1 /* SPDX-License-Identifier: GPL-2.0 */
2 #ifndef _LINUX_PAGEMAP_H
3 #define _LINUX_PAGEMAP_H
4
5 /*
6 * Copyright 1995 Linus Torvalds
7 */
8 #include <linux/mm.h>
9 #include <linux/fs.h>
10 #include <linux/list.h>
11 #include <linux/highmem.h>
12 #include <linux/compiler.h>
13 #include <linux/uaccess.h>
14 #include <linux/gfp.h>
15 #include <linux/bitops.h>
16 #include <linux/hardirq.h> /* for in_interrupt() */
17 #include <linux/hugetlb_inline.h>
18
19 struct folio_batch;
20
21 unsigned long invalidate_mapping_pages(struct address_space *mapping,
22 pgoff_t start, pgoff_t end);
23
invalidate_remote_inode(struct inode * inode)24 static inline void invalidate_remote_inode(struct inode *inode)
25 {
26 if (S_ISREG(inode->i_mode) || S_ISDIR(inode->i_mode) ||
27 S_ISLNK(inode->i_mode))
28 invalidate_mapping_pages(inode->i_mapping, 0, -1);
29 }
30 int invalidate_inode_pages2(struct address_space *mapping);
31 int invalidate_inode_pages2_range(struct address_space *mapping,
32 pgoff_t start, pgoff_t end);
33 int write_inode_now(struct inode *, int sync);
34 int filemap_fdatawrite(struct address_space *);
35 int filemap_flush(struct address_space *);
36 int filemap_fdatawait_keep_errors(struct address_space *mapping);
37 int filemap_fdatawait_range(struct address_space *, loff_t lstart, loff_t lend);
38 int filemap_fdatawait_range_keep_errors(struct address_space *mapping,
39 loff_t start_byte, loff_t end_byte);
40
filemap_fdatawait(struct address_space * mapping)41 static inline int filemap_fdatawait(struct address_space *mapping)
42 {
43 return filemap_fdatawait_range(mapping, 0, LLONG_MAX);
44 }
45
46 bool filemap_range_has_page(struct address_space *, loff_t lstart, loff_t lend);
47 int filemap_write_and_wait_range(struct address_space *mapping,
48 loff_t lstart, loff_t lend);
49 int __filemap_fdatawrite_range(struct address_space *mapping,
50 loff_t start, loff_t end, int sync_mode);
51 int filemap_fdatawrite_range(struct address_space *mapping,
52 loff_t start, loff_t end);
53 int filemap_check_errors(struct address_space *mapping);
54 void __filemap_set_wb_err(struct address_space *mapping, int err);
55 int filemap_fdatawrite_wbc(struct address_space *mapping,
56 struct writeback_control *wbc);
57
filemap_write_and_wait(struct address_space * mapping)58 static inline int filemap_write_and_wait(struct address_space *mapping)
59 {
60 return filemap_write_and_wait_range(mapping, 0, LLONG_MAX);
61 }
62
63 /**
64 * filemap_set_wb_err - set a writeback error on an address_space
65 * @mapping: mapping in which to set writeback error
66 * @err: error to be set in mapping
67 *
68 * When writeback fails in some way, we must record that error so that
69 * userspace can be informed when fsync and the like are called. We endeavor
70 * to report errors on any file that was open at the time of the error. Some
71 * internal callers also need to know when writeback errors have occurred.
72 *
73 * When a writeback error occurs, most filesystems will want to call
74 * filemap_set_wb_err to record the error in the mapping so that it will be
75 * automatically reported whenever fsync is called on the file.
76 */
filemap_set_wb_err(struct address_space * mapping,int err)77 static inline void filemap_set_wb_err(struct address_space *mapping, int err)
78 {
79 /* Fastpath for common case of no error */
80 if (unlikely(err))
81 __filemap_set_wb_err(mapping, err);
82 }
83
84 /**
85 * filemap_check_wb_err - has an error occurred since the mark was sampled?
86 * @mapping: mapping to check for writeback errors
87 * @since: previously-sampled errseq_t
88 *
89 * Grab the errseq_t value from the mapping, and see if it has changed "since"
90 * the given value was sampled.
91 *
92 * If it has then report the latest error set, otherwise return 0.
93 */
filemap_check_wb_err(struct address_space * mapping,errseq_t since)94 static inline int filemap_check_wb_err(struct address_space *mapping,
95 errseq_t since)
96 {
97 return errseq_check(&mapping->wb_err, since);
98 }
99
100 /**
101 * filemap_sample_wb_err - sample the current errseq_t to test for later errors
102 * @mapping: mapping to be sampled
103 *
104 * Writeback errors are always reported relative to a particular sample point
105 * in the past. This function provides those sample points.
106 */
filemap_sample_wb_err(struct address_space * mapping)107 static inline errseq_t filemap_sample_wb_err(struct address_space *mapping)
108 {
109 return errseq_sample(&mapping->wb_err);
110 }
111
112 /**
113 * file_sample_sb_err - sample the current errseq_t to test for later errors
114 * @file: file pointer to be sampled
115 *
116 * Grab the most current superblock-level errseq_t value for the given
117 * struct file.
118 */
file_sample_sb_err(struct file * file)119 static inline errseq_t file_sample_sb_err(struct file *file)
120 {
121 return errseq_sample(&file->f_path.dentry->d_sb->s_wb_err);
122 }
123
124 /*
125 * Flush file data before changing attributes. Caller must hold any locks
126 * required to prevent further writes to this file until we're done setting
127 * flags.
128 */
inode_drain_writes(struct inode * inode)129 static inline int inode_drain_writes(struct inode *inode)
130 {
131 inode_dio_wait(inode);
132 return filemap_write_and_wait(inode->i_mapping);
133 }
134
mapping_empty(struct address_space * mapping)135 static inline bool mapping_empty(struct address_space *mapping)
136 {
137 return xa_empty(&mapping->i_pages);
138 }
139
140 /*
141 * mapping_shrinkable - test if page cache state allows inode reclaim
142 * @mapping: the page cache mapping
143 *
144 * This checks the mapping's cache state for the pupose of inode
145 * reclaim and LRU management.
146 *
147 * The caller is expected to hold the i_lock, but is not required to
148 * hold the i_pages lock, which usually protects cache state. That's
149 * because the i_lock and the list_lru lock that protect the inode and
150 * its LRU state don't nest inside the irq-safe i_pages lock.
151 *
152 * Cache deletions are performed under the i_lock, which ensures that
153 * when an inode goes empty, it will reliably get queued on the LRU.
154 *
155 * Cache additions do not acquire the i_lock and may race with this
156 * check, in which case we'll report the inode as shrinkable when it
157 * has cache pages. This is okay: the shrinker also checks the
158 * refcount and the referenced bit, which will be elevated or set in
159 * the process of adding new cache pages to an inode.
160 */
mapping_shrinkable(struct address_space * mapping)161 static inline bool mapping_shrinkable(struct address_space *mapping)
162 {
163 void *head;
164
165 /*
166 * On highmem systems, there could be lowmem pressure from the
167 * inodes before there is highmem pressure from the page
168 * cache. Make inodes shrinkable regardless of cache state.
169 */
170 if (IS_ENABLED(CONFIG_HIGHMEM))
171 return true;
172
173 /* Cache completely empty? Shrink away. */
174 head = rcu_access_pointer(mapping->i_pages.xa_head);
175 if (!head)
176 return true;
177
178 /*
179 * The xarray stores single offset-0 entries directly in the
180 * head pointer, which allows non-resident page cache entries
181 * to escape the shadow shrinker's list of xarray nodes. The
182 * inode shrinker needs to pick them up under memory pressure.
183 */
184 if (!xa_is_node(head) && xa_is_value(head))
185 return true;
186
187 return false;
188 }
189
190 /*
191 * Bits in mapping->flags.
192 */
193 enum mapping_flags {
194 AS_EIO = 0, /* IO error on async write */
195 AS_ENOSPC = 1, /* ENOSPC on async write */
196 AS_MM_ALL_LOCKS = 2, /* under mm_take_all_locks() */
197 AS_UNEVICTABLE = 3, /* e.g., ramdisk, SHM_LOCK */
198 AS_EXITING = 4, /* final truncate in progress */
199 /* writeback related tags are not used */
200 AS_NO_WRITEBACK_TAGS = 5,
201 AS_LARGE_FOLIO_SUPPORT = 6,
202 };
203
204 /**
205 * mapping_set_error - record a writeback error in the address_space
206 * @mapping: the mapping in which an error should be set
207 * @error: the error to set in the mapping
208 *
209 * When writeback fails in some way, we must record that error so that
210 * userspace can be informed when fsync and the like are called. We endeavor
211 * to report errors on any file that was open at the time of the error. Some
212 * internal callers also need to know when writeback errors have occurred.
213 *
214 * When a writeback error occurs, most filesystems will want to call
215 * mapping_set_error to record the error in the mapping so that it can be
216 * reported when the application calls fsync(2).
217 */
mapping_set_error(struct address_space * mapping,int error)218 static inline void mapping_set_error(struct address_space *mapping, int error)
219 {
220 if (likely(!error))
221 return;
222
223 /* Record in wb_err for checkers using errseq_t based tracking */
224 __filemap_set_wb_err(mapping, error);
225
226 /* Record it in superblock */
227 if (mapping->host)
228 errseq_set(&mapping->host->i_sb->s_wb_err, error);
229
230 /* Record it in flags for now, for legacy callers */
231 if (error == -ENOSPC)
232 set_bit(AS_ENOSPC, &mapping->flags);
233 else
234 set_bit(AS_EIO, &mapping->flags);
235 }
236
mapping_set_unevictable(struct address_space * mapping)237 static inline void mapping_set_unevictable(struct address_space *mapping)
238 {
239 set_bit(AS_UNEVICTABLE, &mapping->flags);
240 }
241
mapping_clear_unevictable(struct address_space * mapping)242 static inline void mapping_clear_unevictable(struct address_space *mapping)
243 {
244 clear_bit(AS_UNEVICTABLE, &mapping->flags);
245 }
246
mapping_unevictable(struct address_space * mapping)247 static inline bool mapping_unevictable(struct address_space *mapping)
248 {
249 return mapping && test_bit(AS_UNEVICTABLE, &mapping->flags);
250 }
251
mapping_set_exiting(struct address_space * mapping)252 static inline void mapping_set_exiting(struct address_space *mapping)
253 {
254 set_bit(AS_EXITING, &mapping->flags);
255 }
256
mapping_exiting(struct address_space * mapping)257 static inline int mapping_exiting(struct address_space *mapping)
258 {
259 return test_bit(AS_EXITING, &mapping->flags);
260 }
261
mapping_set_no_writeback_tags(struct address_space * mapping)262 static inline void mapping_set_no_writeback_tags(struct address_space *mapping)
263 {
264 set_bit(AS_NO_WRITEBACK_TAGS, &mapping->flags);
265 }
266
mapping_use_writeback_tags(struct address_space * mapping)267 static inline int mapping_use_writeback_tags(struct address_space *mapping)
268 {
269 return !test_bit(AS_NO_WRITEBACK_TAGS, &mapping->flags);
270 }
271
mapping_gfp_mask(struct address_space * mapping)272 static inline gfp_t mapping_gfp_mask(struct address_space * mapping)
273 {
274 return mapping->gfp_mask;
275 }
276
277 /* Restricts the given gfp_mask to what the mapping allows. */
mapping_gfp_constraint(struct address_space * mapping,gfp_t gfp_mask)278 static inline gfp_t mapping_gfp_constraint(struct address_space *mapping,
279 gfp_t gfp_mask)
280 {
281 return mapping_gfp_mask(mapping) & gfp_mask;
282 }
283
284 /*
285 * This is non-atomic. Only to be used before the mapping is activated.
286 * Probably needs a barrier...
287 */
mapping_set_gfp_mask(struct address_space * m,gfp_t mask)288 static inline void mapping_set_gfp_mask(struct address_space *m, gfp_t mask)
289 {
290 m->gfp_mask = mask;
291 }
292
293 /**
294 * mapping_set_large_folios() - Indicate the file supports large folios.
295 * @mapping: The file.
296 *
297 * The filesystem should call this function in its inode constructor to
298 * indicate that the VFS can use large folios to cache the contents of
299 * the file.
300 *
301 * Context: This should not be called while the inode is active as it
302 * is non-atomic.
303 */
mapping_set_large_folios(struct address_space * mapping)304 static inline void mapping_set_large_folios(struct address_space *mapping)
305 {
306 __set_bit(AS_LARGE_FOLIO_SUPPORT, &mapping->flags);
307 }
308
309 /*
310 * Large folio support currently depends on THP. These dependencies are
311 * being worked on but are not yet fixed.
312 */
mapping_large_folio_support(struct address_space * mapping)313 static inline bool mapping_large_folio_support(struct address_space *mapping)
314 {
315 return IS_ENABLED(CONFIG_TRANSPARENT_HUGEPAGE) &&
316 test_bit(AS_LARGE_FOLIO_SUPPORT, &mapping->flags);
317 }
318
filemap_nr_thps(struct address_space * mapping)319 static inline int filemap_nr_thps(struct address_space *mapping)
320 {
321 #ifdef CONFIG_READ_ONLY_THP_FOR_FS
322 return atomic_read(&mapping->nr_thps);
323 #else
324 return 0;
325 #endif
326 }
327
filemap_nr_thps_inc(struct address_space * mapping)328 static inline void filemap_nr_thps_inc(struct address_space *mapping)
329 {
330 #ifdef CONFIG_READ_ONLY_THP_FOR_FS
331 if (!mapping_large_folio_support(mapping))
332 atomic_inc(&mapping->nr_thps);
333 #else
334 WARN_ON_ONCE(mapping_large_folio_support(mapping) == 0);
335 #endif
336 }
337
filemap_nr_thps_dec(struct address_space * mapping)338 static inline void filemap_nr_thps_dec(struct address_space *mapping)
339 {
340 #ifdef CONFIG_READ_ONLY_THP_FOR_FS
341 if (!mapping_large_folio_support(mapping))
342 atomic_dec(&mapping->nr_thps);
343 #else
344 WARN_ON_ONCE(mapping_large_folio_support(mapping) == 0);
345 #endif
346 }
347
348 struct address_space *page_mapping(struct page *);
349 struct address_space *folio_mapping(struct folio *);
350 struct address_space *swapcache_mapping(struct folio *);
351
352 /**
353 * folio_file_mapping - Find the mapping this folio belongs to.
354 * @folio: The folio.
355 *
356 * For folios which are in the page cache, return the mapping that this
357 * page belongs to. Folios in the swap cache return the mapping of the
358 * swap file or swap device where the data is stored. This is different
359 * from the mapping returned by folio_mapping(). The only reason to
360 * use it is if, like NFS, you return 0 from ->activate_swapfile.
361 *
362 * Do not call this for folios which aren't in the page cache or swap cache.
363 */
folio_file_mapping(struct folio * folio)364 static inline struct address_space *folio_file_mapping(struct folio *folio)
365 {
366 if (unlikely(folio_test_swapcache(folio)))
367 return swapcache_mapping(folio);
368
369 return folio->mapping;
370 }
371
page_file_mapping(struct page * page)372 static inline struct address_space *page_file_mapping(struct page *page)
373 {
374 return folio_file_mapping(page_folio(page));
375 }
376
377 /*
378 * For file cache pages, return the address_space, otherwise return NULL
379 */
page_mapping_file(struct page * page)380 static inline struct address_space *page_mapping_file(struct page *page)
381 {
382 struct folio *folio = page_folio(page);
383
384 if (unlikely(folio_test_swapcache(folio)))
385 return NULL;
386 return folio_mapping(folio);
387 }
388
389 /**
390 * folio_inode - Get the host inode for this folio.
391 * @folio: The folio.
392 *
393 * For folios which are in the page cache, return the inode that this folio
394 * belongs to.
395 *
396 * Do not call this for folios which aren't in the page cache.
397 */
folio_inode(struct folio * folio)398 static inline struct inode *folio_inode(struct folio *folio)
399 {
400 return folio->mapping->host;
401 }
402
403 /**
404 * folio_attach_private - Attach private data to a folio.
405 * @folio: Folio to attach data to.
406 * @data: Data to attach to folio.
407 *
408 * Attaching private data to a folio increments the page's reference count.
409 * The data must be detached before the folio will be freed.
410 */
folio_attach_private(struct folio * folio,void * data)411 static inline void folio_attach_private(struct folio *folio, void *data)
412 {
413 folio_get(folio);
414 folio->private = data;
415 folio_set_private(folio);
416 }
417
418 /**
419 * folio_change_private - Change private data on a folio.
420 * @folio: Folio to change the data on.
421 * @data: Data to set on the folio.
422 *
423 * Change the private data attached to a folio and return the old
424 * data. The page must previously have had data attached and the data
425 * must be detached before the folio will be freed.
426 *
427 * Return: Data that was previously attached to the folio.
428 */
folio_change_private(struct folio * folio,void * data)429 static inline void *folio_change_private(struct folio *folio, void *data)
430 {
431 void *old = folio_get_private(folio);
432
433 folio->private = data;
434 return old;
435 }
436
437 /**
438 * folio_detach_private - Detach private data from a folio.
439 * @folio: Folio to detach data from.
440 *
441 * Removes the data that was previously attached to the folio and decrements
442 * the refcount on the page.
443 *
444 * Return: Data that was attached to the folio.
445 */
folio_detach_private(struct folio * folio)446 static inline void *folio_detach_private(struct folio *folio)
447 {
448 void *data = folio_get_private(folio);
449
450 if (!folio_test_private(folio))
451 return NULL;
452 folio_clear_private(folio);
453 folio->private = NULL;
454 folio_put(folio);
455
456 return data;
457 }
458
attach_page_private(struct page * page,void * data)459 static inline void attach_page_private(struct page *page, void *data)
460 {
461 folio_attach_private(page_folio(page), data);
462 }
463
detach_page_private(struct page * page)464 static inline void *detach_page_private(struct page *page)
465 {
466 return folio_detach_private(page_folio(page));
467 }
468
469 #ifdef CONFIG_NUMA
470 struct folio *filemap_alloc_folio(gfp_t gfp, unsigned int order);
471 #else
filemap_alloc_folio(gfp_t gfp,unsigned int order)472 static inline struct folio *filemap_alloc_folio(gfp_t gfp, unsigned int order)
473 {
474 return folio_alloc(gfp, order);
475 }
476 #endif
477
__page_cache_alloc(gfp_t gfp)478 static inline struct page *__page_cache_alloc(gfp_t gfp)
479 {
480 return &filemap_alloc_folio(gfp, 0)->page;
481 }
482
page_cache_alloc(struct address_space * x)483 static inline struct page *page_cache_alloc(struct address_space *x)
484 {
485 return __page_cache_alloc(mapping_gfp_mask(x));
486 }
487
readahead_gfp_mask(struct address_space * x)488 static inline gfp_t readahead_gfp_mask(struct address_space *x)
489 {
490 return mapping_gfp_mask(x) | __GFP_NORETRY | __GFP_NOWARN;
491 }
492
493 typedef int filler_t(struct file *, struct folio *);
494
495 pgoff_t page_cache_next_miss(struct address_space *mapping,
496 pgoff_t index, unsigned long max_scan);
497 pgoff_t page_cache_prev_miss(struct address_space *mapping,
498 pgoff_t index, unsigned long max_scan);
499
500 #define FGP_ACCESSED 0x00000001
501 #define FGP_LOCK 0x00000002
502 #define FGP_CREAT 0x00000004
503 #define FGP_WRITE 0x00000008
504 #define FGP_NOFS 0x00000010
505 #define FGP_NOWAIT 0x00000020
506 #define FGP_FOR_MMAP 0x00000040
507 #define FGP_ENTRY 0x00000080
508 #define FGP_STABLE 0x00000100
509
510 struct folio *__filemap_get_folio(struct address_space *mapping, pgoff_t index,
511 int fgp_flags, gfp_t gfp);
512 struct page *pagecache_get_page(struct address_space *mapping, pgoff_t index,
513 int fgp_flags, gfp_t gfp);
514
515 /**
516 * filemap_get_folio - Find and get a folio.
517 * @mapping: The address_space to search.
518 * @index: The page index.
519 *
520 * Looks up the page cache entry at @mapping & @index. If a folio is
521 * present, it is returned with an increased refcount.
522 *
523 * Otherwise, %NULL is returned.
524 */
filemap_get_folio(struct address_space * mapping,pgoff_t index)525 static inline struct folio *filemap_get_folio(struct address_space *mapping,
526 pgoff_t index)
527 {
528 return __filemap_get_folio(mapping, index, 0, 0);
529 }
530
531 /**
532 * filemap_lock_folio - Find and lock a folio.
533 * @mapping: The address_space to search.
534 * @index: The page index.
535 *
536 * Looks up the page cache entry at @mapping & @index. If a folio is
537 * present, it is returned locked with an increased refcount.
538 *
539 * Context: May sleep.
540 * Return: A folio or %NULL if there is no folio in the cache for this
541 * index. Will not return a shadow, swap or DAX entry.
542 */
filemap_lock_folio(struct address_space * mapping,pgoff_t index)543 static inline struct folio *filemap_lock_folio(struct address_space *mapping,
544 pgoff_t index)
545 {
546 return __filemap_get_folio(mapping, index, FGP_LOCK, 0);
547 }
548
549 /**
550 * filemap_grab_folio - grab a folio from the page cache
551 * @mapping: The address space to search
552 * @index: The page index
553 *
554 * Looks up the page cache entry at @mapping & @index. If no folio is found,
555 * a new folio is created. The folio is locked, marked as accessed, and
556 * returned.
557 *
558 * Return: A found or created folio. NULL if no folio is found and failed to
559 * create a folio.
560 */
filemap_grab_folio(struct address_space * mapping,pgoff_t index)561 static inline struct folio *filemap_grab_folio(struct address_space *mapping,
562 pgoff_t index)
563 {
564 return __filemap_get_folio(mapping, index,
565 FGP_LOCK | FGP_ACCESSED | FGP_CREAT,
566 mapping_gfp_mask(mapping));
567 }
568
569 /**
570 * find_get_page - find and get a page reference
571 * @mapping: the address_space to search
572 * @offset: the page index
573 *
574 * Looks up the page cache slot at @mapping & @offset. If there is a
575 * page cache page, it is returned with an increased refcount.
576 *
577 * Otherwise, %NULL is returned.
578 */
find_get_page(struct address_space * mapping,pgoff_t offset)579 static inline struct page *find_get_page(struct address_space *mapping,
580 pgoff_t offset)
581 {
582 return pagecache_get_page(mapping, offset, 0, 0);
583 }
584
find_get_page_flags(struct address_space * mapping,pgoff_t offset,int fgp_flags)585 static inline struct page *find_get_page_flags(struct address_space *mapping,
586 pgoff_t offset, int fgp_flags)
587 {
588 return pagecache_get_page(mapping, offset, fgp_flags, 0);
589 }
590
591 /**
592 * find_lock_page - locate, pin and lock a pagecache page
593 * @mapping: the address_space to search
594 * @index: the page index
595 *
596 * Looks up the page cache entry at @mapping & @index. If there is a
597 * page cache page, it is returned locked and with an increased
598 * refcount.
599 *
600 * Context: May sleep.
601 * Return: A struct page or %NULL if there is no page in the cache for this
602 * index.
603 */
find_lock_page(struct address_space * mapping,pgoff_t index)604 static inline struct page *find_lock_page(struct address_space *mapping,
605 pgoff_t index)
606 {
607 return pagecache_get_page(mapping, index, FGP_LOCK, 0);
608 }
609
610 /**
611 * find_or_create_page - locate or add a pagecache page
612 * @mapping: the page's address_space
613 * @index: the page's index into the mapping
614 * @gfp_mask: page allocation mode
615 *
616 * Looks up the page cache slot at @mapping & @offset. If there is a
617 * page cache page, it is returned locked and with an increased
618 * refcount.
619 *
620 * If the page is not present, a new page is allocated using @gfp_mask
621 * and added to the page cache and the VM's LRU list. The page is
622 * returned locked and with an increased refcount.
623 *
624 * On memory exhaustion, %NULL is returned.
625 *
626 * find_or_create_page() may sleep, even if @gfp_flags specifies an
627 * atomic allocation!
628 */
find_or_create_page(struct address_space * mapping,pgoff_t index,gfp_t gfp_mask)629 static inline struct page *find_or_create_page(struct address_space *mapping,
630 pgoff_t index, gfp_t gfp_mask)
631 {
632 return pagecache_get_page(mapping, index,
633 FGP_LOCK|FGP_ACCESSED|FGP_CREAT,
634 gfp_mask);
635 }
636
637 /**
638 * grab_cache_page_nowait - returns locked page at given index in given cache
639 * @mapping: target address_space
640 * @index: the page index
641 *
642 * Same as grab_cache_page(), but do not wait if the page is unavailable.
643 * This is intended for speculative data generators, where the data can
644 * be regenerated if the page couldn't be grabbed. This routine should
645 * be safe to call while holding the lock for another page.
646 *
647 * Clear __GFP_FS when allocating the page to avoid recursion into the fs
648 * and deadlock against the caller's locked page.
649 */
grab_cache_page_nowait(struct address_space * mapping,pgoff_t index)650 static inline struct page *grab_cache_page_nowait(struct address_space *mapping,
651 pgoff_t index)
652 {
653 return pagecache_get_page(mapping, index,
654 FGP_LOCK|FGP_CREAT|FGP_NOFS|FGP_NOWAIT,
655 mapping_gfp_mask(mapping));
656 }
657
658 #define swapcache_index(folio) __page_file_index(&(folio)->page)
659
660 /**
661 * folio_index - File index of a folio.
662 * @folio: The folio.
663 *
664 * For a folio which is either in the page cache or the swap cache,
665 * return its index within the address_space it belongs to. If you know
666 * the page is definitely in the page cache, you can look at the folio's
667 * index directly.
668 *
669 * Return: The index (offset in units of pages) of a folio in its file.
670 */
folio_index(struct folio * folio)671 static inline pgoff_t folio_index(struct folio *folio)
672 {
673 if (unlikely(folio_test_swapcache(folio)))
674 return swapcache_index(folio);
675 return folio->index;
676 }
677
678 /**
679 * folio_next_index - Get the index of the next folio.
680 * @folio: The current folio.
681 *
682 * Return: The index of the folio which follows this folio in the file.
683 */
folio_next_index(struct folio * folio)684 static inline pgoff_t folio_next_index(struct folio *folio)
685 {
686 return folio->index + folio_nr_pages(folio);
687 }
688
689 /**
690 * folio_file_page - The page for a particular index.
691 * @folio: The folio which contains this index.
692 * @index: The index we want to look up.
693 *
694 * Sometimes after looking up a folio in the page cache, we need to
695 * obtain the specific page for an index (eg a page fault).
696 *
697 * Return: The page containing the file data for this index.
698 */
folio_file_page(struct folio * folio,pgoff_t index)699 static inline struct page *folio_file_page(struct folio *folio, pgoff_t index)
700 {
701 /* HugeTLBfs indexes the page cache in units of hpage_size */
702 if (folio_test_hugetlb(folio))
703 return &folio->page;
704 return folio_page(folio, index & (folio_nr_pages(folio) - 1));
705 }
706
707 /**
708 * folio_contains - Does this folio contain this index?
709 * @folio: The folio.
710 * @index: The page index within the file.
711 *
712 * Context: The caller should have the page locked in order to prevent
713 * (eg) shmem from moving the page between the page cache and swap cache
714 * and changing its index in the middle of the operation.
715 * Return: true or false.
716 */
folio_contains(struct folio * folio,pgoff_t index)717 static inline bool folio_contains(struct folio *folio, pgoff_t index)
718 {
719 /* HugeTLBfs indexes the page cache in units of hpage_size */
720 if (folio_test_hugetlb(folio))
721 return folio->index == index;
722 return index - folio_index(folio) < folio_nr_pages(folio);
723 }
724
725 /*
726 * Given the page we found in the page cache, return the page corresponding
727 * to this index in the file
728 */
find_subpage(struct page * head,pgoff_t index)729 static inline struct page *find_subpage(struct page *head, pgoff_t index)
730 {
731 /* HugeTLBfs wants the head page regardless */
732 if (PageHuge(head))
733 return head;
734
735 return head + (index & (thp_nr_pages(head) - 1));
736 }
737
738 unsigned filemap_get_folios(struct address_space *mapping, pgoff_t *start,
739 pgoff_t end, struct folio_batch *fbatch);
740 unsigned filemap_get_folios_contig(struct address_space *mapping,
741 pgoff_t *start, pgoff_t end, struct folio_batch *fbatch);
742 unsigned filemap_get_folios_tag(struct address_space *mapping, pgoff_t *start,
743 pgoff_t end, xa_mark_t tag, struct folio_batch *fbatch);
744
745 struct page *grab_cache_page_write_begin(struct address_space *mapping,
746 pgoff_t index);
747
748 /*
749 * Returns locked page at given index in given cache, creating it if needed.
750 */
grab_cache_page(struct address_space * mapping,pgoff_t index)751 static inline struct page *grab_cache_page(struct address_space *mapping,
752 pgoff_t index)
753 {
754 return find_or_create_page(mapping, index, mapping_gfp_mask(mapping));
755 }
756
757 struct folio *read_cache_folio(struct address_space *, pgoff_t index,
758 filler_t *filler, struct file *file);
759 struct folio *mapping_read_folio_gfp(struct address_space *, pgoff_t index,
760 gfp_t flags);
761 struct page *read_cache_page(struct address_space *, pgoff_t index,
762 filler_t *filler, struct file *file);
763 extern struct page * read_cache_page_gfp(struct address_space *mapping,
764 pgoff_t index, gfp_t gfp_mask);
765
read_mapping_page(struct address_space * mapping,pgoff_t index,struct file * file)766 static inline struct page *read_mapping_page(struct address_space *mapping,
767 pgoff_t index, struct file *file)
768 {
769 return read_cache_page(mapping, index, NULL, file);
770 }
771
read_mapping_folio(struct address_space * mapping,pgoff_t index,struct file * file)772 static inline struct folio *read_mapping_folio(struct address_space *mapping,
773 pgoff_t index, struct file *file)
774 {
775 return read_cache_folio(mapping, index, NULL, file);
776 }
777
778 /*
779 * Get index of the page within radix-tree (but not for hugetlb pages).
780 * (TODO: remove once hugetlb pages will have ->index in PAGE_SIZE)
781 */
page_to_index(struct page * page)782 static inline pgoff_t page_to_index(struct page *page)
783 {
784 struct page *head;
785
786 if (likely(!PageTransTail(page)))
787 return page->index;
788
789 head = compound_head(page);
790 /*
791 * We don't initialize ->index for tail pages: calculate based on
792 * head page
793 */
794 return head->index + page - head;
795 }
796
797 extern pgoff_t hugetlb_basepage_index(struct page *page);
798
799 /*
800 * Get the offset in PAGE_SIZE (even for hugetlb pages).
801 * (TODO: hugetlb pages should have ->index in PAGE_SIZE)
802 */
page_to_pgoff(struct page * page)803 static inline pgoff_t page_to_pgoff(struct page *page)
804 {
805 if (unlikely(PageHuge(page)))
806 return hugetlb_basepage_index(page);
807 return page_to_index(page);
808 }
809
810 /*
811 * Return byte-offset into filesystem object for page.
812 */
page_offset(struct page * page)813 static inline loff_t page_offset(struct page *page)
814 {
815 return ((loff_t)page->index) << PAGE_SHIFT;
816 }
817
page_file_offset(struct page * page)818 static inline loff_t page_file_offset(struct page *page)
819 {
820 return ((loff_t)page_index(page)) << PAGE_SHIFT;
821 }
822
823 /**
824 * folio_pos - Returns the byte position of this folio in its file.
825 * @folio: The folio.
826 */
folio_pos(struct folio * folio)827 static inline loff_t folio_pos(struct folio *folio)
828 {
829 return page_offset(&folio->page);
830 }
831
832 /**
833 * folio_file_pos - Returns the byte position of this folio in its file.
834 * @folio: The folio.
835 *
836 * This differs from folio_pos() for folios which belong to a swap file.
837 * NFS is the only filesystem today which needs to use folio_file_pos().
838 */
folio_file_pos(struct folio * folio)839 static inline loff_t folio_file_pos(struct folio *folio)
840 {
841 return page_file_offset(&folio->page);
842 }
843
844 /*
845 * Get the offset in PAGE_SIZE (even for hugetlb folios).
846 * (TODO: hugetlb folios should have ->index in PAGE_SIZE)
847 */
folio_pgoff(struct folio * folio)848 static inline pgoff_t folio_pgoff(struct folio *folio)
849 {
850 if (unlikely(folio_test_hugetlb(folio)))
851 return hugetlb_basepage_index(&folio->page);
852 return folio->index;
853 }
854
855 extern pgoff_t linear_hugepage_index(struct vm_area_struct *vma,
856 unsigned long address);
857
linear_page_index(struct vm_area_struct * vma,unsigned long address)858 static inline pgoff_t linear_page_index(struct vm_area_struct *vma,
859 unsigned long address)
860 {
861 pgoff_t pgoff;
862 if (unlikely(is_vm_hugetlb_page(vma)))
863 return linear_hugepage_index(vma, address);
864 pgoff = (address - vma->vm_start) >> PAGE_SHIFT;
865 pgoff += vma->vm_pgoff;
866 return pgoff;
867 }
868
869 struct wait_page_key {
870 struct folio *folio;
871 int bit_nr;
872 int page_match;
873 };
874
875 struct wait_page_queue {
876 struct folio *folio;
877 int bit_nr;
878 wait_queue_entry_t wait;
879 };
880
wake_page_match(struct wait_page_queue * wait_page,struct wait_page_key * key)881 static inline bool wake_page_match(struct wait_page_queue *wait_page,
882 struct wait_page_key *key)
883 {
884 if (wait_page->folio != key->folio)
885 return false;
886 key->page_match = 1;
887
888 if (wait_page->bit_nr != key->bit_nr)
889 return false;
890
891 return true;
892 }
893
894 void __folio_lock(struct folio *folio);
895 int __folio_lock_killable(struct folio *folio);
896 bool __folio_lock_or_retry(struct folio *folio, struct mm_struct *mm,
897 unsigned int flags);
898 void unlock_page(struct page *page);
899 void folio_unlock(struct folio *folio);
900
901 /**
902 * folio_trylock() - Attempt to lock a folio.
903 * @folio: The folio to attempt to lock.
904 *
905 * Sometimes it is undesirable to wait for a folio to be unlocked (eg
906 * when the locks are being taken in the wrong order, or if making
907 * progress through a batch of folios is more important than processing
908 * them in order). Usually folio_lock() is the correct function to call.
909 *
910 * Context: Any context.
911 * Return: Whether the lock was successfully acquired.
912 */
folio_trylock(struct folio * folio)913 static inline bool folio_trylock(struct folio *folio)
914 {
915 return likely(!test_and_set_bit_lock(PG_locked, folio_flags(folio, 0)));
916 }
917
918 /*
919 * Return true if the page was successfully locked
920 */
trylock_page(struct page * page)921 static inline int trylock_page(struct page *page)
922 {
923 return folio_trylock(page_folio(page));
924 }
925
926 /**
927 * folio_lock() - Lock this folio.
928 * @folio: The folio to lock.
929 *
930 * The folio lock protects against many things, probably more than it
931 * should. It is primarily held while a folio is being brought uptodate,
932 * either from its backing file or from swap. It is also held while a
933 * folio is being truncated from its address_space, so holding the lock
934 * is sufficient to keep folio->mapping stable.
935 *
936 * The folio lock is also held while write() is modifying the page to
937 * provide POSIX atomicity guarantees (as long as the write does not
938 * cross a page boundary). Other modifications to the data in the folio
939 * do not hold the folio lock and can race with writes, eg DMA and stores
940 * to mapped pages.
941 *
942 * Context: May sleep. If you need to acquire the locks of two or
943 * more folios, they must be in order of ascending index, if they are
944 * in the same address_space. If they are in different address_spaces,
945 * acquire the lock of the folio which belongs to the address_space which
946 * has the lowest address in memory first.
947 */
folio_lock(struct folio * folio)948 static inline void folio_lock(struct folio *folio)
949 {
950 might_sleep();
951 if (!folio_trylock(folio))
952 __folio_lock(folio);
953 }
954
955 /**
956 * lock_page() - Lock the folio containing this page.
957 * @page: The page to lock.
958 *
959 * See folio_lock() for a description of what the lock protects.
960 * This is a legacy function and new code should probably use folio_lock()
961 * instead.
962 *
963 * Context: May sleep. Pages in the same folio share a lock, so do not
964 * attempt to lock two pages which share a folio.
965 */
lock_page(struct page * page)966 static inline void lock_page(struct page *page)
967 {
968 struct folio *folio;
969 might_sleep();
970
971 folio = page_folio(page);
972 if (!folio_trylock(folio))
973 __folio_lock(folio);
974 }
975
976 /**
977 * folio_lock_killable() - Lock this folio, interruptible by a fatal signal.
978 * @folio: The folio to lock.
979 *
980 * Attempts to lock the folio, like folio_lock(), except that the sleep
981 * to acquire the lock is interruptible by a fatal signal.
982 *
983 * Context: May sleep; see folio_lock().
984 * Return: 0 if the lock was acquired; -EINTR if a fatal signal was received.
985 */
folio_lock_killable(struct folio * folio)986 static inline int folio_lock_killable(struct folio *folio)
987 {
988 might_sleep();
989 if (!folio_trylock(folio))
990 return __folio_lock_killable(folio);
991 return 0;
992 }
993
994 /*
995 * folio_lock_or_retry - Lock the folio, unless this would block and the
996 * caller indicated that it can handle a retry.
997 *
998 * Return value and mmap_lock implications depend on flags; see
999 * __folio_lock_or_retry().
1000 */
folio_lock_or_retry(struct folio * folio,struct mm_struct * mm,unsigned int flags)1001 static inline bool folio_lock_or_retry(struct folio *folio,
1002 struct mm_struct *mm, unsigned int flags)
1003 {
1004 might_sleep();
1005 return folio_trylock(folio) || __folio_lock_or_retry(folio, mm, flags);
1006 }
1007
1008 /*
1009 * This is exported only for folio_wait_locked/folio_wait_writeback, etc.,
1010 * and should not be used directly.
1011 */
1012 void folio_wait_bit(struct folio *folio, int bit_nr);
1013 int folio_wait_bit_killable(struct folio *folio, int bit_nr);
1014
1015 /*
1016 * Wait for a folio to be unlocked.
1017 *
1018 * This must be called with the caller "holding" the folio,
1019 * ie with increased folio reference count so that the folio won't
1020 * go away during the wait.
1021 */
folio_wait_locked(struct folio * folio)1022 static inline void folio_wait_locked(struct folio *folio)
1023 {
1024 if (folio_test_locked(folio))
1025 folio_wait_bit(folio, PG_locked);
1026 }
1027
folio_wait_locked_killable(struct folio * folio)1028 static inline int folio_wait_locked_killable(struct folio *folio)
1029 {
1030 if (!folio_test_locked(folio))
1031 return 0;
1032 return folio_wait_bit_killable(folio, PG_locked);
1033 }
1034
wait_on_page_locked(struct page * page)1035 static inline void wait_on_page_locked(struct page *page)
1036 {
1037 folio_wait_locked(page_folio(page));
1038 }
1039
wait_on_page_locked_killable(struct page * page)1040 static inline int wait_on_page_locked_killable(struct page *page)
1041 {
1042 return folio_wait_locked_killable(page_folio(page));
1043 }
1044
1045 void wait_on_page_writeback(struct page *page);
1046 void folio_wait_writeback(struct folio *folio);
1047 int folio_wait_writeback_killable(struct folio *folio);
1048 void end_page_writeback(struct page *page);
1049 void folio_end_writeback(struct folio *folio);
1050 void wait_for_stable_page(struct page *page);
1051 void folio_wait_stable(struct folio *folio);
1052 void __folio_mark_dirty(struct folio *folio, struct address_space *, int warn);
__set_page_dirty(struct page * page,struct address_space * mapping,int warn)1053 static inline void __set_page_dirty(struct page *page,
1054 struct address_space *mapping, int warn)
1055 {
1056 __folio_mark_dirty(page_folio(page), mapping, warn);
1057 }
1058 void folio_account_cleaned(struct folio *folio, struct bdi_writeback *wb);
1059 void __folio_cancel_dirty(struct folio *folio);
folio_cancel_dirty(struct folio * folio)1060 static inline void folio_cancel_dirty(struct folio *folio)
1061 {
1062 /* Avoid atomic ops, locking, etc. when not actually needed. */
1063 if (folio_test_dirty(folio))
1064 __folio_cancel_dirty(folio);
1065 }
1066 bool folio_clear_dirty_for_io(struct folio *folio);
1067 bool clear_page_dirty_for_io(struct page *page);
1068 void folio_invalidate(struct folio *folio, size_t offset, size_t length);
1069 int __must_check folio_write_one(struct folio *folio);
write_one_page(struct page * page)1070 static inline int __must_check write_one_page(struct page *page)
1071 {
1072 return folio_write_one(page_folio(page));
1073 }
1074
1075 int __set_page_dirty_nobuffers(struct page *page);
1076 bool noop_dirty_folio(struct address_space *mapping, struct folio *folio);
1077
1078 #ifdef CONFIG_MIGRATION
1079 int filemap_migrate_folio(struct address_space *mapping, struct folio *dst,
1080 struct folio *src, enum migrate_mode mode);
1081 #else
1082 #define filemap_migrate_folio NULL
1083 #endif
1084 void page_endio(struct page *page, bool is_write, int err);
1085
1086 void folio_end_private_2(struct folio *folio);
1087 void folio_wait_private_2(struct folio *folio);
1088 int folio_wait_private_2_killable(struct folio *folio);
1089
1090 /*
1091 * Add an arbitrary waiter to a page's wait queue
1092 */
1093 void folio_add_wait_queue(struct folio *folio, wait_queue_entry_t *waiter);
1094
1095 /*
1096 * Fault in userspace address range.
1097 */
1098 size_t fault_in_writeable(char __user *uaddr, size_t size);
1099 size_t fault_in_subpage_writeable(char __user *uaddr, size_t size);
1100 size_t fault_in_safe_writeable(const char __user *uaddr, size_t size);
1101 size_t fault_in_readable(const char __user *uaddr, size_t size);
1102
1103 int add_to_page_cache_lru(struct page *page, struct address_space *mapping,
1104 pgoff_t index, gfp_t gfp);
1105 int filemap_add_folio(struct address_space *mapping, struct folio *folio,
1106 pgoff_t index, gfp_t gfp);
1107 void filemap_remove_folio(struct folio *folio);
1108 void __filemap_remove_folio(struct folio *folio, void *shadow);
1109 void replace_page_cache_folio(struct folio *old, struct folio *new);
1110 void delete_from_page_cache_batch(struct address_space *mapping,
1111 struct folio_batch *fbatch);
1112 bool filemap_release_folio(struct folio *folio, gfp_t gfp);
1113 loff_t mapping_seek_hole_data(struct address_space *, loff_t start, loff_t end,
1114 int whence);
1115
1116 /* Must be non-static for BPF error injection */
1117 int __filemap_add_folio(struct address_space *mapping, struct folio *folio,
1118 pgoff_t index, gfp_t gfp, void **shadowp);
1119
1120 bool filemap_range_has_writeback(struct address_space *mapping,
1121 loff_t start_byte, loff_t end_byte);
1122
1123 /**
1124 * filemap_range_needs_writeback - check if range potentially needs writeback
1125 * @mapping: address space within which to check
1126 * @start_byte: offset in bytes where the range starts
1127 * @end_byte: offset in bytes where the range ends (inclusive)
1128 *
1129 * Find at least one page in the range supplied, usually used to check if
1130 * direct writing in this range will trigger a writeback. Used by O_DIRECT
1131 * read/write with IOCB_NOWAIT, to see if the caller needs to do
1132 * filemap_write_and_wait_range() before proceeding.
1133 *
1134 * Return: %true if the caller should do filemap_write_and_wait_range() before
1135 * doing O_DIRECT to a page in this range, %false otherwise.
1136 */
filemap_range_needs_writeback(struct address_space * mapping,loff_t start_byte,loff_t end_byte)1137 static inline bool filemap_range_needs_writeback(struct address_space *mapping,
1138 loff_t start_byte,
1139 loff_t end_byte)
1140 {
1141 if (!mapping->nrpages)
1142 return false;
1143 if (!mapping_tagged(mapping, PAGECACHE_TAG_DIRTY) &&
1144 !mapping_tagged(mapping, PAGECACHE_TAG_WRITEBACK))
1145 return false;
1146 return filemap_range_has_writeback(mapping, start_byte, end_byte);
1147 }
1148
1149 /**
1150 * struct readahead_control - Describes a readahead request.
1151 *
1152 * A readahead request is for consecutive pages. Filesystems which
1153 * implement the ->readahead method should call readahead_page() or
1154 * readahead_page_batch() in a loop and attempt to start I/O against
1155 * each page in the request.
1156 *
1157 * Most of the fields in this struct are private and should be accessed
1158 * by the functions below.
1159 *
1160 * @file: The file, used primarily by network filesystems for authentication.
1161 * May be NULL if invoked internally by the filesystem.
1162 * @mapping: Readahead this filesystem object.
1163 * @ra: File readahead state. May be NULL.
1164 */
1165 struct readahead_control {
1166 struct file *file;
1167 struct address_space *mapping;
1168 struct file_ra_state *ra;
1169 /* private: use the readahead_* accessors instead */
1170 pgoff_t _index;
1171 unsigned int _nr_pages;
1172 unsigned int _batch_count;
1173 bool _workingset;
1174 unsigned long _pflags;
1175 };
1176
1177 #define DEFINE_READAHEAD(ractl, f, r, m, i) \
1178 struct readahead_control ractl = { \
1179 .file = f, \
1180 .mapping = m, \
1181 .ra = r, \
1182 ._index = i, \
1183 }
1184
1185 #define VM_READAHEAD_PAGES (SZ_128K / PAGE_SIZE)
1186
1187 void page_cache_ra_unbounded(struct readahead_control *,
1188 unsigned long nr_to_read, unsigned long lookahead_count);
1189 void page_cache_sync_ra(struct readahead_control *, unsigned long req_count);
1190 void page_cache_async_ra(struct readahead_control *, struct folio *,
1191 unsigned long req_count);
1192 void readahead_expand(struct readahead_control *ractl,
1193 loff_t new_start, size_t new_len);
1194
1195 /**
1196 * page_cache_sync_readahead - generic file readahead
1197 * @mapping: address_space which holds the pagecache and I/O vectors
1198 * @ra: file_ra_state which holds the readahead state
1199 * @file: Used by the filesystem for authentication.
1200 * @index: Index of first page to be read.
1201 * @req_count: Total number of pages being read by the caller.
1202 *
1203 * page_cache_sync_readahead() should be called when a cache miss happened:
1204 * it will submit the read. The readahead logic may decide to piggyback more
1205 * pages onto the read request if access patterns suggest it will improve
1206 * performance.
1207 */
1208 static inline
page_cache_sync_readahead(struct address_space * mapping,struct file_ra_state * ra,struct file * file,pgoff_t index,unsigned long req_count)1209 void page_cache_sync_readahead(struct address_space *mapping,
1210 struct file_ra_state *ra, struct file *file, pgoff_t index,
1211 unsigned long req_count)
1212 {
1213 DEFINE_READAHEAD(ractl, file, ra, mapping, index);
1214 page_cache_sync_ra(&ractl, req_count);
1215 }
1216
1217 /**
1218 * page_cache_async_readahead - file readahead for marked pages
1219 * @mapping: address_space which holds the pagecache and I/O vectors
1220 * @ra: file_ra_state which holds the readahead state
1221 * @file: Used by the filesystem for authentication.
1222 * @folio: The folio at @index which triggered the readahead call.
1223 * @index: Index of first page to be read.
1224 * @req_count: Total number of pages being read by the caller.
1225 *
1226 * page_cache_async_readahead() should be called when a page is used which
1227 * is marked as PageReadahead; this is a marker to suggest that the application
1228 * has used up enough of the readahead window that we should start pulling in
1229 * more pages.
1230 */
1231 static inline
page_cache_async_readahead(struct address_space * mapping,struct file_ra_state * ra,struct file * file,struct folio * folio,pgoff_t index,unsigned long req_count)1232 void page_cache_async_readahead(struct address_space *mapping,
1233 struct file_ra_state *ra, struct file *file,
1234 struct folio *folio, pgoff_t index, unsigned long req_count)
1235 {
1236 DEFINE_READAHEAD(ractl, file, ra, mapping, index);
1237 page_cache_async_ra(&ractl, folio, req_count);
1238 }
1239
__readahead_folio(struct readahead_control * ractl)1240 static inline struct folio *__readahead_folio(struct readahead_control *ractl)
1241 {
1242 struct folio *folio;
1243
1244 BUG_ON(ractl->_batch_count > ractl->_nr_pages);
1245 ractl->_nr_pages -= ractl->_batch_count;
1246 ractl->_index += ractl->_batch_count;
1247
1248 if (!ractl->_nr_pages) {
1249 ractl->_batch_count = 0;
1250 return NULL;
1251 }
1252
1253 folio = xa_load(&ractl->mapping->i_pages, ractl->_index);
1254 VM_BUG_ON_FOLIO(!folio_test_locked(folio), folio);
1255 ractl->_batch_count = folio_nr_pages(folio);
1256
1257 return folio;
1258 }
1259
1260 /**
1261 * readahead_page - Get the next page to read.
1262 * @ractl: The current readahead request.
1263 *
1264 * Context: The page is locked and has an elevated refcount. The caller
1265 * should decreases the refcount once the page has been submitted for I/O
1266 * and unlock the page once all I/O to that page has completed.
1267 * Return: A pointer to the next page, or %NULL if we are done.
1268 */
readahead_page(struct readahead_control * ractl)1269 static inline struct page *readahead_page(struct readahead_control *ractl)
1270 {
1271 struct folio *folio = __readahead_folio(ractl);
1272
1273 return &folio->page;
1274 }
1275
1276 /**
1277 * readahead_folio - Get the next folio to read.
1278 * @ractl: The current readahead request.
1279 *
1280 * Context: The folio is locked. The caller should unlock the folio once
1281 * all I/O to that folio has completed.
1282 * Return: A pointer to the next folio, or %NULL if we are done.
1283 */
readahead_folio(struct readahead_control * ractl)1284 static inline struct folio *readahead_folio(struct readahead_control *ractl)
1285 {
1286 struct folio *folio = __readahead_folio(ractl);
1287
1288 if (folio)
1289 folio_put(folio);
1290 return folio;
1291 }
1292
__readahead_batch(struct readahead_control * rac,struct page ** array,unsigned int array_sz)1293 static inline unsigned int __readahead_batch(struct readahead_control *rac,
1294 struct page **array, unsigned int array_sz)
1295 {
1296 unsigned int i = 0;
1297 XA_STATE(xas, &rac->mapping->i_pages, 0);
1298 struct page *page;
1299
1300 BUG_ON(rac->_batch_count > rac->_nr_pages);
1301 rac->_nr_pages -= rac->_batch_count;
1302 rac->_index += rac->_batch_count;
1303 rac->_batch_count = 0;
1304
1305 xas_set(&xas, rac->_index);
1306 rcu_read_lock();
1307 xas_for_each(&xas, page, rac->_index + rac->_nr_pages - 1) {
1308 if (xas_retry(&xas, page))
1309 continue;
1310 VM_BUG_ON_PAGE(!PageLocked(page), page);
1311 VM_BUG_ON_PAGE(PageTail(page), page);
1312 array[i++] = page;
1313 rac->_batch_count += thp_nr_pages(page);
1314 if (i == array_sz)
1315 break;
1316 }
1317 rcu_read_unlock();
1318
1319 return i;
1320 }
1321
1322 /**
1323 * readahead_page_batch - Get a batch of pages to read.
1324 * @rac: The current readahead request.
1325 * @array: An array of pointers to struct page.
1326 *
1327 * Context: The pages are locked and have an elevated refcount. The caller
1328 * should decreases the refcount once the page has been submitted for I/O
1329 * and unlock the page once all I/O to that page has completed.
1330 * Return: The number of pages placed in the array. 0 indicates the request
1331 * is complete.
1332 */
1333 #define readahead_page_batch(rac, array) \
1334 __readahead_batch(rac, array, ARRAY_SIZE(array))
1335
1336 /**
1337 * readahead_pos - The byte offset into the file of this readahead request.
1338 * @rac: The readahead request.
1339 */
readahead_pos(struct readahead_control * rac)1340 static inline loff_t readahead_pos(struct readahead_control *rac)
1341 {
1342 return (loff_t)rac->_index * PAGE_SIZE;
1343 }
1344
1345 /**
1346 * readahead_length - The number of bytes in this readahead request.
1347 * @rac: The readahead request.
1348 */
readahead_length(struct readahead_control * rac)1349 static inline size_t readahead_length(struct readahead_control *rac)
1350 {
1351 return rac->_nr_pages * PAGE_SIZE;
1352 }
1353
1354 /**
1355 * readahead_index - The index of the first page in this readahead request.
1356 * @rac: The readahead request.
1357 */
readahead_index(struct readahead_control * rac)1358 static inline pgoff_t readahead_index(struct readahead_control *rac)
1359 {
1360 return rac->_index;
1361 }
1362
1363 /**
1364 * readahead_count - The number of pages in this readahead request.
1365 * @rac: The readahead request.
1366 */
readahead_count(struct readahead_control * rac)1367 static inline unsigned int readahead_count(struct readahead_control *rac)
1368 {
1369 return rac->_nr_pages;
1370 }
1371
1372 /**
1373 * readahead_batch_length - The number of bytes in the current batch.
1374 * @rac: The readahead request.
1375 */
readahead_batch_length(struct readahead_control * rac)1376 static inline size_t readahead_batch_length(struct readahead_control *rac)
1377 {
1378 return rac->_batch_count * PAGE_SIZE;
1379 }
1380
dir_pages(struct inode * inode)1381 static inline unsigned long dir_pages(struct inode *inode)
1382 {
1383 return (unsigned long)(inode->i_size + PAGE_SIZE - 1) >>
1384 PAGE_SHIFT;
1385 }
1386
1387 /**
1388 * folio_mkwrite_check_truncate - check if folio was truncated
1389 * @folio: the folio to check
1390 * @inode: the inode to check the folio against
1391 *
1392 * Return: the number of bytes in the folio up to EOF,
1393 * or -EFAULT if the folio was truncated.
1394 */
folio_mkwrite_check_truncate(struct folio * folio,struct inode * inode)1395 static inline ssize_t folio_mkwrite_check_truncate(struct folio *folio,
1396 struct inode *inode)
1397 {
1398 loff_t size = i_size_read(inode);
1399 pgoff_t index = size >> PAGE_SHIFT;
1400 size_t offset = offset_in_folio(folio, size);
1401
1402 if (!folio->mapping)
1403 return -EFAULT;
1404
1405 /* folio is wholly inside EOF */
1406 if (folio_next_index(folio) - 1 < index)
1407 return folio_size(folio);
1408 /* folio is wholly past EOF */
1409 if (folio->index > index || !offset)
1410 return -EFAULT;
1411 /* folio is partially inside EOF */
1412 return offset;
1413 }
1414
1415 /**
1416 * page_mkwrite_check_truncate - check if page was truncated
1417 * @page: the page to check
1418 * @inode: the inode to check the page against
1419 *
1420 * Returns the number of bytes in the page up to EOF,
1421 * or -EFAULT if the page was truncated.
1422 */
page_mkwrite_check_truncate(struct page * page,struct inode * inode)1423 static inline int page_mkwrite_check_truncate(struct page *page,
1424 struct inode *inode)
1425 {
1426 loff_t size = i_size_read(inode);
1427 pgoff_t index = size >> PAGE_SHIFT;
1428 int offset = offset_in_page(size);
1429
1430 if (page->mapping != inode->i_mapping)
1431 return -EFAULT;
1432
1433 /* page is wholly inside EOF */
1434 if (page->index < index)
1435 return PAGE_SIZE;
1436 /* page is wholly past EOF */
1437 if (page->index > index || !offset)
1438 return -EFAULT;
1439 /* page is partially inside EOF */
1440 return offset;
1441 }
1442
1443 /**
1444 * i_blocks_per_folio - How many blocks fit in this folio.
1445 * @inode: The inode which contains the blocks.
1446 * @folio: The folio.
1447 *
1448 * If the block size is larger than the size of this folio, return zero.
1449 *
1450 * Context: The caller should hold a refcount on the folio to prevent it
1451 * from being split.
1452 * Return: The number of filesystem blocks covered by this folio.
1453 */
1454 static inline
i_blocks_per_folio(struct inode * inode,struct folio * folio)1455 unsigned int i_blocks_per_folio(struct inode *inode, struct folio *folio)
1456 {
1457 return folio_size(folio) >> inode->i_blkbits;
1458 }
1459
1460 static inline
i_blocks_per_page(struct inode * inode,struct page * page)1461 unsigned int i_blocks_per_page(struct inode *inode, struct page *page)
1462 {
1463 return i_blocks_per_folio(inode, page_folio(page));
1464 }
1465 #endif /* _LINUX_PAGEMAP_H */
1466