/* * Implementation of the access vector table type. * * Author : Stephen Smalley, */ /* Updated: Frank Mayer and Karl MacMillan * * Added conditional policy language extensions * * Copyright (C) 2003 Tresys Technology, LLC * This program is free software; you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation, version 2. * * Updated: Yuichi Nakamura * Tuned number of hash slots for avtab to reduce memory usage */ /* Ported to Xen 3.0, George Coker, */ #include #include #include #include #include #include "avtab.h" #include "policydb.h" static inline int avtab_hash(struct avtab_key *keyp, u16 mask) { return ((keyp->target_class + (keyp->target_type << 2) + (keyp->source_type << 9)) & mask); } static struct avtab_node* avtab_insert_node(struct avtab *h, int hvalue, struct avtab_node * prev, struct avtab_node * cur, struct avtab_key *key, struct avtab_datum *datum) { struct avtab_node *newnode = xzalloc(struct avtab_node); if ( newnode == NULL ) return NULL; newnode->key = *key; newnode->datum = *datum; if ( prev ) { newnode->next = prev->next; prev->next = newnode; } else { newnode->next = h->htable[hvalue]; h->htable[hvalue] = newnode; } h->nel++; return newnode; } static int avtab_insert(struct avtab *h, struct avtab_key *key, struct avtab_datum *datum) { int hvalue; struct avtab_node *prev, *cur, *newnode; u16 specified = key->specified & ~(AVTAB_ENABLED|AVTAB_ENABLED_OLD); if ( !h || !h->htable ) return -EINVAL; hvalue = avtab_hash(key, h->mask); for ( prev = NULL, cur = h->htable[hvalue]; cur; prev = cur, cur = cur->next) { if ( key->source_type == cur->key.source_type && key->target_type == cur->key.target_type && key->target_class == cur->key.target_class && (specified & cur->key.specified) ) return -EEXIST; if ( key->source_type < cur->key.source_type ) break; if ( key->source_type == cur->key.source_type && key->target_type < cur->key.target_type ) break; if ( key->source_type == cur->key.source_type && key->target_type == cur->key.target_type && key->target_class < cur->key.target_class ) break; } newnode = avtab_insert_node(h, hvalue, prev, cur, key, datum); if( !newnode ) return -ENOMEM; return 0; } /* Unlike avtab_insert(), this function allow multiple insertions of the same * key/specified mask into the table, as needed by the conditional avtab. * It also returns a pointer to the node inserted. */ struct avtab_node * avtab_insert_nonunique(struct avtab * h, struct avtab_key * key, struct avtab_datum * datum) { int hvalue; struct avtab_node *prev, *cur, *newnode; u16 specified = key->specified & ~(AVTAB_ENABLED|AVTAB_ENABLED_OLD); if ( !h || !h->htable ) return NULL; hvalue = avtab_hash(key, h->mask); for ( prev = NULL, cur = h->htable[hvalue]; cur; prev = cur, cur = cur->next ) { if ( key->source_type == cur->key.source_type && key->target_type == cur->key.target_type && key->target_class == cur->key.target_class && (specified & cur->key.specified) ) break; if ( key->source_type < cur->key.source_type ) break; if ( key->source_type == cur->key.source_type && key->target_type < cur->key.target_type ) break; if ( key->source_type == cur->key.source_type && key->target_type == cur->key.target_type && key->target_class < cur->key.target_class ) break; } newnode = avtab_insert_node(h, hvalue, prev, cur, key, datum); return newnode; } struct avtab_datum *avtab_search(struct avtab *h, struct avtab_key *key) { int hvalue; struct avtab_node *cur; u16 specified = key->specified & ~(AVTAB_ENABLED|AVTAB_ENABLED_OLD); if ( !h || !h->htable ) return NULL; hvalue = avtab_hash(key, h->mask); for ( cur = h->htable[hvalue]; cur; cur = cur->next ) { if ( key->source_type == cur->key.source_type && key->target_type == cur->key.target_type && key->target_class == cur->key.target_class && (specified & cur->key.specified) ) return &cur->datum; if ( key->source_type < cur->key.source_type ) break; if ( key->source_type == cur->key.source_type && key->target_type < cur->key.target_type ) break; if ( key->source_type == cur->key.source_type && key->target_type == cur->key.target_type && key->target_class < cur->key.target_class ) break; } return NULL; } /* This search function returns a node pointer, and can be used in * conjunction with avtab_search_next_node() */ struct avtab_node* avtab_search_node(struct avtab *h, struct avtab_key *key) { int hvalue; struct avtab_node *cur; u16 specified = key->specified & ~(AVTAB_ENABLED|AVTAB_ENABLED_OLD); if ( !h || !h->htable ) return NULL; hvalue = avtab_hash(key, h->mask); for ( cur = h->htable[hvalue]; cur; cur = cur->next ) { if ( key->source_type == cur->key.source_type && key->target_type == cur->key.target_type && key->target_class == cur->key.target_class && (specified & cur->key.specified) ) return cur; if ( key->source_type < cur->key.source_type ) break; if ( key->source_type == cur->key.source_type && key->target_type < cur->key.target_type ) break; if ( key->source_type == cur->key.source_type && key->target_type == cur->key.target_type && key->target_class < cur->key.target_class ) break; } return NULL; } struct avtab_node* avtab_search_node_next(struct avtab_node *node, int specified) { struct avtab_node *cur; if ( !node ) return NULL; specified &= ~(AVTAB_ENABLED|AVTAB_ENABLED_OLD); for ( cur = node->next; cur; cur = cur->next ) { if ( node->key.source_type == cur->key.source_type && node->key.target_type == cur->key.target_type && node->key.target_class == cur->key.target_class && (specified & cur->key.specified) ) return cur; if ( node->key.source_type < cur->key.source_type ) break; if ( node->key.source_type == cur->key.source_type && node->key.target_type < cur->key.target_type ) break; if ( node->key.source_type == cur->key.source_type && node->key.target_type == cur->key.target_type && node->key.target_class < cur->key.target_class ) break; } return NULL; } void avtab_destroy(struct avtab *h) { int i; struct avtab_node *cur, *temp; if ( !h || !h->htable ) return; for ( i = 0; i < h->nslot; i++ ) { cur = h->htable[i]; while ( cur != NULL ) { temp = cur; cur = cur->next; xfree(temp); } h->htable[i] = NULL; } xfree(h->htable); h->htable = NULL; h->nslot = 0; h->mask = 0; } int avtab_init(struct avtab *h) { h->htable = NULL; h->nel = 0; return 0; } int avtab_alloc(struct avtab *h, u32 nrules) { u16 mask = 0; u32 shift = 0; u32 work = nrules; u32 nslot = 0; int i; if ( nrules == 0 ) goto avtab_alloc_out; while ( work ) { work = work >> 1; shift++; } if ( shift > 2 ) shift = shift - 2; nslot = 1 << shift; if ( nslot > MAX_AVTAB_SIZE ) nslot = MAX_AVTAB_SIZE; mask = nslot - 1; h->htable = xmalloc_array(struct avtab_node *, nslot); if ( !h->htable ) return -ENOMEM; for ( i = 0; i < nslot; i++ ) h->htable[i] = NULL; avtab_alloc_out: h->nel = 0; h->nslot = nslot; h->mask = mask; printk(KERN_DEBUG "Flask: %d avtab hash slots, %d rules.\n", h->nslot, nrules); return 0; } void avtab_hash_eval(struct avtab *h, char *tag) { int i, chain_len, slots_used, max_chain_len; struct avtab_node *cur; slots_used = 0; max_chain_len = 0; for ( i = 0; i < h->nslot; i++ ) { cur = h->htable[i]; if ( cur ) { slots_used++; chain_len = 0; while ( cur ) { chain_len++; cur = cur->next; } if ( chain_len > max_chain_len ) max_chain_len = chain_len; } } printk(KERN_INFO "%s: %d entries and %d/%d buckets used, longest " "chain length %d\n", tag, h->nel, slots_used, h->nslot, max_chain_len); } static uint16_t spec_order[] = { AVTAB_ALLOWED, AVTAB_AUDITDENY, AVTAB_AUDITALLOW, AVTAB_TRANSITION, AVTAB_CHANGE, AVTAB_MEMBER }; int avtab_read_item(struct avtab *a, void *fp, struct policydb *pol, int (*insertf)(struct avtab *a, struct avtab_key *k, struct avtab_datum *d, void *p), void *p) { __le16 buf16[4]; u16 enabled; __le32 buf32[7]; u32 items, items2, val, vers = pol->policyvers; struct avtab_key key; struct avtab_datum datum; int i, rc; unsigned set; memset(&key, 0, sizeof(struct avtab_key)); memset(&datum, 0, sizeof(struct avtab_datum)); if ( vers < POLICYDB_VERSION_AVTAB ) { rc = next_entry(buf32, fp, sizeof(u32)); if ( rc < 0 ) { printk(KERN_ERR "Flask: avtab: truncated entry\n"); return -1; } items2 = le32_to_cpu(buf32[0]); if ( items2 > ARRAY_SIZE(buf32) ) { printk(KERN_ERR "Flask: avtab: entry overflow\n"); return -1; } rc = next_entry(buf32, fp, sizeof(u32)*items2); if ( rc < 0 ) { printk(KERN_ERR "Flask: avtab: truncated entry\n"); return -1; } items = 0; val = le32_to_cpu(buf32[items++]); key.source_type = (u16)val; if ( key.source_type != val ) { printk("Flask: avtab: truncated source type\n"); return -1; } val = le32_to_cpu(buf32[items++]); key.target_type = (u16)val; if ( key.target_type != val ) { printk("Flask: avtab: truncated target type\n"); return -1; } val = le32_to_cpu(buf32[items++]); key.target_class = (u16)val; if ( key.target_class != val ) { printk("Flask: avtab: truncated target class\n"); return -1; } val = le32_to_cpu(buf32[items++]); enabled = (val & AVTAB_ENABLED_OLD) ? AVTAB_ENABLED : 0; if ( !(val & (AVTAB_AV | AVTAB_TYPE)) ) { printk("Flask: avtab: null entry\n"); return -1; } if ( (val & AVTAB_AV) && (val & AVTAB_TYPE) ) { printk("Flask: avtab: entry has both access vectors and types\n"); return -1; } for ( i = 0; i < sizeof(spec_order)/sizeof(u16); i++ ) { if ( val & spec_order[i] ) { key.specified = spec_order[i] | enabled; datum.data = le32_to_cpu(buf32[items++]); rc = insertf(a, &key, &datum, p); if ( rc ) return rc; } } if ( items != items2 ) { printk("Flask: avtab: entry only had %d items, expected %d\n", items2, items); return -1; } return 0; } rc = next_entry(buf16, fp, sizeof(u16)*4); if ( rc < 0 ) { printk("Flask: avtab: truncated entry\n"); return -1; } items = 0; key.source_type = le16_to_cpu(buf16[items++]); key.target_type = le16_to_cpu(buf16[items++]); key.target_class = le16_to_cpu(buf16[items++]); key.specified = le16_to_cpu(buf16[items++]); if ( !policydb_type_isvalid(pol, key.source_type) || !policydb_type_isvalid(pol, key.target_type) || !policydb_class_isvalid(pol, key.target_class) ) { printk(KERN_ERR "Flask: avtab: invalid type or class\n"); return -1; } set = 0; for ( i = 0; i < ARRAY_SIZE(spec_order); i++ ) { if ( key.specified & spec_order[i] ) set++; } if ( !set || set > 1 ) { printk(KERN_ERR "Flask: avtab: more than one specifier\n"); return -1; } rc = next_entry(buf32, fp, sizeof(u32)); if ( rc < 0 ) { printk("Flask: avtab: truncated entry\n"); return -1; } datum.data = le32_to_cpu(*buf32); if ( (key.specified & AVTAB_TYPE) && !policydb_type_isvalid(pol, datum.data) ) { printk(KERN_ERR "Flask: avtab: invalid type\n"); return -1; } return insertf(a, &key, &datum, p); } static int avtab_insertf(struct avtab *a, struct avtab_key *k, struct avtab_datum *d, void *p) { return avtab_insert(a, k, d); } int avtab_read(struct avtab *a, void *fp, struct policydb *pol) { int rc; __le32 buf[1]; u32 nel, i; rc = next_entry(buf, fp, sizeof(u32)); if ( rc < 0 ) { printk(KERN_ERR "Flask: avtab: truncated table\n"); goto bad; } nel = le32_to_cpu(buf[0]); if ( !nel ) { printk(KERN_ERR "Flask: avtab: table is empty\n"); rc = -EINVAL; goto bad; } rc = avtab_alloc(a, nel); if ( rc ) goto bad; for ( i = 0; i < nel; i++ ) { rc = avtab_read_item(a, fp, pol, avtab_insertf, NULL); if ( rc ) { if ( rc == -ENOMEM ) printk(KERN_ERR "Flask: avtab: out of memory\n"); else if ( rc == -EEXIST ) printk(KERN_ERR "Flask: avtab: duplicate entry\n"); else rc = -EINVAL; goto bad; } } rc = 0; out: return rc; bad: avtab_destroy(a); goto out; }