr_type type1, mtrr_type type2) { return type1 == MTRR_TYPE_UNCACHABLE || type2 == MTRR_TYPE_UNCACHABLE || (type1 == MTRR_TYPE_WRTHROUGH && type2 == MTRR_TYPE_WRBACK) || (type1 == MTRR_TYPE_WRBACK && type2 == MTRR_TYPE_WRTHROUGH); } /** * set_mtrr - update mtrrs on all processors * @reg: mtrr in question * @base: mtrr base * @size: mtrr size * @type: mtrr type * * This is kinda tricky, but fortunately, Intel spelled it out for us cleanly: * * 1. Send IPI to do the following: * 2. Disable Interrupts * 3. Wait for all procs to do so * 4. Enter no-fill cache mode * 5. Flush caches * 6. Clear PGE bit * 7. Flush all TLBs * 8. Disable all range registers * 9. Update the MTRRs * 10. Enable all range registers * 11. Flush all TLBs and caches again * 12. Enter normal cache mode and reenable caching * 13. Set PGE * 14. Wait for buddies to catch up * 15. Enable interrupts. * * What does that mean for us? Well, first we set data.count to the number * of CPUs. As each CPU disables interrupts, it'll decrement it once. We wait * until it hits 0 and proceed. We set the data.gate flag and reset data.count. * Meanwhile, they are waiting for that flag to be set. Once it's set, each * CPU goes through the transition of updating MTRRs. The CPU vendors may each do it * differently, so we call mtrr_if->set() callback and let them take care of it. * When they're done, they again decrement data->count and wait for data.gate to * be reset. * When we finish, we wait for data.count to hit 0 and toggle the data.gate flag. * Everyone then enables interrupts and we all continue on. * * Note that the mechanism is the same for UP systems, too; all the SMP stuff * becomes nops. */ static void set_mtrr(unsigned int reg, unsigned long base, unsigned long size, mtrr_type type) { cpumask_t allbutself; unsigned int nr_cpus; struct set_mtrr_data data; unsigned long flags; cpumask_andnot(&allbutself, &cpu_online_map, cpumask_of(smp_processor_id())); nr_cpus = cpumask_weight(&allbutself); data.smp_reg = reg; data.smp_base = base; data.smp_size = size; data.smp_type = type; atomic_set(&data.count, nr_cpus); atomic_set(&data.gate,0); /* Start the ball rolling on other CPUs */ on_selected_cpus(&allbutself, ipi_handler, &data, 0); local_irq_save(flags); while (atomic_read(&data.count)) cpu_relax(); /* ok, reset count and toggle gate */ atomic_set(&data.count, nr_cpus); smp_wmb(); atomic_set(&data.gate,1); /* do our MTRR business */ /* HACK! * We use this same function to initialize the mtrrs on boot. * The state of the boot cpu's mtrrs has been saved, and we want * to replicate across all the APs. * If we're doing that @reg is set to something special... */ if (reg == ~0U) /* update all mtrr registers */ /* at boot or resume time, this will reinitialize the mtrrs on * the bp. It is ok. */ mtrr_if->set_all(); else /* update the single mtrr register */ mtrr_if->set(reg,base,size,type); /* wait for the others */ while (atomic_read(&data.count)) cpu_relax(); atomic_set(&data.count, nr_cpus); smp_wmb(); atomic_set(&data.gate,0); /* * Wait here for everyone to have seen the gate change * So we're the last ones to touch 'data' */ while (atomic_read(&data.count)) cpu_relax(); local_irq_restore(flags); } /** * mtrr_add_page - Add a memory type region * @base: Physical base address of region in pages (in units of 4 kB!) * @size: Physical size of region in pages (4 kB) * @type: Type of MTRR desired * @increment: If this is true do usage counting on the region * * Memory type region registers control the caching on newer Intel and * non Intel processors. This function allows drivers to request an * MTRR is added. The details and hardware specifics of each processor's * implementation are hidden from the caller, but nevertheless the * caller should expect to need to provide a power of two size on an * equivalent power of two boundary. * * If the region cannot be added either because all regions are in use * or the CPU cannot support it a negative value is returned. On success * the register number for this entry is returned, but should be treated * as a cookie only. * * On a multiprocessor machine the changes are made to all processors. * This is required on x86 by the Intel processors. * * The available types are * * %MTRR_TYPE_UNCACHABLE - No caching * * %MTRR_TYPE_WRBACK - Write data back in bursts whenever * * %MTRR_TYPE_WRCOMB - Write data back soon but allow bursts * * %MTRR_TYPE_WRTHROUGH - Cache reads but not writes * * BUGS: Needs a quiet flag for the cases where drivers do not mind * failures and do not wish system log messages to be sent. */ int mtrr_add_page(unsigned long base, unsigned long size, unsigned int type, char increment) { int i, replace, error; mtrr_type ltype; unsigned long lbase, lsize; if (!mtrr_if) return -ENXIO; if ((error = mtrr_if->validate_add_page(base,size,type))) return error; if (type >= MTRR_NUM_TYPES) { printk(KERN_WARNING "mtrr: type: %u invalid\n", type); return -EINVAL; } /* If the type is WC, check that this processor supports it */ if ((type == MTRR_TYPE_WRCOMB) && !have_wrcomb()) { printk(KERN_WARNING "mtrr: your processor doesn't support write-combining\n"); return -EOPNOTSUPP; } if (!size) { printk(KERN_WARNING "mtrr: zero sized request\n"); return -EINVAL; } if ((base | (base + size - 1)) >> (paddr_bits - PAGE_SHIFT)) { printk(KERN_WARNING "mtrr: base or size exceeds the MTRR width\n"); return -EINVAL; } error = -EINVAL; replace = -1; /* Search for existing MTRR */ mutex_lock(&mtrr_mutex); for (i = 0; i < num_var_ranges; ++i) { mtrr_if->get(i, &lbase, &lsize, <ype); if (!lsize || base > lbase + lsize - 1 || base + size - 1 < lbase) continue; /* At this point we know there is some kind of overlap/enclosure */ if (base < lbase || base + size - 1 > lbase + lsize - 1) { if (base <= lbase && base + size - 1 >= lbase + lsize - 1) { /* New region encloses an existing region */ if (type == ltype) { replace = replace == -1 ? i : -2; continue; } else if (types_compatible(type, ltype)) continue; } printk(KERN_WARNING "mtrr: %#lx000,%#lx000 overlaps existing" " %#lx000,%#lx000\n", base, size, lbase, lsize); goto out; } /* New region is enclosed by an existing region */ if (ltype != type) { if (types_compatible(type, ltype)) continue; printk (KERN_WARNING "mtrr: type mismatch for %lx000,%lx000 old: %s new: %s\n", base, size, mtrr_attrib_to_str(ltype), mtrr_attrib_to_str(type)); goto out; } if (increment) ++usage_table[i]; error = i; goto out; } /* Search for an empty MTRR */ i = mtrr_if->get_free_region(base, size, replace); if (i >= 0) { set_mtrr(i, base, size, type); if (likely(replace < 0)) usage_table[i] = 1; else { usage_table[i] = usage_table[replace] + !!increment; if (unlikely(replace != i)) { set_mtrr(replace, 0, 0, 0); usage_table[replace] = 0; } } } else printk(KERN_INFO "mtrr: no more MTRRs available\n"); error = i; out: mutex_unlock(&mtrr_mutex); return error; } static int mtrr_check(unsigned long base, unsigned long size) { if ((base & (PAGE_SIZE - 1)) || (size & (PAGE_SIZE - 1))) { printk(KERN_WARNING "mtrr: size and base must be multiples of 4 kiB\n"); printk(KERN_DEBUG "mtrr: size: %#lx base: %#lx\n", size, base); dump_stack(); return -1; } return 0; } /** * mtrr_add - Add a memory type region * @base: Physical base address of region * @size: Physical size of region * @type: Type of MTRR desired * @increment: If this is true do usage counting on the region * * Memory type region registers control the caching on newer Intel and * non Intel processors. This function allows drivers to request an * MTRR is added. The details and hardware specifics of each processor's * implementation are hidden from the caller, but nevertheless the * caller should expect to need to provide a power of two size on an * equivalent power of two boundary. * * If the region cannot be added either because all regions are in use * or the CPU cannot support it a negative value is returned. On success * the register number for this entry is returned, but should be treated * as a cookie only. * * On a multiprocessor machine the changes are made to all processors. * This is required on x86 by the Intel processors. * * The available types are * * %MTRR_TYPE_UNCACHABLE - No caching * * %MTRR_TYPE_WRBACK - Write data back in bursts whenever * * %MTRR_TYPE_WRCOMB - Write data back soon but allow bursts * * %MTRR_TYPE_WRTHROUGH - Cache reads but not writes * * BUGS: Needs a quiet flag for the cases where drivers do not mind * failures and do not wish system log messages to be sent. */ int __init mtrr_add(unsigned long base, unsigned long size, unsigned int type, char increment) { if (mtrr_check(base, size)) return -EINVAL; return mtrr_add_page(base >> PAGE_SHIFT, size >> PAGE_SHIFT, type, increment); } /** * mtrr_del_page - delete a memory type region * @reg: Register returned by mtrr_add * @base: Physical base address * @size: Size of region * * If register is supplied then base and size are ignored. This is * how drivers should call it. * * Releases an MTRR region. If the usage count drops to zero the * register is freed and the region returns to default state. * On success the register is returned, on failure a negative error * code. */ int mtrr_del_page(int reg, unsigned long base, unsigned long size) { int i, max; mtrr_type ltype; unsigned long lbase, lsize; int error = -EINVAL; if (!mtrr_if) return -ENXIO; max = num_var_ranges; mutex_lock(&mtrr_mutex); if (reg < 0) { /* Search for existing MTRR */ for (i = 0; i < max; ++i) { mtrr_if->get(i, &lbase, &lsize, <ype); if (lbase == base && lsize == size) { reg = i; break; } } if (reg < 0) { printk(KERN_DEBUG "mtrr: no MTRR for %lx000,%lx000 found\n", base, size); goto out; } } if (reg >= max) { printk(KERN_WARNING "mtrr: register: %d too big\n", reg); goto out; } mtrr_if->get(reg, &lbase, &lsize, <ype); if (lsize < 1) { printk(KERN_WARNING "mtrr: MTRR %d not used\n", reg); goto out; } if (usage_table[reg] < 1) { printk(KERN_WARNING "mtrr: reg: %d has count=0\n", reg); goto out; } if (--usage_table[reg] < 1) set_mtrr(reg, 0, 0, 0); error = reg; out: mutex_unlock(&mtrr_mutex); return error; } /** * mtrr_del - delete a memory type region * @reg: Register returned by mtrr_add * @base: Physical base address * @size: Size of region * * If register is supplied then base and size are ignored. This is * how drivers should call it. * * Releases an MTRR region. If the usage count drops to zero the * register is freed and the region returns to default state. * On success the register is returned, on failure a negative error * code. */ int __init mtrr_del(int reg, unsigned long base, unsigned long size) { if (mtrr_check(base, size)) return -EINVAL; return mtrr_del_page(reg, base >> PAGE_SHIFT, size >> PAGE_SHIFT); } /* The suspend/resume methods are only for CPU without MTRR. CPU using generic * MTRR driver doesn't require this */ struct mtrr_value { mtrr_type ltype; unsigned long lbase; unsigned long lsize; }; /** * mtrr_bp_init - initialize mtrrs on the boot CPU * * This needs to be called early; before any of the other CPUs are * initialized (i.e. before smp_init()). * */ void __init mtrr_bp_init(void) { if (cpu_has_mtrr) { mtrr_if = &generic_mtrr_ops; size_or_mask = ~((1ULL << (paddr_bits - PAGE_SHIFT)) - 1); size_and_mask = ~size_or_mask & 0xfffff00000ULL; } if (mtrr_if) { set_num_var_ranges(); init_table(); if (use_intel()) get_mtrr_state(); } } void mtrr_ap_init(void) { if (!mtrr_if || !use_intel() || hold_mtrr_updates_on_aps) return; /* * Ideally we should hold mtrr_mutex here to avoid mtrr entries changed, * but this routine will be called in cpu boot time, holding the lock * breaks it. This routine is called in two cases: 1.very earily time * of software resume, when there absolutely isn't mtrr entry changes; * 2.cpu hotadd time. We let mtrr_add/del_page hold cpuhotplug lock to * prevent mtrr entry changes */ set_mtrr(~0U, 0, 0, 0); } /** * Save current fixed-range MTRR state of the BSP */ void mtrr_save_state(void) { int cpu = get_cpu(); if (cpu == 0) mtrr_save_fixed_ranges(NULL); else on_selected_cpus(cpumask_of(0), mtrr_save_fixed_ranges, NULL, 1); put_cpu(); } void mtrr_aps_sync_begin(void) { if (!use_intel()) return; hold_mtrr_updates_on_aps = 1; } void mtrr_aps_sync_end(void) { if (!use_intel()) return; set_mtrr(~0U, 0, 0, 0); hold_mtrr_updates_on_aps = 0; } void mtrr_bp_restore(void) { if (!use_intel()) return; mtrr_if->set_all(); } static int __init mtrr_init_finialize(void) { if (!mtrr_if) return 0; if (use_intel()) mtrr_state_warn(); return 0; } __initcall(mtrr_init_finialize);