/* * Implementation of the policy database. * * Author : Stephen Smalley, */ /* * Updated: Trusted Computer Solutions, Inc. * * Support for enhanced MLS infrastructure. * * Updated: Frank Mayer and Karl MacMillan * * Added conditional policy language extensions * * Copyright (C) 2004-2005 Trusted Computer Solutions, Inc. * Copyright (C) 2003 - 2004 Tresys Technology, LLC * This program is free software; you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation, version 2. */ /* Ported to Xen 3.0, George Coker, */ #include #include #include #include #include #include #include "security.h" #include "policydb.h" #include "conditional.h" #include "mls.h" #define _DEBUG_HASHES #ifdef DEBUG_HASHES static char *symtab_name[SYM_NUM] = { "common prefixes", "classes", "roles", "types", "users", "bools", "levels", "categories", }; #endif int flask_mls_enabled = 0; static unsigned int symtab_sizes[SYM_NUM] = { 2, 32, 16, 512, 128, 16, 16, 16, }; struct policydb_compat_info { int version; int sym_num; int ocon_num; int target_type; }; /* These need to be updated if SYM_NUM or OCON_NUM changes */ static struct policydb_compat_info policydb_compat[] = { { .version = POLICYDB_VERSION_BASE, .sym_num = SYM_NUM - 3, .ocon_num = 4, .target_type = TARGET_XEN_OLD, }, { .version = POLICYDB_VERSION_BOOL, .sym_num = SYM_NUM - 2, .ocon_num = 4, .target_type = TARGET_XEN_OLD, }, { .version = POLICYDB_VERSION_IPV6, .sym_num = SYM_NUM - 2, .ocon_num = 5, .target_type = TARGET_XEN_OLD, }, { .version = POLICYDB_VERSION_NLCLASS, .sym_num = SYM_NUM - 2, .ocon_num = 5, .target_type = TARGET_XEN_OLD, }, { .version = POLICYDB_VERSION_MLS, .sym_num = SYM_NUM, .ocon_num = 5, .target_type = TARGET_XEN_OLD, }, { .version = POLICYDB_VERSION_AVTAB, .sym_num = SYM_NUM, .ocon_num = 5, .target_type = TARGET_XEN_OLD, }, { .version = POLICYDB_VERSION_RANGETRANS, .sym_num = SYM_NUM, .ocon_num = 5, .target_type = TARGET_XEN_OLD, }, { .version = POLICYDB_VERSION_POLCAP, .sym_num = SYM_NUM, .ocon_num = 5, .target_type = TARGET_XEN_OLD, }, { .version = POLICYDB_VERSION_PERMISSIVE, .sym_num = SYM_NUM, .ocon_num = 5, .target_type = TARGET_XEN_OLD, }, { .version = POLICYDB_VERSION_BOUNDARY, .sym_num = SYM_NUM, .ocon_num = OCON_NUM_OLD, .target_type = TARGET_XEN_OLD, }, { .version = POLICYDB_VERSION_BOUNDARY, .sym_num = SYM_NUM, .ocon_num = OCON_DEVICE + 1, .target_type = TARGET_XEN, }, { .version = POLICYDB_VERSION_XEN_DEVICETREE, .sym_num = SYM_NUM, .ocon_num = OCON_DTREE + 1, .target_type = TARGET_XEN, }, }; static struct policydb_compat_info *policydb_lookup_compat(int version, int target) { int i; struct policydb_compat_info *info = NULL; for ( i = 0; i < sizeof(policydb_compat)/sizeof(*info); i++ ) { if ( policydb_compat[i].version == version && policydb_compat[i].target_type == target ) { info = &policydb_compat[i]; break; } } return info; } /* * Initialize the role table. */ static int roles_init(struct policydb *p) { char *key = NULL; int rc; struct role_datum *role; role = xzalloc(struct role_datum); if ( !role ) { rc = -ENOMEM; goto out; } role->value = ++p->p_roles.nprim; if ( role->value != OBJECT_R_VAL ) { rc = -EINVAL; goto out_free_role; } key = xmalloc_array(char, strlen(OBJECT_R)+1); if ( !key ) { rc = -ENOMEM; goto out_free_role; } strlcpy(key, OBJECT_R, strlen(OBJECT_R)+1); rc = hashtab_insert(p->p_roles.table, key, role); if ( rc ) goto out_free_key; out: return rc; out_free_key: xfree(key); out_free_role: xfree(role); goto out; } /* * Initialize a policy database structure. */ static int policydb_init(struct policydb *p) { int i, rc; memset(p, 0, sizeof(*p)); for ( i = 0; i < SYM_NUM; i++ ) { rc = symtab_init(&p->symtab[i], symtab_sizes[i]); if ( rc ) goto out_free_symtab; } rc = avtab_init(&p->te_avtab); if ( rc ) goto out_free_symtab; rc = roles_init(p); if ( rc ) goto out_free_avtab; rc = cond_policydb_init(p); if ( rc ) goto out_free_avtab; ebitmap_init(&p->policycaps); ebitmap_init(&p->permissive_map); out: return rc; out_free_avtab: avtab_destroy(&p->te_avtab); out_free_symtab: for ( i = 0; i < SYM_NUM; i++ ) hashtab_destroy(p->symtab[i].table); goto out; } /* * The following *_index functions are used to * define the val_to_name and val_to_struct arrays * in a policy database structure. The val_to_name * arrays are used when converting security context * structures into string representations. The * val_to_struct arrays are used when the attributes * of a class, role, or user are needed. */ static int common_index(void *key, void *datum, void *datap) { return 0; } static int class_index(void *key, void *datum, void *datap) { struct policydb *p; struct class_datum *cladatum; cladatum = datum; p = datap; if ( !cladatum->value || cladatum->value > p->p_classes.nprim ) return -EINVAL; p->p_class_val_to_name[cladatum->value - 1] = key; p->class_val_to_struct[cladatum->value - 1] = cladatum; return 0; } static int role_index(void *key, void *datum, void *datap) { struct policydb *p; struct role_datum *role; role = datum; p = datap; if ( !role->value || role->value > p->p_roles.nprim || role->bounds > p->p_roles.nprim ) return -EINVAL; p->p_role_val_to_name[role->value - 1] = key; p->role_val_to_struct[role->value - 1] = role; return 0; } static int type_index(void *key, void *datum, void *datap) { struct policydb *p; struct type_datum *typdatum; typdatum = datum; p = datap; if ( typdatum->primary ) { if ( !typdatum->value || typdatum->value > p->p_types.nprim || typdatum->bounds > p->p_types.nprim ) return -EINVAL; p->p_type_val_to_name[typdatum->value - 1] = key; p->type_val_to_struct[typdatum->value - 1] = typdatum; } return 0; } static int user_index(void *key, void *datum, void *datap) { struct policydb *p; struct user_datum *usrdatum; usrdatum = datum; p = datap; if ( !usrdatum->value || usrdatum->value > p->p_users.nprim || usrdatum->bounds > p->p_users.nprim ) return -EINVAL; p->p_user_val_to_name[usrdatum->value - 1] = key; p->user_val_to_struct[usrdatum->value - 1] = usrdatum; return 0; } static int sens_index(void *key, void *datum, void *datap) { struct policydb *p; struct level_datum *levdatum; levdatum = datum; p = datap; if ( !levdatum->isalias ) { if ( !levdatum->level->sens || levdatum->level->sens > p->p_levels.nprim ) return -EINVAL; p->p_sens_val_to_name[levdatum->level->sens - 1] = key; } return 0; } static int cat_index(void *key, void *datum, void *datap) { struct policydb *p; struct cat_datum *catdatum; catdatum = datum; p = datap; if ( !catdatum->isalias ) { if ( !catdatum->value || catdatum->value > p->p_cats.nprim ) return -EINVAL; p->p_cat_val_to_name[catdatum->value - 1] = key; } return 0; } static int (*index_f[SYM_NUM]) (void *key, void *datum, void *datap) = { common_index, class_index, role_index, type_index, user_index, cond_index_bool, sens_index, cat_index, }; /* * Define the class val_to_name and val_to_struct arrays in a policy * database structure. * * Caller must clean up upon failure. */ static int policydb_index_classes(struct policydb *p) { int rc; p->class_val_to_struct = xmalloc_array(struct class_datum *, p->p_classes.nprim); if ( !p->class_val_to_struct ) { rc = -ENOMEM; goto out; } p->p_class_val_to_name = xmalloc_array(char *, p->p_classes.nprim); if ( !p->p_class_val_to_name ) { rc = -ENOMEM; goto out; } rc = hashtab_map(p->p_classes.table, class_index, p); out: return rc; } #ifdef DEBUG_HASHES static void symtab_hash_eval(struct symtab *s) { int i; for ( i = 0; i < SYM_NUM; i++ ) { struct hashtab *h = s[i].table; struct hashtab_info info; hashtab_stat(h, &info); printk(KERN_INFO "%s: %d entries and %d/%d buckets used, " "longest chain length %d\n", symtab_name[i], h->nel, info.slots_used, h->size, info.max_chain_len); } } #endif /* * Define the other val_to_name and val_to_struct arrays * in a policy database structure. * * Caller must clean up on failure. */ static int policydb_index_others(struct policydb *p) { int i, rc = 0; printk(KERN_INFO "Flask: %d users, %d roles, %d types, %d bools", p->p_users.nprim, p->p_roles.nprim, p->p_types.nprim, p->p_bools.nprim); if ( flask_mls_enabled ) printk(", %d sens, %d cats", p->p_levels.nprim, p->p_cats.nprim); printk("\n"); printk(KERN_INFO "Flask: %d classes, %d rules\n", p->p_classes.nprim, p->te_avtab.nel); #ifdef DEBUG_HASHES avtab_hash_eval(&p->te_avtab, "rules"); symtab_hash_eval(p->symtab); #endif p->role_val_to_struct = xmalloc_array(struct role_datum *, p->p_roles.nprim); if ( !p->role_val_to_struct ) { rc = -ENOMEM; goto out; } p->user_val_to_struct = xmalloc_array(struct user_datum *, p->p_users.nprim); if ( !p->user_val_to_struct ) { rc = -ENOMEM; goto out; } p->type_val_to_struct = xmalloc_array(struct type_datum *, p->p_types.nprim); if ( !p->type_val_to_struct ) { rc = -ENOMEM; goto out; } if ( cond_init_bool_indexes(p) ) { rc = -ENOMEM; goto out; } for ( i = SYM_ROLES; i < SYM_NUM; i++ ) { p->sym_val_to_name[i] = xmalloc_array(char *, p->symtab[i].nprim); if ( !p->sym_val_to_name[i] ) { rc = -ENOMEM; goto out; } rc = hashtab_map(p->symtab[i].table, index_f[i], p); if ( rc ) goto out; } out: return rc; } /* * The following *_destroy functions are used to * free any memory allocated for each kind of * symbol data in the policy database. */ static int perm_destroy(void *key, void *datum, void *p) { xfree(key); xfree(datum); return 0; } static int common_destroy(void *key, void *datum, void *p) { struct common_datum *comdatum; xfree(key); comdatum = datum; hashtab_map(comdatum->permissions.table, perm_destroy, NULL); hashtab_destroy(comdatum->permissions.table); xfree(datum); return 0; } static int class_destroy(void *key, void *datum, void *p) { struct class_datum *cladatum; struct constraint_node *constraint, *ctemp; struct constraint_expr *e, *etmp; xfree(key); cladatum = datum; hashtab_map(cladatum->permissions.table, perm_destroy, NULL); hashtab_destroy(cladatum->permissions.table); constraint = cladatum->constraints; while ( constraint ) { e = constraint->expr; while ( e ) { ebitmap_destroy(&e->names); etmp = e; e = e->next; xfree(etmp); } ctemp = constraint; constraint = constraint->next; xfree(ctemp); } constraint = cladatum->validatetrans; while ( constraint ) { e = constraint->expr; while ( e ) { ebitmap_destroy(&e->names); etmp = e; e = e->next; xfree(etmp); } ctemp = constraint; constraint = constraint->next; xfree(ctemp); } xfree(cladatum->comkey); xfree(datum); return 0; } static int role_destroy(void *key, void *datum, void *p) { struct role_datum *role; xfree(key); role = datum; ebitmap_destroy(&role->dominates); ebitmap_destroy(&role->types); xfree(datum); return 0; } static int type_destroy(void *key, void *datum, void *p) { xfree(key); xfree(datum); return 0; } static int user_destroy(void *key, void *datum, void *p) { struct user_datum *usrdatum; xfree(key); usrdatum = datum; ebitmap_destroy(&usrdatum->roles); ebitmap_destroy(&usrdatum->range.level[0].cat); ebitmap_destroy(&usrdatum->range.level[1].cat); ebitmap_destroy(&usrdatum->dfltlevel.cat); xfree(datum); return 0; } static int sens_destroy(void *key, void *datum, void *p) { struct level_datum *levdatum; xfree(key); levdatum = datum; ebitmap_destroy(&levdatum->level->cat); xfree(levdatum->level); xfree(datum); return 0; } static int cat_destroy(void *key, void *datum, void *p) { xfree(key); xfree(datum); return 0; } static int (*destroy_f[SYM_NUM]) (void *key, void *datum, void *datap) = { common_destroy, class_destroy, role_destroy, type_destroy, user_destroy, cond_destroy_bool, sens_destroy, cat_destroy, }; static void ocontext_destroy(struct ocontext *c, int i) { context_destroy(&c->context); if ( i == OCON_ISID || i == OCON_DTREE ) xfree(c->u.name); xfree(c); } /* * Free any memory allocated by a policy database structure. */ void policydb_destroy(struct policydb *p) { struct ocontext *c, *ctmp; int i; struct role_allow *ra, *lra = NULL; struct role_trans *tr, *ltr = NULL; struct range_trans *rt, *lrt = NULL; for ( i = 0; i < SYM_NUM; i++ ) { hashtab_map(p->symtab[i].table, destroy_f[i], NULL); hashtab_destroy(p->symtab[i].table); } for ( i = 0; i < SYM_NUM; i++ ) xfree(p->sym_val_to_name[i]); xfree(p->class_val_to_struct); xfree(p->role_val_to_struct); xfree(p->user_val_to_struct); xfree(p->type_val_to_struct); avtab_destroy(&p->te_avtab); for ( i = 0; i < OCON_NUM; i++ ) { c = p->ocontexts[i]; while ( c ) { ctmp = c; c = c->next; ocontext_destroy(ctmp,i); } p->ocontexts[i] = NULL; } cond_policydb_destroy(p); for ( tr = p->role_tr; tr; tr = tr->next ) { xfree(ltr); ltr = tr; } xfree(ltr); for ( ra = p->role_allow; ra; ra = ra -> next ) { xfree(lra); lra = ra; } xfree(lra); for ( rt = p->range_tr; rt; rt = rt -> next ) { if ( lrt ) { ebitmap_destroy(&lrt->target_range.level[0].cat); ebitmap_destroy(&lrt->target_range.level[1].cat); xfree(lrt); } lrt = rt; } if ( lrt ) { ebitmap_destroy(&lrt->target_range.level[0].cat); ebitmap_destroy(&lrt->target_range.level[1].cat); xfree(lrt); } if ( p->type_attr_map ) for ( i = 0; i < p->p_types.nprim; i++ ) ebitmap_destroy(&p->type_attr_map[i]); xfree(p->type_attr_map); ebitmap_destroy(&p->policycaps); ebitmap_destroy(&p->permissive_map); return; } /* * Load the initial SIDs specified in a policy database * structure into a SID table. */ int policydb_load_isids(struct policydb *p, struct sidtab *s) { struct ocontext *head, *c; int rc; rc = sidtab_init(s); if ( rc ) { printk(KERN_ERR "Flask: out of memory on SID table init\n"); goto out; } head = p->ocontexts[OCON_ISID]; for ( c = head; c; c = c->next ) { if ( !c->context.user ) { printk(KERN_ERR "Flask: SID %s was never " "defined.\n", c->u.name); rc = -EINVAL; goto out; } if ( sidtab_insert(s, c->sid, &c->context) ) { printk(KERN_ERR "Flask: unable to load initial " "SID %s.\n", c->u.name); rc = -EINVAL; goto out; } } out: return rc; } int policydb_class_isvalid(struct policydb *p, unsigned int class) { if ( !class || class > p->p_classes.nprim ) return 0; return 1; } int policydb_role_isvalid(struct policydb *p, unsigned int role) { if ( !role || role > p->p_roles.nprim ) return 0; return 1; } int policydb_type_isvalid(struct policydb *p, unsigned int type) { if ( !type || type > p->p_types.nprim ) return 0; return 1; } /* * Return 1 if the fields in the security context * structure `c' are valid. Return 0 otherwise. */ int policydb_context_isvalid(struct policydb *p, struct context *c) { struct role_datum *role; struct user_datum *usrdatum; if ( !c->role || c->role > p->p_roles.nprim ) return 0; if ( !c->user || c->user > p->p_users.nprim ) return 0; if ( !c->type || c->type > p->p_types.nprim ) return 0; if ( c->role != OBJECT_R_VAL ) { /* * Role must be authorized for the type. */ role = p->role_val_to_struct[c->role - 1]; if ( !ebitmap_get_bit(&role->types, c->type - 1) ) /* role may not be associated with type */ return 0; /* * User must be authorized for the role. */ usrdatum = p->user_val_to_struct[c->user - 1]; if ( !usrdatum ) return 0; if ( !ebitmap_get_bit(&usrdatum->roles, c->role - 1) ) /* user may not be associated with role */ return 0; } if ( !mls_context_isvalid(p, c) ) return 0; return 1; } /* * Read a MLS range structure from a policydb binary * representation file. */ static int mls_read_range_helper(struct mls_range *r, void *fp) { __le32 buf[2]; u32 items; int rc; rc = next_entry(buf, fp, sizeof(u32)); if ( rc < 0 ) goto out; items = le32_to_cpu(buf[0]); if ( items > ARRAY_SIZE(buf) ) { printk(KERN_ERR "Flask: mls: range overflow\n"); rc = -EINVAL; goto out; } rc = next_entry(buf, fp, sizeof(u32) * items); if ( rc < 0 ) { printk(KERN_ERR "Flask: mls: truncated range\n"); goto out; } r->level[0].sens = le32_to_cpu(buf[0]); if ( items > 1 ) r->level[1].sens = le32_to_cpu(buf[1]); else r->level[1].sens = r->level[0].sens; rc = ebitmap_read(&r->level[0].cat, fp); if ( rc ) { printk(KERN_ERR "Flask: mls: error reading low " "categories\n"); goto out; } if ( items > 1 ) { rc = ebitmap_read(&r->level[1].cat, fp); if ( rc ) { printk(KERN_ERR "Flask: mls: error reading high " "categories\n"); goto bad_high; } } else { rc = ebitmap_cpy(&r->level[1].cat, &r->level[0].cat); if ( rc ) { printk(KERN_ERR "Flask: mls: out of memory\n"); goto bad_high; } } rc = 0; out: return rc; bad_high: ebitmap_destroy(&r->level[0].cat); goto out; } /* * Read and validate a security context structure * from a policydb binary representation file. */ static int context_read_and_validate(struct context *c, struct policydb *p, void *fp) { __le32 buf[3]; int rc; rc = next_entry(buf, fp, sizeof buf); if ( rc < 0 ) { printk(KERN_ERR "Flask: context truncated\n"); goto out; } c->user = le32_to_cpu(buf[0]); c->role = le32_to_cpu(buf[1]); c->type = le32_to_cpu(buf[2]); if ( p->policyvers >= POLICYDB_VERSION_MLS ) { if ( mls_read_range_helper(&c->range, fp) ) { printk(KERN_ERR "Flask: error reading MLS range of " "context\n"); rc = -EINVAL; goto out; } } if ( !policydb_context_isvalid(p, c) ) { printk(KERN_ERR "Flask: invalid security context\n"); context_destroy(c); rc = -EINVAL; } out: return rc; } /* * The following *_read functions are used to * read the symbol data from a policy database * binary representation file. */ static int perm_read(struct policydb *p, struct hashtab *h, void *fp) { char *key = NULL; struct perm_datum *perdatum; int rc; __le32 buf[2]; u32 len; perdatum = xzalloc(struct perm_datum); if ( !perdatum ) { rc = -ENOMEM; goto out; } rc = next_entry(buf, fp, sizeof buf); if ( rc < 0 ) goto bad; len = le32_to_cpu(buf[0]); perdatum->value = le32_to_cpu(buf[1]); key = xmalloc_array(char, len + 1); if ( !key ) { rc = -ENOMEM; goto bad; } rc = next_entry(key, fp, len); if ( rc < 0 ) goto bad; key[len] = 0; rc = hashtab_insert(h, key, perdatum); if ( rc ) goto bad; out: return rc; bad: perm_destroy(key, perdatum, NULL); goto out; } static int common_read(struct policydb *p, struct hashtab *h, void *fp) { char *key = NULL; struct common_datum *comdatum; __le32 buf[4]; u32 len, nel; int i, rc; comdatum = xzalloc(struct common_datum); if ( !comdatum ) { rc = -ENOMEM; goto out; } rc = next_entry(buf, fp, sizeof buf); if ( rc < 0 ) goto bad; len = le32_to_cpu(buf[0]); comdatum->value = le32_to_cpu(buf[1]); rc = symtab_init(&comdatum->permissions, PERM_SYMTAB_SIZE); if ( rc ) goto bad; comdatum->permissions.nprim = le32_to_cpu(buf[2]); nel = le32_to_cpu(buf[3]); key = xmalloc_array(char, len + 1); if ( !key ) { rc = -ENOMEM; goto bad; } rc = next_entry(key, fp, len); if ( rc < 0 ) goto bad; key[len] = 0; for ( i = 0; i < nel; i++ ) { rc = perm_read(p, comdatum->permissions.table, fp); if ( rc ) goto bad; } rc = hashtab_insert(h, key, comdatum); if ( rc ) goto bad; out: return rc; bad: common_destroy(key, comdatum, NULL); goto out; } static int read_cons_helper(struct policydb *p, struct constraint_node **nodep, int ncons, int allowxtarget, void *fp) { struct constraint_node *c, *lc; struct constraint_expr *e, *le; __le32 buf[3]; u32 nexpr; int rc, i, j, depth; lc = NULL; for ( i = 0; i < ncons; i++ ) { c = xzalloc(struct constraint_node); if ( !c ) return -ENOMEM; if ( lc ) { lc->next = c; } else { *nodep = c; } rc = next_entry(buf, fp, (sizeof(u32) * 2)); if ( rc < 0 ) return rc; c->permissions = le32_to_cpu(buf[0]); nexpr = le32_to_cpu(buf[1]); le = NULL; depth = -1; for ( j = 0; j < nexpr; j++ ) { e = xzalloc(struct constraint_expr); if ( !e ) return -ENOMEM; if ( le ) le->next = e; else c->expr = e; rc = next_entry(buf, fp, (sizeof(u32) * 3)); if ( rc < 0 ) return rc; e->expr_type = le32_to_cpu(buf[0]); e->attr = le32_to_cpu(buf[1]); e->op = le32_to_cpu(buf[2]); switch ( e->expr_type ) { case CEXPR_NOT: if ( depth < 0 ) return -EINVAL; break; case CEXPR_AND: case CEXPR_OR: if ( depth < 1 ) return -EINVAL; depth--; break; case CEXPR_ATTR: if ( depth == (CEXPR_MAXDEPTH - 1) ) return -EINVAL; depth++; break; case CEXPR_NAMES: if ( !allowxtarget && (e->attr & CEXPR_XTARGET) ) return -EINVAL; if ( depth == (CEXPR_MAXDEPTH - 1) ) return -EINVAL; depth++; if ( ebitmap_read(&e->names, fp) ) return -EINVAL; if ( p->policyvers >= POLICYDB_VERSION_CONSTRAINT_NAMES ) { struct ebitmap dummy; ebitmap_init(&dummy); if ( ebitmap_read(&dummy, fp) ) return -EINVAL; ebitmap_destroy(&dummy); ebitmap_init(&dummy); if ( ebitmap_read(&dummy, fp) ) return -EINVAL; ebitmap_destroy(&dummy); rc = next_entry(buf, fp, sizeof(u32)); if ( rc < 0 ) return rc; } break; default: return -EINVAL; } le = e; } if ( depth != 0 ) return -EINVAL; lc = c; } return 0; } static int class_read(struct policydb *p, struct hashtab *h, void *fp) { char *key = NULL; struct class_datum *cladatum; __le32 buf[6]; u32 len, len2, ncons, nel; int i, rc; cladatum = xzalloc(struct class_datum); if ( !cladatum ) { rc = -ENOMEM; goto out; } rc = next_entry(buf, fp, sizeof(u32)*6); if ( rc < 0 ) goto bad; len = le32_to_cpu(buf[0]); len2 = le32_to_cpu(buf[1]); cladatum->value = le32_to_cpu(buf[2]); rc = symtab_init(&cladatum->permissions, PERM_SYMTAB_SIZE); if ( rc ) goto bad; cladatum->permissions.nprim = le32_to_cpu(buf[3]); nel = le32_to_cpu(buf[4]); ncons = le32_to_cpu(buf[5]); key = xmalloc_array(char, len + 1); if ( !key ) { rc = -ENOMEM; goto bad; } rc = next_entry(key, fp, len); if ( rc < 0 ) goto bad; key[len] = 0; if ( len2 ) { printk(KERN_ERR "Flask: classes with common prefixes are not supported\n"); rc = -EINVAL; goto bad; } for ( i = 0; i < nel; i++ ) { rc = perm_read(p, cladatum->permissions.table, fp); if ( rc ) goto bad; } rc = read_cons_helper(p, &cladatum->constraints, ncons, 0, fp); if ( rc ) goto bad; if ( p->policyvers >= POLICYDB_VERSION_VALIDATETRANS ) { /* grab the validatetrans rules */ rc = next_entry(buf, fp, sizeof(u32)); if ( rc < 0 ) goto bad; ncons = le32_to_cpu(buf[0]); rc = read_cons_helper(p, &cladatum->validatetrans, ncons, 1, fp); if ( rc ) goto bad; } if ( p->policyvers >= POLICYDB_VERSION_NEW_OBJECT_DEFAULTS ) { rc = next_entry(buf, fp, sizeof(u32) * 3); if ( rc ) goto bad; /* these values are ignored by Xen */ } if ( p->policyvers >= POLICYDB_VERSION_DEFAULT_TYPE ) { rc = next_entry(buf, fp, sizeof(u32) * 1); if ( rc ) goto bad; /* ignored by Xen */ } rc = hashtab_insert(h, key, cladatum); if ( rc ) goto bad; rc = 0; out: return rc; bad: class_destroy(key, cladatum, NULL); goto out; } static int role_read(struct policydb *p, struct hashtab *h, void *fp) { char *key = NULL; struct role_datum *role; int rc; __le32 buf[3]; u32 len; u32 ver = p->policyvers; role = xzalloc(struct role_datum); if ( !role ) { rc = -ENOMEM; goto out; } if ( ver >= POLICYDB_VERSION_BOUNDARY ) rc = next_entry(buf, fp, sizeof(buf[0]) * 3); else rc = next_entry(buf, fp, sizeof(buf[0]) * 2); if ( rc < 0 ) goto bad; len = le32_to_cpu(buf[0]); role->value = le32_to_cpu(buf[1]); if ( ver >= POLICYDB_VERSION_BOUNDARY ) role->bounds = le32_to_cpu(buf[2]); key = xmalloc_array(char, len + 1); if ( !key ) { rc = -ENOMEM; goto bad; } rc = next_entry(key, fp, len); if ( rc < 0 ) goto bad; key[len] = 0; rc = ebitmap_read(&role->dominates, fp); if ( rc ) goto bad; rc = ebitmap_read(&role->types, fp); if ( rc ) goto bad; if ( strcmp(key, OBJECT_R) == 0 ) { if ( role->value != OBJECT_R_VAL ) { printk(KERN_ERR "Role %s has wrong value %d\n", OBJECT_R, role->value); rc = -EINVAL; goto bad; } rc = 0; goto bad; } rc = hashtab_insert(h, key, role); if ( rc ) goto bad; out: return rc; bad: role_destroy(key, role, NULL); goto out; } static int type_read(struct policydb *p, struct hashtab *h, void *fp) { char *key = NULL; struct type_datum *typdatum; int rc; __le32 buf[4]; u32 len; u32 ver = p->policyvers; typdatum = xzalloc(struct type_datum); if ( !typdatum ) { rc = -ENOMEM; return rc; } if ( ver >= POLICYDB_VERSION_BOUNDARY ) rc = next_entry(buf, fp, sizeof(buf[0]) * 4); else rc = next_entry(buf, fp, sizeof(buf[0]) * 3); if ( rc < 0 ) goto bad; len = le32_to_cpu(buf[0]); typdatum->value = le32_to_cpu(buf[1]); if ( ver >= POLICYDB_VERSION_BOUNDARY ) { u32 prop = le32_to_cpu(buf[2]); if ( prop & TYPEDATUM_PROPERTY_PRIMARY ) typdatum->primary = 1; if ( prop & TYPEDATUM_PROPERTY_ATTRIBUTE ) typdatum->attribute = 1; typdatum->bounds = le32_to_cpu(buf[3]); } else { typdatum->primary = le32_to_cpu(buf[2]); } key = xmalloc_array(char, len + 1); if ( !key ) { rc = -ENOMEM; goto bad; } rc = next_entry(key, fp, len); if ( rc < 0 ) goto bad; key[len] = 0; rc = hashtab_insert(h, key, typdatum); if ( rc ) goto bad; out: return rc; bad: type_destroy(key, typdatum, NULL); goto out; } /* * Read a MLS level structure from a policydb binary * representation file. */ static int mls_read_level(struct mls_level *lp, void *fp) { __le32 buf[1]; int rc; memset(lp, 0, sizeof(*lp)); rc = next_entry(buf, fp, sizeof buf); if ( rc < 0 ) { printk(KERN_ERR "Flask: mls: truncated level\n"); goto bad; } lp->sens = le32_to_cpu(buf[0]); if ( ebitmap_read(&lp->cat, fp) ) { printk(KERN_ERR "Flask: mls: error reading level categories\n"); goto bad; } return 0; bad: return -EINVAL; } static int user_read(struct policydb *p, struct hashtab *h, void *fp) { char *key = NULL; struct user_datum *usrdatum; int rc; __le32 buf[3]; u32 len; u32 ver = p->policyvers; usrdatum = xzalloc(struct user_datum); if ( !usrdatum ) { rc = -ENOMEM; goto out; } if ( ver >= POLICYDB_VERSION_BOUNDARY ) rc = next_entry(buf, fp, sizeof(buf[0]) * 3); else rc = next_entry(buf, fp, sizeof(buf[0]) * 2); if ( rc < 0 ) goto bad; len = le32_to_cpu(buf[0]); usrdatum->value = le32_to_cpu(buf[1]); if ( ver >= POLICYDB_VERSION_BOUNDARY ) usrdatum->bounds = le32_to_cpu(buf[2]); key = xmalloc_array(char, len + 1); if ( !key ) { rc = -ENOMEM; goto bad; } rc = next_entry(key, fp, len); if ( rc < 0 ) goto bad; key[len] = 0; rc = ebitmap_read(&usrdatum->roles, fp); if ( rc ) goto bad; if ( ver >= POLICYDB_VERSION_MLS ) { rc = mls_read_range_helper(&usrdatum->range, fp); if ( rc ) goto bad; rc = mls_read_level(&usrdatum->dfltlevel, fp); if ( rc ) goto bad; } rc = hashtab_insert(h, key, usrdatum); if ( rc ) goto bad; out: return rc; bad: user_destroy(key, usrdatum, NULL); goto out; } static int sens_read(struct policydb *p, struct hashtab *h, void *fp) { char *key = NULL; struct level_datum *levdatum; int rc; __le32 buf[2]; u32 len; levdatum = xzalloc(struct level_datum); if ( !levdatum ) { rc = -ENOMEM; goto out; } rc = next_entry(buf, fp, sizeof buf); if ( rc < 0 ) goto bad; len = le32_to_cpu(buf[0]); levdatum->isalias = le32_to_cpu(buf[1]); key = xmalloc_array(char, len + 1); if ( !key ) { rc = -ENOMEM; goto bad; } rc = next_entry(key, fp, len); if ( rc < 0 ) goto bad; key[len] = 0; levdatum->level = xmalloc(struct mls_level); if ( !levdatum->level ) { rc = -ENOMEM; goto bad; } if ( mls_read_level(levdatum->level, fp) ) { rc = -EINVAL; goto bad; } rc = hashtab_insert(h, key, levdatum); if ( rc ) goto bad; out: return rc; bad: sens_destroy(key, levdatum, NULL); goto out; } static int cat_read(struct policydb *p, struct hashtab *h, void *fp) { char *key = NULL; struct cat_datum *catdatum; int rc; __le32 buf[3]; u32 len; catdatum = xzalloc(struct cat_datum); if ( !catdatum ) { rc = -ENOMEM; goto out; } rc = next_entry(buf, fp, sizeof buf); if ( rc < 0 ) goto bad; len = le32_to_cpu(buf[0]); catdatum->value = le32_to_cpu(buf[1]); catdatum->isalias = le32_to_cpu(buf[2]); key = xmalloc_array(char, len + 1); if ( !key ) { rc = -ENOMEM; goto bad; } rc = next_entry(key, fp, len); if ( rc < 0 ) goto bad; key[len] = 0; rc = hashtab_insert(h, key, catdatum); if ( rc ) goto bad; out: return rc; bad: cat_destroy(key, catdatum, NULL); goto out; } static int (*read_f[SYM_NUM]) (struct policydb *p, struct hashtab *h, void *fp) = { common_read, class_read, role_read, type_read, user_read, cond_read_bool, sens_read, cat_read, }; static int user_bounds_sanity_check(void *key, void *datum, void *datap) { struct user_datum *upper, *user; struct policydb *p = datap; int depth = 0; upper = user = datum; while (upper->bounds) { struct ebitmap_node *node; unsigned long bit; if ( ++depth == POLICYDB_BOUNDS_MAXDEPTH ) { printk(KERN_ERR "Flask: user %s: " "too deep or looped boundary", (char *) key); return -EINVAL; } upper = p->user_val_to_struct[upper->bounds - 1]; ebitmap_for_each_positive_bit(&user->roles, node, bit) { if ( ebitmap_get_bit(&upper->roles, bit) ) continue; printk(KERN_ERR "Flask: boundary violated policy: " "user=%s role=%s bounds=%s\n", p->p_user_val_to_name[user->value - 1], p->p_role_val_to_name[bit], p->p_user_val_to_name[upper->value - 1]); return -EINVAL; } } return 0; } static int role_bounds_sanity_check(void *key, void *datum, void *datap) { struct role_datum *upper, *role; struct policydb *p = datap; int depth = 0; upper = role = datum; while (upper->bounds) { struct ebitmap_node *node; unsigned long bit; if ( ++depth == POLICYDB_BOUNDS_MAXDEPTH ) { printk(KERN_ERR "Flask: role %s: " "too deep or looped bounds\n", (char *) key); return -EINVAL; } upper = p->role_val_to_struct[upper->bounds - 1]; ebitmap_for_each_positive_bit(&role->types, node, bit) { if ( ebitmap_get_bit(&upper->types, bit) ) continue; printk(KERN_ERR "Flask: boundary violated policy: " "role=%s type=%s bounds=%s\n", p->p_role_val_to_name[role->value - 1], p->p_type_val_to_name[bit], p->p_role_val_to_name[upper->value - 1]); return -EINVAL; } } return 0; } static int type_bounds_sanity_check(void *key, void *datum, void *datap) { struct type_datum *upper, *type; struct policydb *p = datap; int depth = 0; upper = type = datum; while (upper->bounds) { if ( ++depth == POLICYDB_BOUNDS_MAXDEPTH ) { printk(KERN_ERR "Flask: type %s: " "too deep or looped boundary\n", (char *) key); return -EINVAL; } upper = p->type_val_to_struct[upper->bounds - 1]; if ( upper->attribute ) { printk(KERN_ERR "Flask: type %s: " "bounded by attribute %s", (char *) key, p->p_type_val_to_name[upper->value - 1]); return -EINVAL; } } return 0; } static int policydb_bounds_sanity_check(struct policydb *p) { int rc; if ( p->policyvers < POLICYDB_VERSION_BOUNDARY ) return 0; rc = hashtab_map(p->p_users.table, user_bounds_sanity_check, p); if ( rc ) return rc; rc = hashtab_map(p->p_roles.table, role_bounds_sanity_check, p); if ( rc ) return rc; rc = hashtab_map(p->p_types.table, type_bounds_sanity_check, p); if ( rc ) return rc; return 0; } extern int ss_initialized; /* * Read the configuration data from a policy database binary * representation file into a policy database structure. */ int policydb_read(struct policydb *p, void *fp) { struct role_allow *ra, *lra; struct role_trans *tr, *ltr; struct ocontext *l, *c /*, *newc*/; int i, j, rc; __le32 buf[8]; u32 len, /*len2,*/ config, nprim, nel /*, nel2*/; char *policydb_str; struct policydb_compat_info *info; struct range_trans *rt, *lrt; config = 0; rc = policydb_init(p); if ( rc ) goto out; /* Read the magic number and string length. */ rc = next_entry(buf, fp, sizeof(u32)* 2); if ( rc < 0 ) goto bad; if ( le32_to_cpu(buf[0]) != POLICYDB_MAGIC ) { printk(KERN_ERR "Flask: policydb magic number %#x does " "not match expected magic number %#x\n", le32_to_cpu(buf[0]), POLICYDB_MAGIC); goto bad; } len = le32_to_cpu(buf[1]); if ( len != strlen(POLICYDB_STRING) ) { printk(KERN_ERR "Flask: policydb string length %d does not " "match expected length %zu\n", len, strlen(POLICYDB_STRING)); goto bad; } policydb_str = xmalloc_array(char, len + 1); if ( !policydb_str ) { printk(KERN_ERR "Flask: unable to allocate memory for policydb " "string of length %d\n", len); rc = -ENOMEM; goto bad; } rc = next_entry(policydb_str, fp, len); if ( rc < 0 ) { printk(KERN_ERR "Flask: truncated policydb string identifier\n"); xfree(policydb_str); goto bad; } policydb_str[len] = 0; if ( strcmp(policydb_str, POLICYDB_STRING) == 0 ) p->target_type = TARGET_XEN; else if ( strcmp(policydb_str, POLICYDB_STRING_OLD) == 0 ) p->target_type = TARGET_XEN_OLD; else { printk(KERN_ERR "Flask: %s not a valid policydb string", policydb_str); xfree(policydb_str); goto bad; } /* Done with policydb_str. */ xfree(policydb_str); policydb_str = NULL; /* Read the version, config, and table sizes. */ rc = next_entry(buf, fp, sizeof(u32)*4); if ( rc < 0 ) goto bad; p->policyvers = le32_to_cpu(buf[0]); if ( p->policyvers < POLICYDB_VERSION_MIN || p->policyvers > POLICYDB_VERSION_MAX ) { printk(KERN_ERR "Flask: policydb version %d does not match " "my version range %d-%d\n", le32_to_cpu(buf[0]), POLICYDB_VERSION_MIN, POLICYDB_VERSION_MAX); goto bad; } if ( (le32_to_cpu(buf[1]) & POLICYDB_CONFIG_MLS) ) { if ( ss_initialized && !flask_mls_enabled ) { printk(KERN_ERR "Cannot switch between non-MLS and MLS " "policies\n"); goto bad; } flask_mls_enabled = 1; config |= POLICYDB_CONFIG_MLS; if ( p->policyvers < POLICYDB_VERSION_MLS ) { printk(KERN_ERR "security policydb version %d (MLS) " "not backwards compatible\n", p->policyvers); goto bad; } } else { if ( ss_initialized && flask_mls_enabled ) { printk(KERN_ERR "Cannot switch between MLS and non-MLS " "policies\n"); goto bad; } } p->allow_unknown = !!(le32_to_cpu(buf[1]) & ALLOW_UNKNOWN); if ( p->policyvers >= POLICYDB_VERSION_POLCAP && ebitmap_read(&p->policycaps, fp) != 0 ) goto bad; if ( p->policyvers >= POLICYDB_VERSION_PERMISSIVE && ebitmap_read(&p->permissive_map, fp) != 0 ) goto bad; info = policydb_lookup_compat(p->policyvers, p->target_type); if ( !info ) { printk(KERN_ERR "Flask: unable to find policy compat info " "for version %d target %d\n", p->policyvers, p->target_type); goto bad; } if ( le32_to_cpu(buf[2]) != info->sym_num || le32_to_cpu(buf[3]) != info->ocon_num ) { printk(KERN_ERR "Flask: policydb table sizes (%d,%d) do " "not match mine (%d,%d)\n", le32_to_cpu(buf[2]), le32_to_cpu(buf[3]), info->sym_num, info->ocon_num); goto bad; } for ( i = 0; i < info->sym_num; i++ ) { rc = next_entry(buf, fp, sizeof(u32)*2); if ( rc < 0 ) goto bad; nprim = le32_to_cpu(buf[0]); nel = le32_to_cpu(buf[1]); for ( j = 0; j < nel; j++ ) { rc = read_f[i](p, p->symtab[i].table, fp); if ( rc ) goto bad; } p->symtab[i].nprim = nprim; } rc = avtab_read(&p->te_avtab, fp, p); if ( rc ) goto bad; if ( p->policyvers >= POLICYDB_VERSION_BOOL ) { rc = cond_read_list(p, fp); if ( rc ) goto bad; } rc = next_entry(buf, fp, sizeof(u32)); if ( rc < 0 ) goto bad; nel = le32_to_cpu(buf[0]); ltr = NULL; for ( i = 0; i < nel; i++ ) { tr = xzalloc(struct role_trans); if ( !tr ) { rc = -ENOMEM; goto bad; } if ( ltr ) ltr->next = tr; else p->role_tr = tr; if ( p->policyvers >= POLICYDB_VERSION_ROLETRANS ) rc = next_entry(buf, fp, sizeof(u32)*4); else rc = next_entry(buf, fp, sizeof(u32)*3); if ( rc < 0 ) goto bad; tr->role = le32_to_cpu(buf[0]); tr->type = le32_to_cpu(buf[1]); tr->new_role = le32_to_cpu(buf[2]); if ( !policydb_role_isvalid(p, tr->role) || !policydb_type_isvalid(p, tr->type) || !policydb_role_isvalid(p, tr->new_role) ) { rc = -EINVAL; goto bad; } ltr = tr; } rc = next_entry(buf, fp, sizeof(u32)); if ( rc < 0 ) goto bad; nel = le32_to_cpu(buf[0]); lra = NULL; for ( i = 0; i < nel; i++ ) { ra = xzalloc(struct role_allow); if ( !ra ) { rc = -ENOMEM; goto bad; } if ( lra ) lra->next = ra; else p->role_allow = ra; rc = next_entry(buf, fp, sizeof(u32)*2); if ( rc < 0 ) goto bad; ra->role = le32_to_cpu(buf[0]); ra->new_role = le32_to_cpu(buf[1]); if ( !policydb_role_isvalid(p, ra->role) || !policydb_role_isvalid(p, ra->new_role) ) { rc = -EINVAL; goto bad; } lra = ra; } if ( p->policyvers >= POLICYDB_VERSION_FILENAME_TRANS ) { rc = next_entry(buf, fp, sizeof(u32)); if ( rc ) goto bad; nel = le32_to_cpu(buf[0]); if ( nel ) { printk(KERN_ERR "Flask: unsupported genfs config data\n"); rc = -EINVAL; goto bad; } } rc = policydb_index_classes(p); if ( rc ) goto bad; rc = policydb_index_others(p); if ( rc ) goto bad; for ( i = 0; i < info->ocon_num; i++ ) { rc = next_entry(buf, fp, sizeof(u32)); if ( rc < 0 ) goto bad; nel = le32_to_cpu(buf[0]); l = NULL; for ( j = 0; j < nel; j++ ) { c = xzalloc(struct ocontext); if ( !c ) { rc = -ENOMEM; goto bad; } if ( l ) l->next = c; else p->ocontexts[i] = c; l = c; rc = -EINVAL; switch ( i ) { case OCON_ISID: rc = next_entry(buf, fp, sizeof(u32)); if ( rc < 0 ) goto bad; c->sid = le32_to_cpu(buf[0]); rc = context_read_and_validate(&c->context, p, fp); if ( rc ) goto bad; break; case OCON_PIRQ: if ( p->target_type != TARGET_XEN ) { printk(KERN_ERR "Old xen policy does not support pirqcon"); goto bad; } rc = next_entry(buf, fp, sizeof(u32)); if ( rc < 0 ) goto bad; c->u.pirq = le32_to_cpu(buf[0]); rc = context_read_and_validate(&c->context, p, fp); if ( rc ) goto bad; break; case OCON_IOPORT: if ( p->target_type != TARGET_XEN ) { printk(KERN_ERR "Old xen policy does not support ioportcon"); goto bad; } rc = next_entry(buf, fp, sizeof(u32) *2); if ( rc < 0 ) goto bad; c->u.ioport.low_ioport = le32_to_cpu(buf[0]); c->u.ioport.high_ioport = le32_to_cpu(buf[1]); rc = context_read_and_validate(&c->context, p, fp); if ( rc ) goto bad; break; case OCON_IOMEM: if ( p->target_type != TARGET_XEN ) { printk(KERN_ERR "Old xen policy does not support iomemcon"); goto bad; } if ( p->policyvers >= POLICYDB_VERSION_XEN_DEVICETREE ) { u64 b64[2]; rc = next_entry(b64, fp, sizeof(u64) *2); if ( rc < 0 ) goto bad; c->u.iomem.low_iomem = le64_to_cpu(b64[0]); c->u.iomem.high_iomem = le64_to_cpu(b64[1]); } else { rc = next_entry(buf, fp, sizeof(u32) *2); if ( rc < 0 ) goto bad; c->u.iomem.low_iomem = le32_to_cpu(buf[0]); c->u.iomem.high_iomem = le32_to_cpu(buf[1]); } rc = context_read_and_validate(&c->context, p, fp); if ( rc ) goto bad; break; case OCON_DEVICE: if ( p->target_type != TARGET_XEN ) { printk(KERN_ERR "Old xen policy does not support pcidevicecon"); goto bad; } rc = next_entry(buf, fp, sizeof(u32)); if ( rc < 0 ) goto bad; c->u.device = le32_to_cpu(buf[0]); rc = context_read_and_validate(&c->context, p, fp); if ( rc ) goto bad; break; case OCON_DTREE: if ( p->target_type != TARGET_XEN ) { printk(KERN_ERR "Old xen policy does not support devicetreecon"); goto bad; } rc = next_entry(buf, fp, sizeof(u32)); if ( rc < 0 ) goto bad; len = le32_to_cpu(buf[0]); rc = -ENOMEM; c->u.name = xmalloc_array(char, len + 1); if (!c->u.name) goto bad; rc = next_entry(c->u.name, fp, len); if ( rc < 0 ) goto bad; c->u.name[len] = 0; rc = context_read_and_validate(&c->context, p, fp); if ( rc ) goto bad; break; default: printk(KERN_ERR "Flask: unsupported object context config data\n"); rc = -EINVAL; goto bad; } } } rc = next_entry(buf, fp, sizeof(u32)); if ( rc < 0 ) goto bad; nel = le32_to_cpu(buf[0]); if ( nel ) { printk(KERN_ERR "Flask: unsupported genfs config data\n"); rc = -EINVAL; goto bad; } if ( p->policyvers >= POLICYDB_VERSION_MLS ) { int new_rangetr = p->policyvers >= POLICYDB_VERSION_RANGETRANS; rc = next_entry(buf, fp, sizeof(u32)); if ( rc < 0 ) goto bad; nel = le32_to_cpu(buf[0]); lrt = NULL; for ( i = 0; i < nel; i++ ) { rt = xzalloc(struct range_trans); if ( !rt ) { rc = -ENOMEM; goto bad; } if ( lrt ) lrt->next = rt; else p->range_tr = rt; rc = next_entry(buf, fp, (sizeof(u32) * 2)); if ( rc < 0 ) goto bad; rt->source_type = le32_to_cpu(buf[0]); rt->target_type = le32_to_cpu(buf[1]); if ( new_rangetr ) { rc = next_entry(buf, fp, sizeof(u32)); if ( rc < 0 ) goto bad; rt->target_class = le32_to_cpu(buf[0]); } else rt->target_class = SECCLASS_DOMAIN; if ( !policydb_type_isvalid(p, rt->source_type) || !policydb_type_isvalid(p, rt->target_type) || !policydb_class_isvalid(p, rt->target_class) ) { rc = -EINVAL; goto bad; } rc = mls_read_range_helper(&rt->target_range, fp); if ( rc ) goto bad; if ( !mls_range_isvalid(p, &rt->target_range) ) { printk(KERN_WARNING "Flask: rangetrans: invalid range\n"); goto bad; } lrt = rt; } } p->type_attr_map = xmalloc_array(struct ebitmap, p->p_types.nprim); if ( !p->type_attr_map ) goto bad; for ( i = 0; i < p->p_types.nprim; i++ ) { ebitmap_init(&p->type_attr_map[i]); if ( p->policyvers >= POLICYDB_VERSION_AVTAB ) { if ( ebitmap_read(&p->type_attr_map[i], fp) ) goto bad; } /* add the type itself as the degenerate case */ if ( ebitmap_set_bit(&p->type_attr_map[i], i, 1) ) goto bad; } rc = policydb_bounds_sanity_check(p); if ( rc ) goto bad; rc = 0; out: return rc; bad: if ( !rc ) rc = -EINVAL; policydb_destroy(p); goto out; }