#include #include #include #include #include #include #include #include #include #include #include #include #include #define bt_ioremap(b,l) ((void *)__acpi_map_table(b,l)) #define bt_iounmap(b,l) ((void)0) #define memcpy_fromio memcpy #define alloc_bootmem(l) xmalloc_bytes(l) struct __packed dmi_eps { char anchor[5]; /* "_DMI_" */ u8 checksum; u16 size; u32 address; u16 num_structures; u8 revision; }; struct __packed smbios_eps { char anchor[4]; /* "_SM_" */ u8 checksum; u8 length; u8 major, minor; u16 max_size; u8 revision; u8 _rsrvd_[5]; struct dmi_eps dmi; }; struct __packed smbios3_eps { char anchor[5]; /* "_SM3_" */ u8 checksum; u8 length; u8 major, minor; u8 docrev; u8 revision; u8 _rsrvd_; u32 max_size; u64 address; }; struct dmi_header { u8 type; u8 length; u16 handle; }; enum dmi_entry_type { DMI_ENTRY_BIOS = 0, DMI_ENTRY_SYSTEM, DMI_ENTRY_BASEBOARD, DMI_ENTRY_CHASSIS, DMI_ENTRY_PROCESSOR, DMI_ENTRY_MEM_CONTROLLER, DMI_ENTRY_MEM_MODULE, DMI_ENTRY_CACHE, DMI_ENTRY_PORT_CONNECTOR, DMI_ENTRY_SYSTEM_SLOT, DMI_ENTRY_ONBOARD_DEVICE, DMI_ENTRY_OEMSTRINGS, DMI_ENTRY_SYSCONF, DMI_ENTRY_BIOS_LANG, DMI_ENTRY_GROUP_ASSOC, DMI_ENTRY_SYSTEM_EVENT_LOG, DMI_ENTRY_PHYS_MEM_ARRAY, DMI_ENTRY_MEM_DEVICE, DMI_ENTRY_32_MEM_ERROR, DMI_ENTRY_MEM_ARRAY_MAPPED_ADDR, DMI_ENTRY_MEM_DEV_MAPPED_ADDR, DMI_ENTRY_BUILTIN_POINTING_DEV, DMI_ENTRY_PORTABLE_BATTERY, DMI_ENTRY_SYSTEM_RESET, DMI_ENTRY_HW_SECURITY, DMI_ENTRY_SYSTEM_POWER_CONTROLS, DMI_ENTRY_VOLTAGE_PROBE, DMI_ENTRY_COOLING_DEV, DMI_ENTRY_TEMP_PROBE, DMI_ENTRY_ELECTRICAL_CURRENT_PROBE, DMI_ENTRY_OOB_REMOTE_ACCESS, DMI_ENTRY_BIS_ENTRY, DMI_ENTRY_SYSTEM_BOOT, DMI_ENTRY_MGMT_DEV, DMI_ENTRY_MGMT_DEV_COMPONENT, DMI_ENTRY_MGMT_DEV_THRES, DMI_ENTRY_MEM_CHANNEL, DMI_ENTRY_IPMI_DEV, DMI_ENTRY_SYS_POWER_SUPPLY, DMI_ENTRY_ADDITIONAL, DMI_ENTRY_ONBOARD_DEV_EXT, DMI_ENTRY_MGMT_CONTROLLER_HOST, DMI_ENTRY_INACTIVE = 126, DMI_ENTRY_END_OF_TABLE = 127, }; #undef DMI_DEBUG #ifdef DMI_DEBUG #define dmi_printk(x) printk x #else #define dmi_printk(x) #endif static char * __init dmi_string(struct dmi_header *dm, u8 s) { char *bp=(char *)dm; bp+=dm->length; if(!s) return ""; s--; while(s>0 && *bp) { bp+=strlen(bp); bp++; s--; } return bp; } /* * We have to be cautious here. We have seen BIOSes with DMI pointers * pointing to completely the wrong place for example */ static int __init dmi_table(paddr_t base, u32 len, int num, void (*decode)(struct dmi_header *)) { u8 *buf; struct dmi_header *dm; u8 *data; int i=0; buf = bt_ioremap(base, len); if(buf==NULL) return -1; data = buf; /* * Stop when we have seen all the items the table claimed to have * (SMBIOS < 3.0 only) OR we reach an end-of-table marker (SMBIOS * >= 3.0 only) OR we run off the end of the table (should never * happen but sometimes does on bogus implementations.) */ while((num < 0 || i < num) && data-buf+sizeof(struct dmi_header)<=len) { dm=(struct dmi_header *)data; /* * We want to know the total length (formated area and strings) * before decoding to make sure we won't run off the table in * dmi_decode or dmi_string */ data+=dm->length; while(data-buftype == DMI_ENTRY_END_OF_TABLE) break; data+=2; i++; } bt_iounmap(buf, len); return 0; } static inline bool __init dmi_checksum(const void __iomem *buf, unsigned int len) { u8 sum = 0; const u8 *p = buf; unsigned int a; for (a = 0; a < len; a++) sum += p[a]; return sum == 0; } static u32 __initdata efi_dmi_address; static u32 __initdata efi_dmi_size; static u32 __initdata efi_smbios_address; static u32 __initdata efi_smbios_size; static u64 __initdata efi_smbios3_address; static u32 __initdata efi_smbios3_size; /* * Important: This function gets called while still in EFI * (pseudo-)physical mode. */ void __init dmi_efi_get_table(const void *smbios, const void *smbios3) { const struct smbios_eps *eps = smbios; const struct smbios3_eps *eps3 = smbios3; if (eps3 && memcmp(eps3->anchor, "_SM3_", 5) == 0 && eps3->length >= sizeof(*eps3) && dmi_checksum(eps3, eps3->length)) { efi_smbios3_address = eps3->address; efi_smbios3_size = eps3->max_size; return; } if (eps && memcmp(eps->anchor, "_SM_", 4) == 0 && eps->length >= sizeof(*eps) && dmi_checksum(eps, eps->length)) { efi_smbios_address = (u32)(long)eps; efi_smbios_size = eps->length; if (memcmp(eps->dmi.anchor, "_DMI_", 5) == 0 && dmi_checksum(&eps->dmi, sizeof(eps->dmi))) { efi_dmi_address = eps->dmi.address; efi_dmi_size = eps->dmi.size; } } } const char *__init dmi_get_table(paddr_t *base, u32 *len) { static unsigned int __initdata instance; if (efi_enabled(EFI_BOOT)) { if (efi_smbios3_size && !(instance & 1)) { *base = efi_smbios3_address; *len = efi_smbios3_size; instance |= 1; return "SMBIOSv3"; } if (efi_dmi_size && !(instance & 2)) { *base = efi_dmi_address; *len = efi_dmi_size; instance |= 2; return "DMI"; } if (efi_smbios_size && !(instance & 4)) { *base = efi_smbios_address; *len = efi_smbios_size; instance |= 4; return "SMBIOS"; } } else { char __iomem *p = maddr_to_virt(0xF0000), *q; union { struct dmi_eps dmi; struct smbios3_eps smbios3; } eps; for (q = p; q <= p + 0x10000 - sizeof(eps.dmi); q += 16) { memcpy_fromio(&eps, q, sizeof(eps.dmi)); if (!(instance & 1) && memcmp(eps.dmi.anchor, "_DMI_", 5) == 0 && dmi_checksum(&eps.dmi, sizeof(eps.dmi))) { *base = eps.dmi.address; *len = eps.dmi.size; instance |= 1; return "DMI"; } BUILD_BUG_ON(sizeof(eps.smbios3) <= sizeof(eps.dmi)); if ((instance & 2) || q > p + 0x10000 - sizeof(eps.smbios3)) continue; memcpy_fromio(&eps.dmi + 1, q + sizeof(eps.dmi), sizeof(eps.smbios3) - sizeof(eps.dmi)); if (!memcmp(eps.smbios3.anchor, "_SM3_", 5) && eps.smbios3.length >= sizeof(eps.smbios3) && q <= p + 0x10000 - eps.smbios3.length && dmi_checksum(q, eps.smbios3.length)) { *base = eps.smbios3.address; *len = eps.smbios3.max_size; instance |= 2; return "SMBIOSv3"; } } } return NULL; } typedef union { const struct smbios_eps __iomem *legacy; const struct smbios3_eps __iomem *v3; } smbios_eps_u __attribute__((transparent_union)); static int __init _dmi_iterate(const struct dmi_eps *dmi, const smbios_eps_u smbios, void (*decode)(struct dmi_header *)) { int num; u32 len; paddr_t base; if (!dmi) { num = -1; len = smbios.v3->max_size; base = smbios.v3->address; printk(KERN_INFO "SMBIOS %d.%d present.\n", smbios.v3->major, smbios.v3->minor); dmi_printk((KERN_INFO "SMBIOS v3 table at 0x%"PRIpaddr".\n", base)); } else { num = dmi->num_structures; len = dmi->size; base = dmi->address; /* * DMI version 0.0 means that the real version is taken from * the SMBIOS version, which we may not know at this point. */ if (dmi->revision) printk(KERN_INFO "DMI %d.%d present.\n", dmi->revision >> 4, dmi->revision & 0x0f); else if (!smbios.legacy) printk(KERN_INFO "DMI present.\n"); dmi_printk((KERN_INFO "%d structures occupying %u bytes.\n", num, len)); dmi_printk((KERN_INFO "DMI table at 0x%08X.\n", (u32)base)); } return dmi_table(base, len, num, decode); } static int __init dmi_iterate(void (*decode)(struct dmi_header *)) { struct dmi_eps dmi; struct smbios3_eps smbios3; char __iomem *p, *q; dmi.size = 0; smbios3.length = 0; p = maddr_to_virt(0xF0000); for (q = p; q < p + 0x10000; q += 16) { if (!dmi.size) { memcpy_fromio(&dmi, q, sizeof(dmi)); if (memcmp(dmi.anchor, "_DMI_", 5) || !dmi_checksum(&dmi, sizeof(dmi))) dmi.size = 0; } if (!smbios3.length && q <= p + 0x10000 - sizeof(smbios3)) { memcpy_fromio(&smbios3, q, sizeof(smbios3)); if (memcmp(smbios3.anchor, "_SM3_", 5) || smbios3.length < sizeof(smbios3) || q < p + 0x10000 - smbios3.length || !dmi_checksum(q, smbios3.length)) smbios3.length = 0; } } if (smbios3.length) return _dmi_iterate(NULL, &smbios3, decode); if (dmi.size) return _dmi_iterate(&dmi, NULL, decode); return -1; } static int __init dmi_efi_iterate(void (*decode)(struct dmi_header *)) { int ret = -1; while (efi.smbios3 != EFI_INVALID_TABLE_ADDR) { struct smbios3_eps eps; const struct smbios3_eps __iomem *p; p = bt_ioremap(efi.smbios3, sizeof(eps)); if (!p) break; memcpy_fromio(&eps, p, sizeof(eps)); bt_iounmap(p, sizeof(eps)); if (memcmp(eps.anchor, "_SM3_", 5) || eps.length < sizeof(eps)) break; p = bt_ioremap(efi.smbios3, eps.length); if (!p) break; if (dmi_checksum(p, eps.length)) ret = _dmi_iterate(NULL, p, decode); bt_iounmap(p, eps.length); break; } if (ret != 0 && efi.smbios != EFI_INVALID_TABLE_ADDR) { struct smbios_eps eps; const struct smbios_eps __iomem *p; p = bt_ioremap(efi.smbios, sizeof(eps)); if (!p) return -1; memcpy_fromio(&eps, p, sizeof(eps)); bt_iounmap(p, sizeof(eps)); if (memcmp(eps.anchor, "_SM_", 4) || eps.length < sizeof(eps)) return -1; p = bt_ioremap(efi.smbios, eps.length); if (!p) return -1; if (dmi_checksum(p, eps.length) && memcmp(eps.dmi.anchor, "_DMI_", 5) == 0 && dmi_checksum(&eps.dmi, sizeof(eps.dmi))) { printk(KERN_INFO "SMBIOS %d.%d present.\n", eps.major, eps.minor); ret = _dmi_iterate(&eps.dmi, p, decode); } bt_iounmap(p, eps.length); } return ret; } static char *__initdata dmi_ident[DMI_STRING_MAX]; /* * Save a DMI string */ static void __init dmi_save_ident(struct dmi_header *dm, int slot, int string) { char *d = (char*)dm; char *p = dmi_string(dm, d[string]); if(p==NULL || *p == 0) return; if (dmi_ident[slot]) return; dmi_ident[slot] = alloc_bootmem(strlen(p)+1); if(dmi_ident[slot]) strlcpy(dmi_ident[slot], p, strlen(p)+1); else printk(KERN_ERR "dmi_save_ident: out of memory.\n"); } /* * Ugly compatibility crap. */ #define dmi_blacklist dmi_system_id #define NO_MATCH { DMI_NONE, NULL} #define MATCH DMI_MATCH /* * Toshiba keyboard likes to repeat keys when they are not repeated. */ static __init int broken_toshiba_keyboard(struct dmi_blacklist *d) { printk(KERN_WARNING "Toshiba with broken keyboard detected. If your keyboard sometimes generates 3 keypresses instead of one, see http://davyd.ucc.asn.au/projects/toshiba/README\n"); return 0; } static int __init ich10_bios_quirk(struct dmi_system_id *d) { u32 port, smictl; if ( pci_conf_read16(0, 0, 0x1f, 0, PCI_VENDOR_ID) != 0x8086 ) return 0; switch ( pci_conf_read16(0, 0, 0x1f, 0, PCI_DEVICE_ID) ) { case 0x3a14: case 0x3a16: case 0x3a18: case 0x3a1a: port = (pci_conf_read16(0, 0, 0x1f, 0, 0x40) & 0xff80) + 0x30; smictl = inl(port); /* turn off LEGACY_USB{,2}_EN if enabled */ if ( smictl & 0x20008 ) outl(smictl & ~0x20008, port); break; } return 0; } #ifdef CONFIG_ACPI_SLEEP static __init int reset_videomode_after_s3(struct dmi_blacklist *d) { /* See acpi_wakeup.S */ acpi_video_flags |= 2; return 0; } #endif static __init int dmi_disable_acpi(struct dmi_blacklist *d) { if (!acpi_force) { printk(KERN_NOTICE "%s detected: acpi off\n",d->ident); disable_acpi(); } else { printk(KERN_NOTICE "Warning: DMI blacklist says broken, but acpi forced\n"); } return 0; } /* * Limit ACPI to CPU enumeration for HT */ static __init int force_acpi_ht(struct dmi_blacklist *d) { if (!acpi_force) { printk(KERN_NOTICE "%s detected: force use of acpi=ht\n", d->ident); disable_acpi(); acpi_ht = 1; } else { printk(KERN_NOTICE "Warning: acpi=force overrules DMI blacklist: acpi=ht\n"); } return 0; } /* * Process the DMI blacklists */ /* * This will be expanded over time to force things like the APM * interrupt mask settings according to the laptop */ static __initdata struct dmi_blacklist dmi_blacklist[]={ { broken_toshiba_keyboard, "Toshiba Satellite 4030cdt", { /* Keyboard generates spurious repeats */ MATCH(DMI_PRODUCT_NAME, "S4030CDT/4.3"), NO_MATCH, NO_MATCH, NO_MATCH } }, #ifdef CONFIG_ACPI_SLEEP { reset_videomode_after_s3, "Toshiba Satellite 4030cdt", { /* Reset video mode after returning from ACPI S3 sleep */ MATCH(DMI_PRODUCT_NAME, "S4030CDT/4.3"), NO_MATCH, NO_MATCH, NO_MATCH } }, #endif { ich10_bios_quirk, "Intel board & BIOS", /* * BIOS leaves legacy USB emulation enabled while * SMM can't properly handle it. */ { MATCH(DMI_BOARD_VENDOR, "Intel Corp"), MATCH(DMI_BIOS_VENDOR, "Intel Corp"), NO_MATCH, NO_MATCH } }, /* * If your system is blacklisted here, but you find that acpi=force * works for you, please contact acpi-devel@sourceforge.net */ /* * Boxes that need ACPI disabled */ { dmi_disable_acpi, "IBM Thinkpad", { MATCH(DMI_BOARD_VENDOR, "IBM"), MATCH(DMI_BOARD_NAME, "2629H1G"), NO_MATCH, NO_MATCH }}, /* * Boxes that need acpi=ht */ { force_acpi_ht, "FSC Primergy T850", { MATCH(DMI_SYS_VENDOR, "FUJITSU SIEMENS"), MATCH(DMI_PRODUCT_NAME, "PRIMERGY T850"), NO_MATCH, NO_MATCH }}, { force_acpi_ht, "DELL GX240", { MATCH(DMI_BOARD_VENDOR, "Dell Computer Corporation"), MATCH(DMI_BOARD_NAME, "OptiPlex GX240"), NO_MATCH, NO_MATCH }}, { force_acpi_ht, "HP VISUALIZE NT Workstation", { MATCH(DMI_BOARD_VENDOR, "Hewlett-Packard"), MATCH(DMI_PRODUCT_NAME, "HP VISUALIZE NT Workstation"), NO_MATCH, NO_MATCH }}, { force_acpi_ht, "Compaq Workstation W8000", { MATCH(DMI_SYS_VENDOR, "Compaq"), MATCH(DMI_PRODUCT_NAME, "Workstation W8000"), NO_MATCH, NO_MATCH }}, { force_acpi_ht, "ASUS P4B266", { MATCH(DMI_BOARD_VENDOR, "ASUSTeK Computer INC."), MATCH(DMI_BOARD_NAME, "P4B266"), NO_MATCH, NO_MATCH }}, { force_acpi_ht, "ASUS P2B-DS", { MATCH(DMI_BOARD_VENDOR, "ASUSTeK Computer INC."), MATCH(DMI_BOARD_NAME, "P2B-DS"), NO_MATCH, NO_MATCH }}, { force_acpi_ht, "ASUS CUR-DLS", { MATCH(DMI_BOARD_VENDOR, "ASUSTeK Computer INC."), MATCH(DMI_BOARD_NAME, "CUR-DLS"), NO_MATCH, NO_MATCH }}, { force_acpi_ht, "ABIT i440BX-W83977", { MATCH(DMI_BOARD_VENDOR, "ABIT "), MATCH(DMI_BOARD_NAME, "i440BX-W83977 (BP6)"), NO_MATCH, NO_MATCH }}, { force_acpi_ht, "IBM Bladecenter", { MATCH(DMI_BOARD_VENDOR, "IBM"), MATCH(DMI_BOARD_NAME, "IBM eServer BladeCenter HS20"), NO_MATCH, NO_MATCH }}, { force_acpi_ht, "IBM eServer xSeries 360", { MATCH(DMI_BOARD_VENDOR, "IBM"), MATCH(DMI_BOARD_NAME, "eServer xSeries 360"), NO_MATCH, NO_MATCH }}, { force_acpi_ht, "IBM eserver xSeries 330", { MATCH(DMI_BOARD_VENDOR, "IBM"), MATCH(DMI_BOARD_NAME, "eserver xSeries 330"), NO_MATCH, NO_MATCH }}, { force_acpi_ht, "IBM eserver xSeries 440", { MATCH(DMI_BOARD_VENDOR, "IBM"), MATCH(DMI_PRODUCT_NAME, "eserver xSeries 440"), NO_MATCH, NO_MATCH }}, { NULL, } }; /* * Process a DMI table entry. Right now all we care about are the BIOS * and machine entries. For 2.5 we should pull the smbus controller info * out of here. */ static void __init dmi_decode(struct dmi_header *dm) { #ifdef DMI_DEBUG u8 *data = (u8 *)dm; #endif switch(dm->type) { case DMI_ENTRY_BIOS: dmi_printk(("BIOS Vendor: %s\n", dmi_string(dm, data[4]))); dmi_save_ident(dm, DMI_BIOS_VENDOR, 4); dmi_printk(("BIOS Version: %s\n", dmi_string(dm, data[5]))); dmi_save_ident(dm, DMI_BIOS_VERSION, 5); dmi_printk(("BIOS Release: %s\n", dmi_string(dm, data[8]))); dmi_save_ident(dm, DMI_BIOS_DATE, 8); break; case DMI_ENTRY_SYSTEM: dmi_printk(("System Vendor: %s\n", dmi_string(dm, data[4]))); dmi_save_ident(dm, DMI_SYS_VENDOR, 4); dmi_printk(("Product Name: %s\n", dmi_string(dm, data[5]))); dmi_save_ident(dm, DMI_PRODUCT_NAME, 5); dmi_printk(("Version: %s\n", dmi_string(dm, data[6]))); dmi_save_ident(dm, DMI_PRODUCT_VERSION, 6); dmi_printk(("Serial Number: %s\n", dmi_string(dm, data[7]))); break; case DMI_ENTRY_BASEBOARD: dmi_printk(("Board Vendor: %s\n", dmi_string(dm, data[4]))); dmi_save_ident(dm, DMI_BOARD_VENDOR, 4); dmi_printk(("Board Name: %s\n", dmi_string(dm, data[5]))); dmi_save_ident(dm, DMI_BOARD_NAME, 5); dmi_printk(("Board Version: %s\n", dmi_string(dm, data[6]))); dmi_save_ident(dm, DMI_BOARD_VERSION, 6); break; } } void __init dmi_scan_machine(void) { if ((!efi_enabled(EFI_BOOT) ? dmi_iterate(dmi_decode) : dmi_efi_iterate(dmi_decode)) == 0) dmi_check_system(dmi_blacklist); else printk(KERN_INFO "DMI not present.\n"); } /** * dmi_check_system - check system DMI data * @list: array of dmi_system_id structures to match against * * Walk the blacklist table running matching functions until someone * returns non zero or we hit the end. Callback function is called for * each successfull match. Returns the number of matches. */ int __init dmi_check_system(struct dmi_system_id *list) { int i, count = 0; struct dmi_system_id *d = list; while (d->ident) { for (i = 0; i < ARRAY_SIZE(d->matches); i++) { int s = d->matches[i].slot; if (s == DMI_NONE) continue; if (dmi_ident[s] && strstr(dmi_ident[s], d->matches[i].substr)) continue; /* No match */ goto fail; } if (d->callback && d->callback(d)) break; count++; fail: d++; } return count; } /** * dmi_get_date - parse a DMI date * @field: data index (see enum dmi_field) * @yearp: optional out parameter for the year * @monthp: optional out parameter for the month * @dayp: optional out parameter for the day * * The date field is assumed to be in the form resembling * [mm[/dd]]/yy[yy] and the result is stored in the out * parameters any or all of which can be omitted. * * If the field doesn't exist, all out parameters are set to zero * and false is returned. Otherwise, true is returned with any * invalid part of date set to zero. * * On return, year, month and day are guaranteed to be in the * range of [0,9999], [0,12] and [0,31] respectively. */ bool __init dmi_get_date(int field, int *yearp, int *monthp, int *dayp) { int year = 0, month = 0, day = 0; bool exists; const char *s, *e, *y; s = field < DMI_STRING_MAX ? dmi_ident[field] : NULL; exists = !!s; if (!exists) goto out; /* * Determine year first. We assume the date string resembles * mm/dd/yy[yy] but the original code extracted only the year * from the end. Keep the behavior in the spirit of no * surprises. */ y = strrchr(s, '/'); if (!y) goto out; y++; year = simple_strtoul(y, &e, 10); if (y != e && year < 100) { /* 2-digit year */ year += 1900; if (year < 1996) /* no dates < spec 1.0 */ year += 100; } if (year > 9999) /* year should fit in %04d */ year = 0; /* parse the mm and dd */ month = simple_strtoul(s, &e, 10); if (s == e || *e != '/' || !month || month > 12) { month = 0; goto out; } s = e + 1; day = simple_strtoul(s, &e, 10); if (s == y || s == e || *e != '/' || day > 31) day = 0; out: if (yearp) *yearp = year; if (monthp) *monthp = month; if (dayp) *dayp = day; return exists; } void __init dmi_end_boot(void) { unsigned int i; for ( i = 0; i < DMI_STRING_MAX; ++i ) xfree(dmi_ident[i]); }