/** * @file op_model_p4.c * P4 model-specific MSR operations * * @remark Copyright 2002 OProfile authors * @remark Read the file COPYING * * @author Graydon Hoare */ #include #include #include #include #include #include #include #include #include "op_x86_model.h" #include "op_counter.h" #define NUM_EVENTS 39 #define NUM_COUNTERS_NON_HT 8 #define NUM_ESCRS_NON_HT 45 #define NUM_CCCRS_NON_HT 18 #define NUM_CONTROLS_NON_HT (NUM_ESCRS_NON_HT + NUM_CCCRS_NON_HT) #define NUM_COUNTERS_HT2 4 #define NUM_ESCRS_HT2 23 #define NUM_CCCRS_HT2 9 #define NUM_CONTROLS_HT2 (NUM_ESCRS_HT2 + NUM_CCCRS_HT2) static unsigned int num_counters = NUM_COUNTERS_NON_HT; /* this has to be checked dynamically since the hyper-threadedness of a chip is discovered at kernel boot-time. */ static inline void setup_num_counters(void) { if (boot_cpu_data.x86_num_siblings == 2) /* XXX */ num_counters = NUM_COUNTERS_HT2; } static int inline addr_increment(void) { return boot_cpu_data.x86_num_siblings == 2 ? 2 : 1; } /* tables to simulate simplified hardware view of p4 registers */ struct p4_counter_binding { int virt_counter; int counter_address; int cccr_address; }; struct p4_event_binding { int escr_select; /* value to put in CCCR */ int event_select; /* value to put in ESCR */ struct { int virt_counter; /* for this counter... */ int escr_address; /* use this ESCR */ } bindings[2]; }; /* nb: these CTR_* defines are a duplicate of defines in event/i386.p4*events. */ #define CTR_BPU_0 (1 << 0) #define CTR_MS_0 (1 << 1) #define CTR_FLAME_0 (1 << 2) #define CTR_IQ_4 (1 << 3) #define CTR_BPU_2 (1 << 4) #define CTR_MS_2 (1 << 5) #define CTR_FLAME_2 (1 << 6) #define CTR_IQ_5 (1 << 7) static struct p4_counter_binding p4_counters [NUM_COUNTERS_NON_HT] = { { CTR_BPU_0, MSR_P4_BPU_PERFCTR0, MSR_P4_BPU_CCCR0 }, { CTR_MS_0, MSR_P4_MS_PERFCTR0, MSR_P4_MS_CCCR0 }, { CTR_FLAME_0, MSR_P4_FLAME_PERFCTR0, MSR_P4_FLAME_CCCR0 }, { CTR_IQ_4, MSR_P4_IQ_PERFCTR4, MSR_P4_IQ_CCCR4 }, { CTR_BPU_2, MSR_P4_BPU_PERFCTR2, MSR_P4_BPU_CCCR2 }, { CTR_MS_2, MSR_P4_MS_PERFCTR2, MSR_P4_MS_CCCR2 }, { CTR_FLAME_2, MSR_P4_FLAME_PERFCTR2, MSR_P4_FLAME_CCCR2 }, { CTR_IQ_5, MSR_P4_IQ_PERFCTR5, MSR_P4_IQ_CCCR5 } }; #define NUM_UNUSED_CCCRS NUM_CCCRS_NON_HT - NUM_COUNTERS_NON_HT /* All cccr we don't use. */ static int p4_unused_cccr[NUM_UNUSED_CCCRS] = { MSR_P4_BPU_CCCR1, MSR_P4_BPU_CCCR3, MSR_P4_MS_CCCR1, MSR_P4_MS_CCCR3, MSR_P4_FLAME_CCCR1, MSR_P4_FLAME_CCCR3, MSR_P4_IQ_CCCR0, MSR_P4_IQ_CCCR1, MSR_P4_IQ_CCCR2, MSR_P4_IQ_CCCR3 }; /* p4 event codes in libop/op_event.h are indices into this table. */ static const struct p4_event_binding p4_events[NUM_EVENTS] = { { /* BRANCH_RETIRED */ 0x05, 0x06, { {CTR_IQ_4, MSR_P4_CRU_ESCR2}, {CTR_IQ_5, MSR_P4_CRU_ESCR3} } }, { /* MISPRED_BRANCH_RETIRED */ 0x04, 0x03, { { CTR_IQ_4, MSR_P4_CRU_ESCR0}, { CTR_IQ_5, MSR_P4_CRU_ESCR1} } }, { /* TC_DELIVER_MODE */ 0x01, 0x01, { { CTR_MS_0, MSR_P4_TC_ESCR0}, { CTR_MS_2, MSR_P4_TC_ESCR1} } }, { /* BPU_FETCH_REQUEST */ 0x00, 0x03, { { CTR_BPU_0, MSR_P4_BPU_ESCR0}, { CTR_BPU_2, MSR_P4_BPU_ESCR1} } }, { /* ITLB_REFERENCE */ 0x03, 0x18, { { CTR_BPU_0, MSR_P4_ITLB_ESCR0}, { CTR_BPU_2, MSR_P4_ITLB_ESCR1} } }, { /* MEMORY_CANCEL */ 0x05, 0x02, { { CTR_FLAME_0, MSR_P4_DAC_ESCR0}, { CTR_FLAME_2, MSR_P4_DAC_ESCR1} } }, { /* MEMORY_COMPLETE */ 0x02, 0x08, { { CTR_FLAME_0, MSR_P4_SAAT_ESCR0}, { CTR_FLAME_2, MSR_P4_SAAT_ESCR1} } }, { /* LOAD_PORT_REPLAY */ 0x02, 0x04, { { CTR_FLAME_0, MSR_P4_SAAT_ESCR0}, { CTR_FLAME_2, MSR_P4_SAAT_ESCR1} } }, { /* STORE_PORT_REPLAY */ 0x02, 0x05, { { CTR_FLAME_0, MSR_P4_SAAT_ESCR0}, { CTR_FLAME_2, MSR_P4_SAAT_ESCR1} } }, { /* MOB_LOAD_REPLAY */ 0x02, 0x03, { { CTR_BPU_0, MSR_P4_MOB_ESCR0}, { CTR_BPU_2, MSR_P4_MOB_ESCR1} } }, { /* PAGE_WALK_TYPE */ 0x04, 0x01, { { CTR_BPU_0, MSR_P4_PMH_ESCR0}, { CTR_BPU_2, MSR_P4_PMH_ESCR1} } }, { /* BSQ_CACHE_REFERENCE */ 0x07, 0x0c, { { CTR_BPU_0, MSR_P4_BSU_ESCR0}, { CTR_BPU_2, MSR_P4_BSU_ESCR1} } }, { /* IOQ_ALLOCATION */ 0x06, 0x03, { { CTR_BPU_0, MSR_P4_FSB_ESCR0}, { 0, 0 } } }, { /* IOQ_ACTIVE_ENTRIES */ 0x06, 0x1a, { { CTR_BPU_2, MSR_P4_FSB_ESCR1}, { 0, 0 } } }, { /* FSB_DATA_ACTIVITY */ 0x06, 0x17, { { CTR_BPU_0, MSR_P4_FSB_ESCR0}, { CTR_BPU_2, MSR_P4_FSB_ESCR1} } }, { /* BSQ_ALLOCATION */ 0x07, 0x05, { { CTR_BPU_0, MSR_P4_BSU_ESCR0}, { 0, 0 } } }, { /* BSQ_ACTIVE_ENTRIES */ 0x07, 0x06, { { CTR_BPU_2, MSR_P4_BSU_ESCR1 /* guess */}, { 0, 0 } } }, { /* X87_ASSIST */ 0x05, 0x03, { { CTR_IQ_4, MSR_P4_CRU_ESCR2}, { CTR_IQ_5, MSR_P4_CRU_ESCR3} } }, { /* SSE_INPUT_ASSIST */ 0x01, 0x34, { { CTR_FLAME_0, MSR_P4_FIRM_ESCR0}, { CTR_FLAME_2, MSR_P4_FIRM_ESCR1} } }, { /* PACKED_SP_UOP */ 0x01, 0x08, { { CTR_FLAME_0, MSR_P4_FIRM_ESCR0}, { CTR_FLAME_2, MSR_P4_FIRM_ESCR1} } }, { /* PACKED_DP_UOP */ 0x01, 0x0c, { { CTR_FLAME_0, MSR_P4_FIRM_ESCR0}, { CTR_FLAME_2, MSR_P4_FIRM_ESCR1} } }, { /* SCALAR_SP_UOP */ 0x01, 0x0a, { { CTR_FLAME_0, MSR_P4_FIRM_ESCR0}, { CTR_FLAME_2, MSR_P4_FIRM_ESCR1} } }, { /* SCALAR_DP_UOP */ 0x01, 0x0e, { { CTR_FLAME_0, MSR_P4_FIRM_ESCR0}, { CTR_FLAME_2, MSR_P4_FIRM_ESCR1} } }, { /* 64BIT_MMX_UOP */ 0x01, 0x02, { { CTR_FLAME_0, MSR_P4_FIRM_ESCR0}, { CTR_FLAME_2, MSR_P4_FIRM_ESCR1} } }, { /* 128BIT_MMX_UOP */ 0x01, 0x1a, { { CTR_FLAME_0, MSR_P4_FIRM_ESCR0}, { CTR_FLAME_2, MSR_P4_FIRM_ESCR1} } }, { /* X87_FP_UOP */ 0x01, 0x04, { { CTR_FLAME_0, MSR_P4_FIRM_ESCR0}, { CTR_FLAME_2, MSR_P4_FIRM_ESCR1} } }, { /* X87_SIMD_MOVES_UOP */ 0x01, 0x2e, { { CTR_FLAME_0, MSR_P4_FIRM_ESCR0}, { CTR_FLAME_2, MSR_P4_FIRM_ESCR1} } }, { /* MACHINE_CLEAR */ 0x05, 0x02, { { CTR_IQ_4, MSR_P4_CRU_ESCR2}, { CTR_IQ_5, MSR_P4_CRU_ESCR3} } }, { /* GLOBAL_POWER_EVENTS */ 0x06, 0x13 /* older manual says 0x05, newer 0x13 */, { { CTR_BPU_0, MSR_P4_FSB_ESCR0}, { CTR_BPU_2, MSR_P4_FSB_ESCR1} } }, { /* TC_MS_XFER */ 0x00, 0x05, { { CTR_MS_0, MSR_P4_MS_ESCR0}, { CTR_MS_2, MSR_P4_MS_ESCR1} } }, { /* UOP_QUEUE_WRITES */ 0x00, 0x09, { { CTR_MS_0, MSR_P4_MS_ESCR0}, { CTR_MS_2, MSR_P4_MS_ESCR1} } }, { /* FRONT_END_EVENT */ 0x05, 0x08, { { CTR_IQ_4, MSR_P4_CRU_ESCR2}, { CTR_IQ_5, MSR_P4_CRU_ESCR3} } }, { /* EXECUTION_EVENT */ 0x05, 0x0c, { { CTR_IQ_4, MSR_P4_CRU_ESCR2}, { CTR_IQ_5, MSR_P4_CRU_ESCR3} } }, { /* REPLAY_EVENT */ 0x05, 0x09, { { CTR_IQ_4, MSR_P4_CRU_ESCR2}, { CTR_IQ_5, MSR_P4_CRU_ESCR3} } }, { /* INSTR_RETIRED */ 0x04, 0x02, { { CTR_IQ_4, MSR_P4_CRU_ESCR0}, { CTR_IQ_5, MSR_P4_CRU_ESCR1} } }, { /* UOPS_RETIRED */ 0x04, 0x01, { { CTR_IQ_4, MSR_P4_CRU_ESCR0}, { CTR_IQ_5, MSR_P4_CRU_ESCR1} } }, { /* UOP_TYPE */ 0x02, 0x02, { { CTR_IQ_4, MSR_P4_RAT_ESCR0}, { CTR_IQ_5, MSR_P4_RAT_ESCR1} } }, { /* RETIRED_MISPRED_BRANCH_TYPE */ 0x02, 0x05, { { CTR_MS_0, MSR_P4_TBPU_ESCR0}, { CTR_MS_2, MSR_P4_TBPU_ESCR1} } }, { /* RETIRED_BRANCH_TYPE */ 0x02, 0x04, { { CTR_MS_0, MSR_P4_TBPU_ESCR0}, { CTR_MS_2, MSR_P4_TBPU_ESCR1} } } }; #define MISC_PMC_ENABLED_P(x) ((x) & 1ULL << 7) #define ESCR_RESERVED_BITS 0x80000003ULL #define ESCR_CLEAR(escr) ((escr) &= ESCR_RESERVED_BITS) #define ESCR_SET_USR_0(escr, usr) ((escr) |= (((usr) & 1ULL) << 2)) #define ESCR_SET_OS_0(escr, os) ((escr) |= (((os) & 1ULL) << 3)) #define ESCR_SET_USR_1(escr, usr) ((escr) |= (((usr) & 1ULL))) #define ESCR_SET_OS_1(escr, os) ((escr) |= (((os) & 1ULL) << 1)) #define ESCR_SET_EVENT_SELECT(escr, sel) ((escr) |= (((sel) & 0x3fULL) << 25)) #define ESCR_SET_EVENT_MASK(escr, mask) ((escr) |= (((mask) & 0xffffULL) << 9)) #define ESCR_READ(escr,ev,i) do {rdmsrl(ev->bindings[(i)].escr_address, (escr));} while (0) #define ESCR_WRITE(escr,ev,i) do {wrmsrl(ev->bindings[(i)].escr_address, (escr));} while (0) #define CCCR_RESERVED_BITS 0x38030FFFULL #define CCCR_CLEAR(cccr) ((cccr) &= CCCR_RESERVED_BITS) #define CCCR_SET_REQUIRED_BITS(cccr) ((cccr) |= 0x00030000ULL) #define CCCR_SET_ESCR_SELECT(cccr, sel) ((cccr) |= (((sel) & 0x07ULL) << 13)) #define CCCR_SET_PMI_OVF_0(cccr) ((cccr) |= (1ULL<<26)) #define CCCR_SET_PMI_OVF_1(cccr) ((cccr) |= (1ULL<<27)) #define CCCR_SET_ENABLE(cccr) ((cccr) |= (1ULL<<12)) #define CCCR_SET_DISABLE(cccr) ((cccr) &= ~(1ULL<<12)) #define CCCR_READ(msr_content, i) do {rdmsrl(p4_counters[(i)].cccr_address, (msr_content));} while (0) #define CCCR_WRITE(msr_content, i) do {wrmsrl(p4_counters[(i)].cccr_address, (msr_content));} while (0) #define CCCR_OVF_P(cccr) ((cccr) & (1ULL<<31)) #define CCCR_CLEAR_OVF(cccr) ((cccr) &= (~(1ULL<<31))) #define CTR_READ(msr_content,i) do {rdmsrl(p4_counters[(i)].counter_address, (msr_content));} while (0) #define CTR_WRITE(msr_content,i) do {wrmsrl(p4_counters[(i)].counter_address, -(msr_content));} while (0) #define CTR_OVERFLOW_P(ctr) (!((ctr) & 0x80000000ULL)) /* this assigns a "stagger" to the current CPU, which is used throughout the code in this module as an extra array offset, to select the "even" or "odd" part of all the divided resources. */ static unsigned int get_stagger(void) { int cpu = smp_processor_id(); return (cpu != cpumask_first(per_cpu(cpu_sibling_mask, cpu))); } /* finally, mediate access to a real hardware counter by passing a "virtual" counter numer to this macro, along with your stagger setting. */ #define VIRT_CTR(stagger, i) ((i) + ((num_counters) * (stagger))) static unsigned long reset_value[NUM_COUNTERS_NON_HT]; static void p4_fill_in_addresses(struct op_msrs * const msrs) { unsigned int i; unsigned int addr, stag; setup_num_counters(); stag = get_stagger(); /* the counter registers we pay attention to */ for (i = 0; i < num_counters; ++i) { msrs->counters[i].addr = p4_counters[VIRT_CTR(stag, i)].counter_address; } /* FIXME: bad feeling, we don't save the 10 counters we don't use. */ /* 18 CCCR registers */ for (i = 0, addr = MSR_P4_BPU_CCCR0 + stag; addr <= MSR_P4_IQ_CCCR5; ++i, addr += addr_increment()) { msrs->controls[i].addr = addr; } /* 43 ESCR registers in three or four discontiguous group */ for (addr = MSR_P4_BSU_ESCR0 + stag; addr < MSR_P4_IQ_ESCR0; ++i, addr += addr_increment()) { msrs->controls[i].addr = addr; } /* no IQ_ESCR0/1 on some models, we save a seconde time BSU_ESCR0/1 * to avoid special case in nmi_{save|restore}_registers() */ if (boot_cpu_data.x86_model >= 0x3) { for (addr = MSR_P4_BSU_ESCR0 + stag; addr <= MSR_P4_BSU_ESCR1; ++i, addr += addr_increment()) { msrs->controls[i].addr = addr; } } else { for (addr = MSR_P4_IQ_ESCR0 + stag; addr <= MSR_P4_IQ_ESCR1; ++i, addr += addr_increment()) { msrs->controls[i].addr = addr; } } for (addr = MSR_P4_RAT_ESCR0 + stag; addr <= MSR_P4_SSU_ESCR0; ++i, addr += addr_increment()) { msrs->controls[i].addr = addr; } for (addr = MSR_P4_MS_ESCR0 + stag; addr <= MSR_P4_TC_ESCR1; ++i, addr += addr_increment()) { msrs->controls[i].addr = addr; } for (addr = MSR_P4_IX_ESCR0 + stag; addr <= MSR_P4_CRU_ESCR3; ++i, addr += addr_increment()) { msrs->controls[i].addr = addr; } /* there are 2 remaining non-contiguously located ESCRs */ if (num_counters == NUM_COUNTERS_NON_HT) { /* standard non-HT CPUs handle both remaining ESCRs*/ msrs->controls[i++].addr = MSR_P4_CRU_ESCR5; msrs->controls[i++].addr = MSR_P4_CRU_ESCR4; } else if (stag == 0) { /* HT CPUs give the first remainder to the even thread, as the 32nd control register */ msrs->controls[i++].addr = MSR_P4_CRU_ESCR4; } else { /* and two copies of the second to the odd thread, for the 22st and 23nd control registers */ msrs->controls[i++].addr = MSR_P4_CRU_ESCR5; msrs->controls[i++].addr = MSR_P4_CRU_ESCR5; } } static void pmc_setup_one_p4_counter(unsigned int ctr) { int i; int const maxbind = 2; uint64_t cccr = 0; uint64_t escr = 0; unsigned int counter_bit; const struct p4_event_binding *ev = NULL; unsigned int stag; stag = get_stagger(); /* convert from counter *number* to counter *bit* */ counter_bit = 1 << VIRT_CTR(stag, ctr); /* find our event binding structure. */ if (counter_config[ctr].event <= 0 || counter_config[ctr].event > NUM_EVENTS) { printk(KERN_ERR "oprofile: P4 event code %#lx out of range\n", counter_config[ctr].event); return; } ev = &(p4_events[counter_config[ctr].event - 1]); for (i = 0; i < maxbind; i++) { if (ev->bindings[i].virt_counter & counter_bit) { /* modify ESCR */ ESCR_READ(escr, ev, i); ESCR_CLEAR(escr); if (stag == 0) { ESCR_SET_USR_0(escr, counter_config[ctr].user); ESCR_SET_OS_0(escr, counter_config[ctr].kernel); } else { ESCR_SET_USR_1(escr, counter_config[ctr].user); ESCR_SET_OS_1(escr, counter_config[ctr].kernel); } ESCR_SET_EVENT_SELECT(escr, ev->event_select); ESCR_SET_EVENT_MASK(escr, counter_config[ctr].unit_mask); ESCR_WRITE(escr, ev, i); /* modify CCCR */ CCCR_READ(cccr, VIRT_CTR(stag, ctr)); CCCR_CLEAR(cccr); CCCR_SET_REQUIRED_BITS(cccr); CCCR_SET_ESCR_SELECT(cccr, ev->escr_select); if (stag == 0) { CCCR_SET_PMI_OVF_0(cccr); } else { CCCR_SET_PMI_OVF_1(cccr); } CCCR_WRITE(cccr, VIRT_CTR(stag, ctr)); return; } } printk(KERN_ERR "oprofile: P4 event code %#lx no binding, stag %d ctr %d\n", counter_config[ctr].event, stag, ctr); } static void p4_setup_ctrs(struct op_msrs const * const msrs) { unsigned int i; uint64_t msr_content; unsigned int addr; unsigned int stag; stag = get_stagger(); rdmsrl(MSR_IA32_MISC_ENABLE, msr_content); if (! MISC_PMC_ENABLED_P(msr_content)) { printk(KERN_ERR "oprofile: P4 PMC not available\n"); return; } /* clear the cccrs we will use */ for (i = 0 ; i < num_counters ; i++) { rdmsrl(p4_counters[VIRT_CTR(stag, i)].cccr_address, msr_content); CCCR_CLEAR(msr_content); CCCR_SET_REQUIRED_BITS(msr_content); wrmsrl(p4_counters[VIRT_CTR(stag, i)].cccr_address, msr_content); } /* clear cccrs outside our concern */ for (i = stag ; i < NUM_UNUSED_CCCRS ; i += addr_increment()) { rdmsrl(p4_unused_cccr[i], msr_content); CCCR_CLEAR(msr_content); CCCR_SET_REQUIRED_BITS(msr_content); wrmsrl(p4_unused_cccr[i], msr_content); } /* clear all escrs (including those outside our concern) */ for (addr = MSR_P4_BSU_ESCR0 + stag; addr < MSR_P4_IQ_ESCR0; addr += addr_increment()) { wrmsrl(addr, 0x0ULL); } /* On older models clear also MSR_P4_IQ_ESCR0/1 */ if (boot_cpu_data.x86_model < 0x3) { wrmsrl(MSR_P4_IQ_ESCR0, 0x0ULL); wrmsrl(MSR_P4_IQ_ESCR1, 0x0ULL); } for (addr = MSR_P4_RAT_ESCR0 + stag; addr <= MSR_P4_SSU_ESCR0; ++i, addr += addr_increment()) { wrmsrl(addr, 0x0ULL); } for (addr = MSR_P4_MS_ESCR0 + stag; addr <= MSR_P4_TC_ESCR1; addr += addr_increment()){ wrmsrl(addr, 0x0ULL); } for (addr = MSR_P4_IX_ESCR0 + stag; addr <= MSR_P4_CRU_ESCR3; addr += addr_increment()){ wrmsrl(addr, 0x0ULL); } if (num_counters == NUM_COUNTERS_NON_HT) { wrmsrl(MSR_P4_CRU_ESCR4, 0x0ULL); wrmsrl(MSR_P4_CRU_ESCR5, 0x0ULL); } else if (stag == 0) { wrmsrl(MSR_P4_CRU_ESCR4, 0x0ULL); } else { wrmsrl(MSR_P4_CRU_ESCR5, 0x0ULL); } /* setup all counters */ for (i = 0 ; i < num_counters ; ++i) { if (counter_config[i].enabled) { reset_value[i] = counter_config[i].count; pmc_setup_one_p4_counter(i); CTR_WRITE(counter_config[i].count, VIRT_CTR(stag, i)); } else { reset_value[i] = 0; } } } static int p4_check_ctrs(unsigned int const cpu, struct op_msrs const * const msrs, struct cpu_user_regs const * const regs) { unsigned long ctr, stag, real; uint64_t msr_content; int i; int ovf = 0; unsigned long eip = regs->rip; int mode = xenoprofile_get_mode(current, regs); stag = get_stagger(); for (i = 0; i < num_counters; ++i) { if (!reset_value[i]) continue; /* * there is some eccentricity in the hardware which * requires that we perform 2 extra corrections: * * - check both the CCCR:OVF flag for overflow and the * counter high bit for un-flagged overflows. * * - write the counter back twice to ensure it gets * updated properly. * * the former seems to be related to extra NMIs happening * during the current NMI; the latter is reported as errata * N15 in intel doc 249199-029, pentium 4 specification * update, though their suggested work-around does not * appear to solve the problem. */ real = VIRT_CTR(stag, i); CCCR_READ(msr_content, real); CTR_READ(ctr, real); if (CCCR_OVF_P(msr_content) || CTR_OVERFLOW_P(ctr)) { xenoprof_log_event(current, regs, eip, mode, i); CTR_WRITE(reset_value[i], real); CCCR_CLEAR_OVF(msr_content); CCCR_WRITE(msr_content, real); CTR_WRITE(reset_value[i], real); ovf = 1; } } /* P4 quirk: you have to re-unmask the apic vector */ apic_write(APIC_LVTPC, apic_read(APIC_LVTPC) & ~APIC_LVT_MASKED); return ovf; } static void p4_start(struct op_msrs const * const msrs) { unsigned int stag; uint64_t msr_content; int i; stag = get_stagger(); for (i = 0; i < num_counters; ++i) { if (!reset_value[i]) continue; CCCR_READ(msr_content, VIRT_CTR(stag, i)); CCCR_SET_ENABLE(msr_content); CCCR_WRITE(msr_content, VIRT_CTR(stag, i)); } } static void p4_stop(struct op_msrs const * const msrs) { unsigned int stag; uint64_t msr_content; int i; stag = get_stagger(); for (i = 0; i < num_counters; ++i) { CCCR_READ(msr_content, VIRT_CTR(stag, i)); CCCR_SET_DISABLE(msr_content); CCCR_WRITE(msr_content, VIRT_CTR(stag, i)); } } struct op_x86_model_spec const op_p4_ht2_spec = { .num_counters = NUM_COUNTERS_HT2, .num_controls = NUM_CONTROLS_HT2, .fill_in_addresses = &p4_fill_in_addresses, .setup_ctrs = &p4_setup_ctrs, .check_ctrs = &p4_check_ctrs, .start = &p4_start, .stop = &p4_stop }; struct op_x86_model_spec const op_p4_spec = { .num_counters = NUM_COUNTERS_NON_HT, .num_controls = NUM_CONTROLS_NON_HT, .fill_in_addresses = &p4_fill_in_addresses, .setup_ctrs = &p4_setup_ctrs, .check_ctrs = &p4_check_ctrs, .start = &p4_start, .stop = &p4_stop };