/* * Implementation of the security services. * * Authors : Stephen Smalley, * James Morris * * Updated: Trusted Computer Solutions, Inc. * * Support for enhanced MLS infrastructure. * * Updated: Frank Mayer and Karl MacMillan * * Added conditional policy language extensions * * Updated: Hewlett-Packard * * Added support for the policy capability bitmap * * Updated: Chad Sellers * * Added validation of kernel classes and permissions * * Updated: KaiGai Kohei * * Added support for bounds domain and audit messaged on masked permissions * * Copyright (C) 2008, 2009 NEC Corporation * Copyright (C) 2006, 2007 Hewlett-Packard Development Company, L.P. * Copyright (C) 2004-2006 Trusted Computer Solutions, Inc. * Copyright (C) 2003 - 2004, 2006 Tresys Technology, LLC * Copyright (C) 2003 Red Hat, Inc., James Morris * This program is free software; you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation, version 2. */ /* Ported to Xen 3.0, George Coker, */ #include #include #include #include #include #include #include "flask.h" #include "avc.h" #include "avc_ss.h" #include "security.h" #include "context.h" #include "policydb.h" #include "sidtab.h" #include "services.h" #include "conditional.h" #include "mls.h" unsigned int policydb_loaded_version; static DEFINE_RWLOCK(policy_rwlock); #define POLICY_RDLOCK read_lock(&policy_rwlock) #define POLICY_WRLOCK write_lock(&policy_rwlock) #define POLICY_RDUNLOCK read_unlock(&policy_rwlock) #define POLICY_WRUNLOCK write_unlock(&policy_rwlock) static DEFINE_SPINLOCK(load_sem); #define LOAD_LOCK spin_lock(&load_sem) #define LOAD_UNLOCK spin_unlock(&load_sem) static struct sidtab sidtab; struct policydb policydb; int ss_initialized = 0; /* * The largest sequence number that has been used when * providing an access decision to the access vector cache. * The sequence number only changes when a policy change * occurs. */ static u32 latest_granting = 0; /* Forward declaration. */ static int context_struct_to_string(struct context *context, char **scontext, u32 *scontext_len); static int context_struct_compute_av(struct context *scontext, struct context *tcontext, u16 tclass, u32 requested, struct av_decision *avd); /* * Return the boolean value of a constraint expression * when it is applied to the specified source and target * security contexts. * * xcontext is a special beast... It is used by the validatetrans rules * only. For these rules, scontext is the context before the transition, * tcontext is the context after the transition, and xcontext is the context * of the process performing the transition. All other callers of * constraint_expr_eval should pass in NULL for xcontext. */ static int constraint_expr_eval(struct context *scontext, struct context *tcontext, struct context *xcontext, struct constraint_expr *cexpr) { u32 val1, val2; struct context *c; struct role_datum *r1, *r2; struct mls_level *l1, *l2; struct constraint_expr *e; int s[CEXPR_MAXDEPTH]; int sp = -1; for ( e = cexpr; e; e = e->next ) { switch ( e->expr_type ) { case CEXPR_NOT: BUG_ON(sp < 0); s[sp] = !s[sp]; break; case CEXPR_AND: BUG_ON(sp < 1); sp--; s[sp] &= s[sp+1]; break; case CEXPR_OR: BUG_ON(sp < 1); sp--; s[sp] |= s[sp+1]; break; case CEXPR_ATTR: if ( sp == (CEXPR_MAXDEPTH-1) ) return 0; switch ( e->attr ) { case CEXPR_USER: val1 = scontext->user; val2 = tcontext->user; break; case CEXPR_TYPE: val1 = scontext->type; val2 = tcontext->type; break; case CEXPR_ROLE: val1 = scontext->role; val2 = tcontext->role; r1 = policydb.role_val_to_struct[val1 - 1]; r2 = policydb.role_val_to_struct[val2 - 1]; switch ( e->op ) { case CEXPR_DOM: s[++sp] = ebitmap_get_bit(&r1->dominates, val2 - 1); continue; case CEXPR_DOMBY: s[++sp] = ebitmap_get_bit(&r2->dominates, val1 - 1); continue; case CEXPR_INCOMP: s[++sp] = ( !ebitmap_get_bit(&r1->dominates, val2 - 1) && !ebitmap_get_bit(&r2->dominates, val1 - 1) ); continue; default: break; } break; case CEXPR_L1L2: l1 = &(scontext->range.level[0]); l2 = &(tcontext->range.level[0]); goto mls_ops; case CEXPR_L1H2: l1 = &(scontext->range.level[0]); l2 = &(tcontext->range.level[1]); goto mls_ops; case CEXPR_H1L2: l1 = &(scontext->range.level[1]); l2 = &(tcontext->range.level[0]); goto mls_ops; case CEXPR_H1H2: l1 = &(scontext->range.level[1]); l2 = &(tcontext->range.level[1]); goto mls_ops; case CEXPR_L1H1: l1 = &(scontext->range.level[0]); l2 = &(scontext->range.level[1]); goto mls_ops; case CEXPR_L2H2: l1 = &(tcontext->range.level[0]); l2 = &(tcontext->range.level[1]); goto mls_ops; mls_ops: switch ( e->op ) { case CEXPR_EQ: s[++sp] = mls_level_eq(l1, l2); continue; case CEXPR_NEQ: s[++sp] = !mls_level_eq(l1, l2); continue; case CEXPR_DOM: s[++sp] = mls_level_dom(l1, l2); continue; case CEXPR_DOMBY: s[++sp] = mls_level_dom(l2, l1); continue; case CEXPR_INCOMP: s[++sp] = mls_level_incomp(l2, l1); continue; default: BUG(); return 0; } break; default: BUG(); return 0; } switch ( e->op ) { case CEXPR_EQ: s[++sp] = (val1 == val2); break; case CEXPR_NEQ: s[++sp] = (val1 != val2); break; default: BUG(); return 0; } break; case CEXPR_NAMES: if ( sp == (CEXPR_MAXDEPTH-1) ) return 0; c = scontext; if ( e->attr & CEXPR_TARGET ) c = tcontext; else if ( e->attr & CEXPR_XTARGET ) { c = xcontext; if ( !c ) { BUG(); return 0; } } if ( e->attr & CEXPR_USER ) val1 = c->user; else if ( e->attr & CEXPR_ROLE ) val1 = c->role; else if ( e->attr & CEXPR_TYPE ) val1 = c->type; else { BUG(); return 0; } switch ( e->op ) { case CEXPR_EQ: s[++sp] = ebitmap_get_bit(&e->names, val1 - 1); break; case CEXPR_NEQ: s[++sp] = !ebitmap_get_bit(&e->names, val1 - 1); break; default: BUG(); return 0; } break; default: BUG(); return 0; } } BUG_ON(sp != 0); return s[0]; } /* * security_dump_masked_av - dumps masked permissions during * security_compute_av due to RBAC, MLS/Constraint and Type bounds. */ static int dump_masked_av_helper(void *k, void *d, void *args) { struct perm_datum *pdatum = d; char **permission_names = args; BUG_ON(pdatum->value < 1 || pdatum->value > 32); permission_names[pdatum->value - 1] = (char *)k; return 0; } static void security_dump_masked_av(struct context *scontext, struct context *tcontext, u16 tclass, u32 permissions, const char *reason) { struct common_datum *common_dat; struct class_datum *tclass_dat; char *tclass_name; char *scontext_name = NULL; char *tcontext_name = NULL; char *permission_names[32]; int index; u32 length; unsigned char need_comma = 0; if ( !permissions ) return; tclass_name = policydb.p_class_val_to_name[tclass - 1]; tclass_dat = policydb.class_val_to_struct[tclass - 1]; common_dat = tclass_dat->comdatum; /* init permission_names */ if ( common_dat && hashtab_map(common_dat->permissions.table, dump_masked_av_helper, permission_names) < 0 ) goto out; if ( hashtab_map(tclass_dat->permissions.table, dump_masked_av_helper, permission_names) < 0 ) goto out; /* get scontext/tcontext in text form */ if ( context_struct_to_string(scontext, &scontext_name, &length) < 0 ) goto out; if ( context_struct_to_string(tcontext, &tcontext_name, &length) < 0 ) goto out; printk("Flask: op=security_compute_av reason=%s " "scontext=%s tcontext=%s tclass=%s perms=", reason, scontext_name, tcontext_name, tclass_name); for ( index = 0; index < 32; index++ ) { u32 mask = (1 << index); if ( (mask & permissions) == 0 ) continue; printk("%s%s", need_comma ? "," : "", permission_names[index] ? permission_names[index] : "????"); need_comma = 1; } printk("\n"); out: /* release scontext/tcontext */ xfree(tcontext_name); xfree(scontext_name); return; } /* * security_boundary_permission - drops violated permissions * on boundary constraint. */ static void type_attribute_bounds_av(struct context *scontext, struct context *tcontext, u16 tclass, u32 requested, struct av_decision *avd) { struct context lo_scontext; struct context lo_tcontext; struct av_decision lo_avd; struct type_datum *source = policydb.type_val_to_struct[scontext->type - 1]; struct type_datum *target = policydb.type_val_to_struct[tcontext->type - 1]; u32 masked = 0; if ( source->bounds ) { memset(&lo_avd, 0, sizeof(lo_avd)); memcpy(&lo_scontext, scontext, sizeof(lo_scontext)); lo_scontext.type = source->bounds; context_struct_compute_av(&lo_scontext, tcontext, tclass, requested, &lo_avd); if ( (lo_avd.allowed & avd->allowed) == avd->allowed ) return; /* no masked permission */ masked = ~lo_avd.allowed & avd->allowed; } if ( target->bounds ) { memset(&lo_avd, 0, sizeof(lo_avd)); memcpy(&lo_tcontext, tcontext, sizeof(lo_tcontext)); lo_tcontext.type = target->bounds; context_struct_compute_av(scontext, &lo_tcontext, tclass, requested, &lo_avd); if ( (lo_avd.allowed & avd->allowed) == avd->allowed ) return; /* no masked permission */ masked = ~lo_avd.allowed & avd->allowed; } if ( source->bounds && target->bounds ) { memset(&lo_avd, 0, sizeof(lo_avd)); /* * lo_scontext and lo_tcontext are already * set up. */ context_struct_compute_av(&lo_scontext, &lo_tcontext, tclass, requested, &lo_avd); if ( (lo_avd.allowed & avd->allowed) == avd->allowed ) return; /* no masked permission */ masked = ~lo_avd.allowed & avd->allowed; } if ( masked ) { /* mask violated permissions */ avd->allowed &= ~masked; /* audit masked permissions */ security_dump_masked_av(scontext, tcontext, tclass, masked, "bounds"); } } /* * Compute access vectors based on a context structure pair for * the permissions in a particular class. */ static int context_struct_compute_av(struct context *scontext, struct context *tcontext, u16 tclass, u32 requested, struct av_decision *avd) { struct constraint_node *constraint; struct role_allow *ra; struct avtab_key avkey; struct avtab_node *node; struct class_datum *tclass_datum; struct ebitmap *sattr, *tattr; struct ebitmap_node *snode, *tnode; unsigned int i, j; /* * Initialize the access vectors to the default values. */ avd->allowed = 0; avd->auditallow = 0; avd->auditdeny = 0xffffffff; avd->seqno = latest_granting; avd->flags = 0; /* * We do not presently support policydb.handle_unknown == allow in Xen. */ if ( !tclass || tclass > policydb.p_classes.nprim ) return -EINVAL; tclass_datum = policydb.class_val_to_struct[tclass - 1]; /* * If a specific type enforcement rule was defined for * this permission check, then use it. */ avkey.target_class = tclass; avkey.specified = AVTAB_AV; sattr = &policydb.type_attr_map[scontext->type - 1]; tattr = &policydb.type_attr_map[tcontext->type - 1]; ebitmap_for_each_positive_bit(sattr, snode, i) { ebitmap_for_each_positive_bit(tattr, tnode, j) { avkey.source_type = i + 1; avkey.target_type = j + 1; for ( node = avtab_search_node(&policydb.te_avtab, &avkey); node != NULL; node = avtab_search_node_next(node, avkey.specified) ) { if ( node->key.specified == AVTAB_ALLOWED ) avd->allowed |= node->datum.data; else if ( node->key.specified == AVTAB_AUDITALLOW ) avd->auditallow |= node->datum.data; else if ( node->key.specified == AVTAB_AUDITDENY ) avd->auditdeny &= node->datum.data; } /* Check conditional av table for additional permissions */ cond_compute_av(&policydb.te_cond_avtab, &avkey, avd); } } /* * Remove any permissions prohibited by a constraint (this includes * the MLS policy). */ constraint = tclass_datum->constraints; while ( constraint ) { if ( (constraint->permissions & (avd->allowed) ) && !constraint_expr_eval(scontext, tcontext, NULL, constraint->expr)) { avd->allowed &= ~(constraint->permissions); } constraint = constraint->next; } /* * If checking process transition permission and the * role is changing, then check the (current_role, new_role) * pair. */ if ( tclass == SECCLASS_DOMAIN && (avd->allowed & DOMAIN__TRANSITION) && scontext->role != tcontext->role ) { for ( ra = policydb.role_allow; ra; ra = ra->next ) { if ( scontext->role == ra->role && tcontext->role == ra->new_role ) break; } if (!ra) avd->allowed &= ~DOMAIN__TRANSITION; } /* * If the given source and target types have boundary * constraint, lazy checks have to mask any violated * permission and notice it to userspace via audit. */ type_attribute_bounds_av(scontext, tcontext, tclass, requested, avd); return 0; } static int security_validtrans_handle_fail(struct context *ocontext, struct context *ncontext, struct context *tcontext, u16 tclass) { char *o = NULL, *n = NULL, *t = NULL; u32 olen, nlen, tlen; if ( context_struct_to_string(ocontext, &o, &olen) < 0 ) goto out; if ( context_struct_to_string(ncontext, &n, &nlen) < 0 ) goto out; if ( context_struct_to_string(tcontext, &t, &tlen) < 0 ) goto out; printk("security_validate_transition: denied for" " oldcontext=%s newcontext=%s taskcontext=%s tclass=%s", o, n, t, policydb.p_class_val_to_name[tclass-1]); out: xfree(o); xfree(n); xfree(t); if ( !flask_enforcing ) return 0; return -EPERM; } int security_validate_transition(u32 oldsid, u32 newsid, u32 tasksid, u16 tclass) { struct context *ocontext; struct context *ncontext; struct context *tcontext; struct class_datum *tclass_datum; struct constraint_node *constraint; int rc = 0; if ( !ss_initialized ) return 0; POLICY_RDLOCK; if ( !tclass || tclass > policydb.p_classes.nprim ) { printk(KERN_ERR "security_validate_transition: " "unrecognized class %d\n", tclass); rc = -EINVAL; goto out; } tclass_datum = policydb.class_val_to_struct[tclass - 1]; ocontext = sidtab_search(&sidtab, oldsid); if ( !ocontext ) { printk(KERN_ERR "security_validate_transition: " " unrecognized SID %d\n", oldsid); rc = -EINVAL; goto out; } ncontext = sidtab_search(&sidtab, newsid); if ( !ncontext ) { printk(KERN_ERR "security_validate_transition: " " unrecognized SID %d\n", newsid); rc = -EINVAL; goto out; } tcontext = sidtab_search(&sidtab, tasksid); if ( !tcontext ) { printk(KERN_ERR "security_validate_transition: " " unrecognized SID %d\n", tasksid); rc = -EINVAL; goto out; } constraint = tclass_datum->validatetrans; while ( constraint ) { if ( !constraint_expr_eval(ocontext, ncontext, tcontext, constraint->expr) ) { rc = security_validtrans_handle_fail(ocontext, ncontext, tcontext, tclass); goto out; } constraint = constraint->next; } out: POLICY_RDUNLOCK; return rc; } /** * security_compute_av - Compute access vector decisions. * @ssid: source security identifier * @tsid: target security identifier * @tclass: target security class * @requested: requested permissions * @avd: access vector decisions * * Compute a set of access vector decisions based on the * SID pair (@ssid, @tsid) for the permissions in @tclass. * Return -%EINVAL if any of the parameters are invalid or %0 * if the access vector decisions were computed successfully. */ int security_compute_av(u32 ssid, u32 tsid, u16 tclass, u32 requested, struct av_decision *avd) { struct context *scontext = NULL, *tcontext = NULL; int rc = 0; if ( !ss_initialized ) { avd->allowed = 0xffffffff; avd->auditallow = 0; avd->auditdeny = 0xffffffff; avd->seqno = latest_granting; return 0; } POLICY_RDLOCK; scontext = sidtab_search(&sidtab, ssid); if ( !scontext ) { printk("security_compute_av: unrecognized SID %d\n", ssid); rc = -EINVAL; goto out; } tcontext = sidtab_search(&sidtab, tsid); if ( !tcontext ) { printk("security_compute_av: unrecognized SID %d\n", tsid); rc = -EINVAL; goto out; } rc = context_struct_compute_av(scontext, tcontext, tclass, requested, avd); /* permissive domain? */ if ( ebitmap_get_bit(&policydb.permissive_map, scontext->type) ) avd->flags |= AVD_FLAGS_PERMISSIVE; out: POLICY_RDUNLOCK; return rc; } /* * Write the security context string representation of * the context structure `context' into a dynamically * allocated string of the correct size. Set `*scontext' * to point to this string and set `*scontext_len' to * the length of the string. */ static int context_struct_to_string(struct context *context, char **scontext, u32 *scontext_len) { char *scontextp; *scontext = NULL; *scontext_len = 0; /* Compute the size of the context. */ *scontext_len += strlen(policydb.p_user_val_to_name[context->user - 1]) + 1; *scontext_len += strlen(policydb.p_role_val_to_name[context->role - 1]) + 1; *scontext_len += strlen(policydb.p_type_val_to_name[context->type - 1]) + 1; *scontext_len += mls_compute_context_len(context); /* Allocate space for the context; caller must free this space. */ scontextp = xmalloc_array(char, *scontext_len); if ( !scontextp ) return -ENOMEM; *scontext = scontextp; /* * Copy the user name, role name and type name into the context. */ snprintf(scontextp, *scontext_len, "%s:%s:%s", policydb.p_user_val_to_name[context->user - 1], policydb.p_role_val_to_name[context->role - 1], policydb.p_type_val_to_name[context->type - 1]); scontextp += strlen(policydb.p_user_val_to_name[context->user - 1]) + 1 + strlen(policydb.p_role_val_to_name[context->role - 1]) + 1 + strlen(policydb.p_type_val_to_name[context->type - 1]); mls_sid_to_context(context, &scontextp); *scontextp = 0; return 0; } #include "initial_sid_to_string.h" /** * security_sid_to_context - Obtain a context for a given SID. * @sid: security identifier, SID * @scontext: security context * @scontext_len: length in bytes * * Write the string representation of the context associated with @sid * into a dynamically allocated string of the correct size. Set @scontext * to point to this string and set @scontext_len to the length of the string. */ int security_sid_to_context(u32 sid, char **scontext, u32 *scontext_len) { struct context *context; int rc = 0; if ( !ss_initialized ) { if ( sid <= SECINITSID_NUM ) { char *scontextp; *scontext_len = strlen(initial_sid_to_string[sid]) + 1; scontextp = xmalloc_array(char, *scontext_len); strlcpy(scontextp, initial_sid_to_string[sid], *scontext_len); *scontext = scontextp; goto out; } printk(KERN_ERR "security_sid_to_context: called before initial " "load_policy on unknown SID %d\n", sid); rc = -EINVAL; goto out; } POLICY_RDLOCK; context = sidtab_search(&sidtab, sid); if ( !context ) { printk(KERN_ERR "security_sid_to_context: unrecognized SID " "%d\n", sid); rc = -EINVAL; goto out_unlock; } rc = context_struct_to_string(context, scontext, scontext_len); out_unlock: POLICY_RDUNLOCK; out: return rc; } /** * security_context_to_sid - Obtain a SID for a given security context. * @scontext: security context * @scontext_len: length in bytes * @sid: security identifier, SID * * Obtains a SID associated with the security context that * has the string representation specified by @scontext. * Returns -%EINVAL if the context is invalid, -%ENOMEM if insufficient * memory is available, or 0 on success. */ int security_context_to_sid(char *scontext, u32 scontext_len, u32 *sid) { char *scontext2; struct context context; struct role_datum *role; struct type_datum *typdatum; struct user_datum *usrdatum; char *scontextp, *p, oldc; int rc = 0; if ( !ss_initialized ) { int i; for ( i = 1; i < SECINITSID_NUM; i++ ) { if ( !strcmp(initial_sid_to_string[i], scontext) ) { *sid = i; goto out; } } *sid = SECINITSID_XEN; goto out; } *sid = SECSID_NULL; /* Copy the string so that we can modify the copy as we parse it. The string should already by null terminated, but we append a null suffix to the copy to avoid problems with the existing attr package, which doesn't view the null terminator as part of the attribute value. */ scontext2 = xmalloc_array(char, scontext_len+1); if ( !scontext2 ) { rc = -ENOMEM; goto out; } memcpy(scontext2, scontext, scontext_len); scontext2[scontext_len] = 0; context_init(&context); *sid = SECSID_NULL; POLICY_RDLOCK; /* Parse the security context. */ rc = -EINVAL; scontextp = (char *) scontext2; /* Extract the user. */ p = scontextp; while ( *p && *p != ':' ) p++; if (*p == 0) goto out_unlock; *p++ = 0; usrdatum = hashtab_search(policydb.p_users.table, scontextp); if ( !usrdatum ) goto out_unlock; context.user = usrdatum->value; /* Extract role. */ scontextp = p; while ( *p && *p != ':' ) p++; if ( *p == 0 ) goto out_unlock; *p++ = 0; role = hashtab_search(policydb.p_roles.table, scontextp); if ( !role ) goto out_unlock; context.role = role->value; /* Extract type. */ scontextp = p; while ( *p && *p != ':' ) p++; oldc = *p; *p++ = 0; typdatum = hashtab_search(policydb.p_types.table, scontextp); if ( !typdatum || typdatum->attribute ) goto out_unlock; context.type = typdatum->value; rc = mls_context_to_sid(oldc, &p, &context, &sidtab); if ( rc ) goto out_unlock; if ( (p - scontext2) < scontext_len ) { rc = -EINVAL; goto out_unlock; } /* Check the validity of the new context. */ if ( !policydb_context_isvalid(&policydb, &context) ) { rc = -EINVAL; goto out_unlock; } /* Obtain the new sid. */ rc = sidtab_context_to_sid(&sidtab, &context, sid); out_unlock: POLICY_RDUNLOCK; context_destroy(&context); xfree(scontext2); out: return rc; } static int compute_sid_handle_invalid_context( struct context *scontext, struct context *tcontext, u16 tclass, struct context *newcontext) { char *s = NULL, *t = NULL, *n = NULL; u32 slen, tlen, nlen; if ( context_struct_to_string(scontext, &s, &slen) < 0 ) goto out; if ( context_struct_to_string(tcontext, &t, &tlen) < 0 ) goto out; if ( context_struct_to_string(newcontext, &n, &nlen) < 0 ) goto out; printk("security_compute_sid: invalid context %s" " for scontext=%s" " tcontext=%s" " tclass=%s", n, s, t, policydb.p_class_val_to_name[tclass-1]); out: xfree(s); xfree(t); xfree(n); if ( !flask_enforcing ) return 0; return -EACCES; } static int security_compute_sid(u32 ssid, u32 tsid, u16 tclass, u32 specified, u32 *out_sid) { struct context *scontext = NULL, *tcontext = NULL, newcontext; struct role_trans *roletr = NULL; struct avtab_key avkey; struct avtab_datum *avdatum; struct avtab_node *node; int rc = 0; if ( !ss_initialized ) { switch ( tclass ) { case SECCLASS_DOMAIN: *out_sid = ssid; break; default: *out_sid = tsid; break; } goto out; } POLICY_RDLOCK; scontext = sidtab_search(&sidtab, ssid); if ( !scontext ) { printk(KERN_ERR "security_compute_sid: unrecognized SID %d\n", ssid); rc = -EINVAL; goto out_unlock; } tcontext = sidtab_search(&sidtab, tsid); if ( !tcontext ) { printk(KERN_ERR "security_compute_sid: unrecognized SID %d\n", tsid); rc = -EINVAL; goto out_unlock; } context_init(&newcontext); /* Set the user identity. */ switch ( specified ) { case AVTAB_TRANSITION: case AVTAB_CHANGE: /* Use the process user identity. */ newcontext.user = scontext->user; break; case AVTAB_MEMBER: /* Use the related object owner. */ newcontext.user = tcontext->user; break; } /* Set the role and type to default values. */ switch ( tclass ) { case SECCLASS_DOMAIN: /* Use the current role and type of process. */ newcontext.role = scontext->role; newcontext.type = scontext->type; break; default: /* Use the well-defined object role. */ newcontext.role = OBJECT_R_VAL; /* Use the type of the related object. */ newcontext.type = tcontext->type; } /* Look for a type transition/member/change rule. */ avkey.source_type = scontext->type; avkey.target_type = tcontext->type; avkey.target_class = tclass; avkey.specified = specified; avdatum = avtab_search(&policydb.te_avtab, &avkey); /* If no permanent rule, also check for enabled conditional rules */ if ( !avdatum ) { node = avtab_search_node(&policydb.te_cond_avtab, &avkey); for ( ; node != NULL; node = avtab_search_node_next(node, specified) ) { if ( node->key.specified & AVTAB_ENABLED ) { avdatum = &node->datum; break; } } } if ( avdatum ) { /* Use the type from the type transition/member/change rule. */ newcontext.type = avdatum->data; } /* Check for class-specific changes. */ switch ( tclass ) { case SECCLASS_DOMAIN: if ( specified & AVTAB_TRANSITION ) { /* Look for a role transition rule. */ for ( roletr = policydb.role_tr; roletr; roletr = roletr->next ) { if ( roletr->role == scontext->role && roletr->type == tcontext->type ) { /* Use the role transition rule. */ newcontext.role = roletr->new_role; break; } } } break; default: break; } /* Set the MLS attributes. This is done last because it may allocate memory. */ rc = mls_compute_sid(scontext, tcontext, tclass, specified, &newcontext); if ( rc ) goto out_unlock; /* Check the validity of the context. */ if ( !policydb_context_isvalid(&policydb, &newcontext) ) { rc = compute_sid_handle_invalid_context(scontext, tcontext, tclass, &newcontext); if ( rc ) goto out_unlock; } /* Obtain the sid for the context. */ rc = sidtab_context_to_sid(&sidtab, &newcontext, out_sid); out_unlock: POLICY_RDUNLOCK; context_destroy(&newcontext); out: return rc; } /** * security_transition_sid - Compute the SID for a new subject/object. * @ssid: source security identifier * @tsid: target security identifier * @tclass: target security class * @out_sid: security identifier for new subject/object * * Compute a SID to use for labeling a new subject or object in the * class @tclass based on a SID pair (@ssid, @tsid). * Return -%EINVAL if any of the parameters are invalid, -%ENOMEM * if insufficient memory is available, or %0 if the new SID was * computed successfully. */ int security_transition_sid(u32 ssid, u32 tsid, u16 tclass, u32 *out_sid) { return security_compute_sid(ssid, tsid, tclass, AVTAB_TRANSITION, out_sid); } /** * security_member_sid - Compute the SID for member selection. * @ssid: source security identifier * @tsid: target security identifier * @tclass: target security class * @out_sid: security identifier for selected member * * Compute a SID to use when selecting a member of a polyinstantiated * object of class @tclass based on a SID pair (@ssid, @tsid). * Return -%EINVAL if any of the parameters are invalid, -%ENOMEM * if insufficient memory is available, or %0 if the SID was * computed successfully. */ int security_member_sid(u32 ssid, u32 tsid, u16 tclass, u32 *out_sid) { return security_compute_sid(ssid, tsid, tclass, AVTAB_MEMBER, out_sid); } /** * security_change_sid - Compute the SID for object relabeling. * @ssid: source security identifier * @tsid: target security identifier * @tclass: target security class * @out_sid: security identifier for selected member * * Compute a SID to use for relabeling an object of class @tclass * based on a SID pair (@ssid, @tsid). * Return -%EINVAL if any of the parameters are invalid, -%ENOMEM * if insufficient memory is available, or %0 if the SID was * computed successfully. */ int security_change_sid(u32 ssid, u32 tsid, u16 tclass, u32 *out_sid) { return security_compute_sid(ssid, tsid, tclass, AVTAB_CHANGE, out_sid); } /* * Verify that each kernel class that is defined in the * policy is correct */ static int validate_classes(struct policydb *p) { int i; struct class_datum *cladatum; struct perm_datum *perdatum; u32 nprim, perm_val, pol_val; u16 class_val; const struct selinux_class_perm *kdefs = &selinux_class_perm; const char *def_class, *def_perm, *pol_class; struct symtab *perms; for ( i = 1; i < kdefs->cts_len; i++ ) { def_class = kdefs->class_to_string[i]; if ( !def_class ) continue; if ( i > p->p_classes.nprim ) { printk(KERN_INFO "Flask: class %s not defined in policy\n", def_class); return -EINVAL; } pol_class = p->p_class_val_to_name[i-1]; if ( strcmp(pol_class, def_class) ) { printk(KERN_ERR "Flask: class %d is incorrect, found %s but should be %s\n", i, pol_class, def_class); return -EINVAL; } } for ( i = 0; i < kdefs->av_pts_len; i++ ) { class_val = kdefs->av_perm_to_string[i].tclass; perm_val = kdefs->av_perm_to_string[i].value; def_perm = kdefs->av_perm_to_string[i].name; if ( class_val > p->p_classes.nprim ) continue; pol_class = p->p_class_val_to_name[class_val-1]; cladatum = hashtab_search(p->p_classes.table, pol_class); BUG_ON( !cladatum ); perms = &cladatum->permissions; nprim = 1 << (perms->nprim - 1); if ( perm_val > nprim ) { printk(KERN_INFO "Flask: permission %s in class %s not defined in policy\n", def_perm, pol_class); return -EINVAL; } perdatum = hashtab_search(perms->table, def_perm); if ( perdatum == NULL ) { printk(KERN_ERR "Flask: permission %s in class %s not found in policy\n", def_perm, pol_class); return -EINVAL; } pol_val = 1 << (perdatum->value - 1); if ( pol_val != perm_val ) { printk(KERN_ERR "Flask: permission %s in class %s has incorrect value\n", def_perm, pol_class); return -EINVAL; } } return 0; } /* Clone the SID into the new SID table. */ static int clone_sid(u32 sid, struct context *context, void *arg) { struct sidtab *s = arg; return sidtab_insert(s, sid, context); } static inline int convert_context_handle_invalid_context(struct context *context) { int rc = 0; if ( flask_enforcing ) rc = -EINVAL; else { char *s; u32 len; context_struct_to_string(context, &s, &len); printk(KERN_ERR "Flask: context %s is invalid\n", s); xfree(s); } return rc; } struct convert_context_args { struct policydb *oldp; struct policydb *newp; }; /* * Convert the values in the security context * structure `c' from the values specified * in the policy `p->oldp' to the values specified * in the policy `p->newp'. Verify that the * context is valid under the new policy. */ static int convert_context(u32 key, struct context *c, void *p) { struct convert_context_args *args; struct context oldc; struct role_datum *role; struct type_datum *typdatum; struct user_datum *usrdatum; char *s; u32 len; int rc; args = p; rc = context_cpy(&oldc, c); if ( rc ) goto out; rc = -EINVAL; /* Convert the user. */ usrdatum = hashtab_search(args->newp->p_users.table, args->oldp->p_user_val_to_name[c->user - 1]); if ( !usrdatum ) goto bad; c->user = usrdatum->value; /* Convert the role. */ role = hashtab_search(args->newp->p_roles.table, args->oldp->p_role_val_to_name[c->role - 1]); if ( !role ) goto bad; c->role = role->value; /* Convert the type. */ typdatum = hashtab_search(args->newp->p_types.table, args->oldp->p_type_val_to_name[c->type - 1]); if ( !typdatum ) goto bad; c->type = typdatum->value; rc = mls_convert_context(args->oldp, args->newp, c); if ( rc ) goto bad; /* Check the validity of the new context. */ if ( !policydb_context_isvalid(args->newp, c) ) { rc = convert_context_handle_invalid_context(&oldc); if ( rc ) goto bad; } context_destroy(&oldc); out: return rc; bad: context_struct_to_string(&oldc, &s, &len); context_destroy(&oldc); printk(KERN_ERR "Flask: invalidating context %s\n", s); xfree(s); goto out; } static int security_preserve_bools(struct policydb *p); /** * security_load_policy - Load a security policy configuration. * @data: binary policy data * @len: length of data in bytes * * Load a new set of security policy configuration data, * validate it and convert the SID table as necessary. * This function will flush the access vector cache after * loading the new policy. */ int security_load_policy(const void *data, size_t len) { struct policydb oldpolicydb, newpolicydb; struct sidtab oldsidtab, newsidtab; struct convert_context_args args; u32 seqno; int rc = 0; struct policy_file file = { data, len }, *fp = &file; LOAD_LOCK; if ( !ss_initialized ) { if ( policydb_read(&policydb, fp) ) { LOAD_UNLOCK; return -EINVAL; } if ( policydb_load_isids(&policydb, &sidtab) ) { LOAD_UNLOCK; policydb_destroy(&policydb); return -EINVAL; } if ( validate_classes(&policydb) ) { LOAD_UNLOCK; printk(KERN_ERR "Flask: the definition of a class is incorrect\n"); sidtab_destroy(&sidtab); policydb_destroy(&policydb); return -EINVAL; } policydb_loaded_version = policydb.policyvers; ss_initialized = 1; seqno = ++latest_granting; LOAD_UNLOCK; avc_ss_reset(seqno); return 0; } #if 0 sidtab_hash_eval(&sidtab, "sids"); #endif if ( policydb_read(&newpolicydb, fp) ) { LOAD_UNLOCK; return -EINVAL; } sidtab_init(&newsidtab); /* Verify that the kernel defined classes are correct. */ if ( validate_classes(&newpolicydb) ) { printk(KERN_ERR "Flask: the definition of a class is incorrect\n"); rc = -EINVAL; goto err; } rc = security_preserve_bools(&newpolicydb); if ( rc ) { printk(KERN_ERR "Flask: unable to preserve booleans\n"); goto err; } /* Clone the SID table. */ sidtab_shutdown(&sidtab); if ( sidtab_map(&sidtab, clone_sid, &newsidtab) ) { rc = -ENOMEM; goto err; } /* Convert the internal representations of contexts in the new SID table and remove invalid SIDs. */ args.oldp = &policydb; args.newp = &newpolicydb; sidtab_map_remove_on_error(&newsidtab, convert_context, &args); /* Save the old policydb and SID table to free later. */ memcpy(&oldpolicydb, &policydb, sizeof policydb); sidtab_set(&oldsidtab, &sidtab); /* Install the new policydb and SID table. */ POLICY_WRLOCK; memcpy(&policydb, &newpolicydb, sizeof policydb); sidtab_set(&sidtab, &newsidtab); seqno = ++latest_granting; policydb_loaded_version = policydb.policyvers; POLICY_WRUNLOCK; LOAD_UNLOCK; /* Free the old policydb and SID table. */ policydb_destroy(&oldpolicydb); sidtab_destroy(&oldsidtab); avc_ss_reset(seqno); return 0; err: LOAD_UNLOCK; sidtab_destroy(&newsidtab); policydb_destroy(&newpolicydb); return rc; } int security_get_allow_unknown(void) { return policydb.allow_unknown; } /** * security_irq_sid - Obtain the SID for a physical irq. * @pirq: physical irq * @out_sid: security identifier */ int security_irq_sid(int pirq, u32 *out_sid) { int rc = 0; struct ocontext *c; POLICY_RDLOCK; c = policydb.ocontexts[OCON_PIRQ]; while ( c ) { if ( c->u.pirq == pirq ) break; c = c->next; } if ( c ) { if ( !c->sid ) { rc = sidtab_context_to_sid(&sidtab, &c->context, &c->sid); if ( rc ) goto out; } *out_sid = c->sid; } else { *out_sid = SECINITSID_IRQ; } out: POLICY_RDUNLOCK; return rc; } /** * security_iomem_sid - Obtain the SID for a page of iomem. * @mfn: iomem mfn * @out_sid: security identifier */ int security_iomem_sid(unsigned long mfn, u32 *out_sid) { struct ocontext *c; int rc = 0; POLICY_RDLOCK; c = policydb.ocontexts[OCON_IOMEM]; while ( c ) { if ( c->u.iomem.low_iomem <= mfn && c->u.iomem.high_iomem >= mfn ) break; c = c->next; } if ( c ) { if ( !c->sid ) { rc = sidtab_context_to_sid(&sidtab, &c->context, &c->sid); if ( rc ) goto out; } *out_sid = c->sid; } else { *out_sid = SECINITSID_IOMEM; } out: POLICY_RDUNLOCK; return rc; } int security_iterate_iomem_sids(unsigned long start, unsigned long end, security_iterate_fn fn, void *data) { struct ocontext *c; int rc = 0; POLICY_RDLOCK; c = policydb.ocontexts[OCON_IOMEM]; while (c && c->u.iomem.high_iomem < start) c = c->next; while (c && c->u.iomem.low_iomem <= end) { if (!c->sid) { rc = sidtab_context_to_sid(&sidtab, &c->context, &c->sid); if ( rc ) goto out; } if (start < c->u.iomem.low_iomem) { /* found a gap */ rc = fn(data, SECINITSID_IOMEM, start, c->u.iomem.low_iomem - 1); if (rc) goto out; start = c->u.iomem.low_iomem; } if (end <= c->u.iomem.high_iomem) { /* iteration ends in the middle of this range */ rc = fn(data, c->sid, start, end); goto out; } rc = fn(data, c->sid, start, c->u.iomem.high_iomem); if (rc) goto out; start = c->u.iomem.high_iomem + 1; c = c->next; } rc = fn(data, SECINITSID_IOMEM, start, end); out: POLICY_RDUNLOCK; return rc; } /** * security_ioport_sid - Obtain the SID for an ioport. * @ioport: ioport * @out_sid: security identifier */ int security_ioport_sid(u32 ioport, u32 *out_sid) { struct ocontext *c; int rc = 0; POLICY_RDLOCK; c = policydb.ocontexts[OCON_IOPORT]; while ( c ) { if ( c->u.ioport.low_ioport <= ioport && c->u.ioport.high_ioport >= ioport ) break; c = c->next; } if ( c ) { if ( !c->sid ) { rc = sidtab_context_to_sid(&sidtab, &c->context, &c->sid); if ( rc ) goto out; } *out_sid = c->sid; } else { *out_sid = SECINITSID_IOPORT; } out: POLICY_RDUNLOCK; return rc; } int security_iterate_ioport_sids(u32 start, u32 end, security_iterate_fn fn, void *data) { struct ocontext *c; int rc = 0; POLICY_RDLOCK; c = policydb.ocontexts[OCON_IOPORT]; while (c && c->u.ioport.high_ioport < start) c = c->next; while (c && c->u.ioport.low_ioport <= end) { if (!c->sid) { rc = sidtab_context_to_sid(&sidtab, &c->context, &c->sid); if ( rc ) goto out; } if (start < c->u.ioport.low_ioport) { /* found a gap */ rc = fn(data, SECINITSID_IOPORT, start, c->u.ioport.low_ioport - 1); if (rc) goto out; start = c->u.ioport.low_ioport; } if (end <= c->u.ioport.high_ioport) { /* iteration ends in the middle of this range */ rc = fn(data, c->sid, start, end); goto out; } rc = fn(data, c->sid, start, c->u.ioport.high_ioport); if (rc) goto out; start = c->u.ioport.high_ioport + 1; c = c->next; } rc = fn(data, SECINITSID_IOPORT, start, end); out: POLICY_RDUNLOCK; return rc; } /** * security_device_sid - Obtain the SID for a PCI device. * @ioport: device * @out_sid: security identifier */ int security_device_sid(u32 device, u32 *out_sid) { struct ocontext *c; int rc = 0; POLICY_RDLOCK; c = policydb.ocontexts[OCON_DEVICE]; while ( c ) { if ( c->u.device == device ) break; c = c->next; } if ( c ) { if ( !c->sid ) { rc = sidtab_context_to_sid(&sidtab, &c->context, &c->sid); if ( rc ) goto out; } *out_sid = c->sid; } else { *out_sid = SECINITSID_DEVICE; } out: POLICY_RDUNLOCK; return rc; } int security_devicetree_sid(const char *path, u32 *out_sid) { struct ocontext *c; int rc = 0; POLICY_RDLOCK; c = policydb.ocontexts[OCON_DTREE]; while ( c ) { if ( strcmp(c->u.name, path) == 0 ) break; c = c->next; } if ( c ) { if ( !c->sid ) { rc = sidtab_context_to_sid(&sidtab, &c->context, &c->sid); if ( rc ) goto out; } *out_sid = c->sid; } else { *out_sid = SECINITSID_DEVICE; } out: POLICY_RDUNLOCK; return rc; } int security_find_bool(const char *name) { int i, rv = -ENOENT; POLICY_RDLOCK; for ( i = 0; i < policydb.p_bools.nprim; i++ ) { if (!strcmp(name, policydb.p_bool_val_to_name[i])) { rv = i; break; } } POLICY_RDUNLOCK; return rv; } int security_get_bools(int *len, char ***names, int **values, size_t *maxstr) { int i, rc = -ENOMEM; POLICY_RDLOCK; if ( names ) *names = NULL; *values = NULL; if ( maxstr ) *maxstr = 0; *len = policydb.p_bools.nprim; if ( !*len ) { rc = 0; goto out; } if ( names ) { *names = xzalloc_array(char *, *len); if ( !*names ) goto err; } *values = xmalloc_array(int, *len); if ( !*values ) goto err; for ( i = 0; i < *len; i++ ) { size_t name_len = strlen(policydb.p_bool_val_to_name[i]); (*values)[i] = policydb.bool_val_to_struct[i]->state; if ( names ) { (*names)[i] = xmalloc_array(char, name_len + 1); if ( !(*names)[i] ) goto err; strlcpy((*names)[i], policydb.p_bool_val_to_name[i], name_len + 1); } if ( maxstr && name_len > *maxstr ) *maxstr = name_len; } rc = 0; out: POLICY_RDUNLOCK; return rc; err: if ( names && *names ) { for ( i = 0; i < *len; i++ ) xfree((*names)[i]); xfree(*names); } xfree(*values); goto out; } int security_set_bools(int len, int *values) { int i, rc = 0; int lenp, seqno = 0; struct cond_node *cur; POLICY_WRLOCK; lenp = policydb.p_bools.nprim; if ( len != lenp ) { rc = -EFAULT; goto out; } printk(KERN_INFO "Flask: committed booleans { "); for ( i = 0; i < len; i++ ) { if ( values[i] ) { policydb.bool_val_to_struct[i]->state = 1; } else { policydb.bool_val_to_struct[i]->state = 0; } if ( i != 0 ) printk(", "); printk("%s:%d", policydb.p_bool_val_to_name[i], policydb.bool_val_to_struct[i]->state); } printk(" }\n"); for ( cur = policydb.cond_list; cur != NULL; cur = cur->next ) { rc = evaluate_cond_node(&policydb, cur); if ( rc ) goto out; } seqno = ++latest_granting; out: POLICY_WRUNLOCK; if ( !rc ) { avc_ss_reset(seqno); } return rc; } int security_get_bool_value(unsigned int b) { int rc = 0; unsigned int len; POLICY_RDLOCK; len = policydb.p_bools.nprim; if ( b >= len ) { rc = -ENOENT; goto out; } rc = policydb.bool_val_to_struct[b]->state; out: POLICY_RDUNLOCK; return rc; } char *security_get_bool_name(unsigned int b) { unsigned int len; char *rv = NULL; POLICY_RDLOCK; len = policydb.p_bools.nprim; if ( b >= len ) { goto out; } len = strlen(policydb.p_bool_val_to_name[b]) + 1; rv = xmalloc_array(char, len); if ( !rv ) goto out; memcpy(rv, policydb.p_bool_val_to_name[b], len); out: POLICY_RDUNLOCK; return rv; } static int security_preserve_bools(struct policydb *p) { int rc, nbools = 0, *bvalues = NULL, i; char **bnames = NULL; struct cond_bool_datum *booldatum; struct cond_node *cur; rc = security_get_bools(&nbools, &bnames, &bvalues, NULL); if ( rc ) return rc; for ( i = 0; i < nbools; i++ ) { booldatum = hashtab_search(p->p_bools.table, bnames[i]); if ( booldatum ) booldatum->state = bvalues[i]; } for ( cur = p->cond_list; cur; cur = cur->next ) { rc = evaluate_cond_node(p, cur); if ( rc ) goto out; } out: if ( bnames ) { for ( i = 0; i < nbools; i++ ) xfree(bnames[i]); } xfree(bnames); xfree(bvalues); return rc; } int security_ocontext_add( u32 ocon, unsigned long low, unsigned long high ,u32 sid ) { int ret = 0; struct ocontext *c; struct ocontext *prev; struct ocontext *add; if ( (add = xzalloc(struct ocontext)) == NULL ) return -ENOMEM; add->sid = sid; POLICY_WRLOCK; switch( ocon ) { case OCON_PIRQ: add->u.pirq = (u16)low; if ( high != low ) { ret = -EINVAL; break; } c = policydb.ocontexts[OCON_PIRQ]; while ( c ) { if ( c->u.pirq == add->u.pirq ) { if ( c->sid == sid ) break; printk("flask: Duplicate pirq %d\n", add->u.pirq); ret = -EEXIST; break; } c = c->next; } if ( ret == 0 ) { add->next = policydb.ocontexts[OCON_PIRQ]; policydb.ocontexts[OCON_PIRQ] = add; } break; case OCON_IOPORT: add->u.ioport.low_ioport = low; add->u.ioport.high_ioport = high; prev = NULL; c = policydb.ocontexts[OCON_IOPORT]; while ( c && c->u.ioport.high_ioport < low ) { prev = c; c = c->next; } if (c && c->u.ioport.low_ioport <= high) { if (c->u.ioport.low_ioport == low && c->u.ioport.high_ioport == high && c->sid == sid) break; printk("flask: IO Port overlap with entry %#x - %#x\n", c->u.ioport.low_ioport, c->u.ioport.high_ioport); ret = -EEXIST; break; } if (prev) { add->next = prev->next; prev->next = add; } else { add->next = policydb.ocontexts[OCON_IOPORT]; policydb.ocontexts[OCON_IOPORT] = add; } break; case OCON_IOMEM: add->u.iomem.low_iomem = low; add->u.iomem.high_iomem = high; prev = NULL; c = policydb.ocontexts[OCON_IOMEM]; while ( c && c->u.iomem.high_iomem < low ) { prev = c; c = c->next; } if (c && c->u.iomem.low_iomem <= high) { if (c->u.iomem.low_iomem == low && c->u.iomem.high_iomem == high && c->sid == sid) break; printk("flask: IO Memory overlap with entry %#"PRIx64" - %#"PRIx64"\n", c->u.iomem.low_iomem, c->u.iomem.high_iomem); ret = -EEXIST; break; } if (prev) { add->next = prev->next; prev->next = add; } else { add->next = policydb.ocontexts[OCON_IOMEM]; policydb.ocontexts[OCON_IOMEM] = add; } break; case OCON_DEVICE: add->u.device = low; if ( high != low ) { ret = -EINVAL; break; } c = policydb.ocontexts[OCON_DEVICE]; while ( c ) { if ( c->u.device == add->u.device ) { if ( c->sid == sid ) break; printk("flask: Duplicate PCI Device %#x\n", add->u.device); ret = -EEXIST; break; } c = c->next; } if ( ret == 0 ) { add->next = policydb.ocontexts[OCON_DEVICE]; policydb.ocontexts[OCON_DEVICE] = add; } break; default: ret = -EINVAL; } POLICY_WRUNLOCK; if ( ret != 0 ) xfree(add); return ret; } int security_ocontext_del( u32 ocon, unsigned long low, unsigned long high ) { int ret = 0; struct ocontext *c, *before_c; POLICY_WRLOCK; switch( ocon ) { case OCON_PIRQ: for ( before_c = NULL, c = policydb.ocontexts[OCON_PIRQ]; c; before_c = c, c = c->next ) { if ( c->u.pirq == low ) { if ( before_c == NULL ) { policydb.ocontexts[OCON_PIRQ] = c->next; xfree(c); goto out; } else { before_c->next = c->next; xfree(c); goto out; } } } printk("flask: ocontext not found: pirq %ld\n", low); ret = -ENOENT; break; case OCON_IOPORT: for ( before_c = NULL, c = policydb.ocontexts[OCON_IOPORT]; c; before_c = c, c = c->next ) { if ( c->u.ioport.low_ioport == low && c->u.ioport.high_ioport == high ) { if ( before_c == NULL ) { policydb.ocontexts[OCON_IOPORT] = c->next; xfree(c); goto out; } else { before_c->next = c->next; xfree(c); goto out; } } } printk("flask: ocontext not found: ioport %#lx - %#lx\n", low, high); ret = -ENOENT; break; case OCON_IOMEM: for ( before_c = NULL, c = policydb.ocontexts[OCON_IOMEM]; c; before_c = c, c = c->next ) { if ( c->u.iomem.low_iomem == low && c->u.iomem.high_iomem == high ) { if ( before_c == NULL ) { policydb.ocontexts[OCON_IOMEM] = c->next; xfree(c); goto out; } else { before_c->next = c->next; xfree(c); goto out; } } } printk("flask: ocontext not found: iomem %#lx - %#lx\n", low, high); ret = -ENOENT; break; case OCON_DEVICE: for ( before_c = NULL, c = policydb.ocontexts[OCON_DEVICE]; c; before_c = c, c = c->next ) { if ( c->u.device == low ) { if ( before_c == NULL ) { policydb.ocontexts[OCON_DEVICE] = c->next; xfree(c); goto out; } else { before_c->next = c->next; xfree(c); goto out; } } } printk("flask: ocontext not found: pcidevice %#lx\n", low); ret = -ENOENT; break; default: ret = -EINVAL; } out: POLICY_WRUNLOCK; return ret; } int security_devicetree_setlabel(char *path, u32 sid) { int ret = 0; struct ocontext *c; struct ocontext **pcurr; struct ocontext *add = NULL; if ( sid ) { add = xzalloc(struct ocontext); if ( add == NULL ) { xfree(path); return -ENOMEM; } add->sid = sid; add->u.name = path; } else { ret = -ENOENT; } POLICY_WRLOCK; pcurr = &policydb.ocontexts[OCON_DTREE]; c = *pcurr; while ( c ) { if ( strcmp(c->u.name, path) == 0 ) { if ( sid ) { ret = -EEXIST; break; } else { *pcurr = c->next; xfree(c->u.name); xfree(c); ret = 0; break; } } pcurr = &c->next; c = *pcurr; } if ( add && ret == 0 ) { add->next = policydb.ocontexts[OCON_DTREE]; policydb.ocontexts[OCON_DTREE] = add; add = NULL; path = NULL; } POLICY_WRUNLOCK; xfree(add); xfree(path); return ret; }